Taking Derivatives of Functional Programs

AD in a Functional Framework

Jeffrey Mark Siskind qobi@purdue.edu

School of Electrical and Computer Engineering Purdue University

University of Hertfordshire 22 November 2005

Joint work with Barak A. Pearlmutter.

Outline

- Lambda Calculus
- 2 Differential Calculus in Lambda-Calculus Notation
- 3 Tutorial on AD
 - Forward Mode
 - Reverse Mode
- 4 Essence of the Derivation of Functional Reverse Mode
- S AD in Lambda-Calculus Notation
- 6 Examples
- Benefits of this Approach

Outline

- Lambda Calculus
- 2 Differential Calculus in Lambda-Calculus Notation
- 3 Tutorial on AD
 - Forward Mode
 - Reverse Mode
- 4 Essence of the Derivation of Functional Reverse Mode
- AD in Lambda-Calculus Notation
- 6 Examples
- Benefits of this Approach

FOLD
$$(m, n, u, b, i) \stackrel{\triangle}{=} \mathbf{if} \ m > n$$

then i
else $b \ ((u \ m), (\text{FOLD} \ (m+1, n, u, b, i)))$

FOLD
$$(m, n, u, b, i) \stackrel{\triangle}{=} if m > n$$

then i
else $b((u m), (\text{FOLD}(m + 1, n, u, b, i)))$
 $\sum_{i=1}^{n} \sin i$

FOLD
$$(m, n, u, b, i) \stackrel{\triangle}{=} \text{if } m > n$$

then i
else $b ((u m), (\text{FOLD } (m + 1, n, u, b, i)))$

$$\sum_{i=m}^{n} \sin i : \text{FOLD } (m, n, \sin, +, 0)$$

FOLD
$$(m, n, u, b, i) \stackrel{\triangle}{=} if m > n$$

then i
else $b((u m), (\text{FOLD}(m + 1, n, u, b, i)))$

$$\sum_{i=m}^{n} \cos i : \text{FOLD}(m, n, \cos, +, 0)$$

FOLD
$$(m, n, u, b, i) \stackrel{\triangle}{=} if m > n$$

then i
else $b((u m), (\text{FOLD}(m + 1, n, u, b, i)))$

$$\prod_{i=m}^{n} \sin i : \text{FOLD}(m, n, \sin, \times, 1)$$

$$\sum_{i=m}^{n} i^2$$

$$\sum_{i=m}^{n} i^{2}$$

$$SQR i \stackrel{\triangle}{=} i \times i$$

$$\sum_{i=m}^{n} i^{2} = \text{FOLD}(m, n, \text{SQR}, +, 0)$$

$$\text{SQR } i \stackrel{\triangle}{=} i \times i$$

$$\sum_{i=-\infty}^{n} i^{2} = \text{FOLD}(m, n, (\lambda i \ i \times i), +, 0)$$

$$(\lambda x \ 2 \times x) \ 3 = 6$$

$$(\lambda x \ 2 \times x) \ 3 = 6$$

$$((\lambda x \, \lambda y \, x + y) \, 3) \, 4 = 7$$

$$(\lambda x \ 2 \times x) \ 3 = 6$$

$$(\lambda x \, \lambda y \, x + y) \, 3 \qquad = \quad ?$$

$$(\lambda x \ 2 \times x) \ 3 = 6$$

$$(\lambda x \ \lambda y \ x + y) \ 3 = \langle \{x \mapsto 3\}, \lambda y \ x + y \rangle$$

It is, of course, not excluded that the range of arguments or range of values of a function should consist wholly or partly of functions. The derivative, as this notion appears in the elementary differential calculus, is a familiar mathematical example of a function for which both ranges consist of functions.

 $(p. 1 \P 4)$

Church, A. (1941). *The Calculi of Lambda Conversion*. Princeton University Press, Princeton, NJ.

Gottfried Leibniz Jacob Bernoulli Johann Bernoulli Leonhard Euler Joseph Louis Lagrange Simeon Poisson Michel Chasles Hubert Anson Newton Eliakim Hastings Moore Oswald Veblen Alonzo Church

Outline

- Lambda Calculus
- 2 Differential Calculus in Lambda-Calculus Notation
- 3 Tutorial on AD
 - Forward Mode
 - Reverse Mode
- 4 Essence of the Derivation of Functional Reverse Mode
- AD in Lambda-Calculus Notation
- 6 Examples
- Benefits of this Approach

$$\frac{\mathrm{d}ax^2}{\mathrm{d}x} \rightsquigarrow 2ax$$

$$\frac{\mathrm{d}ax^2}{\mathrm{d}x} \rightsquigarrow 2ax$$

$$\frac{\mathrm{d}}{\mathrm{d}x}: \underbrace{f}_{\mathbb{R} \to \mathbb{R}} \mapsto \underbrace{f'}_{\mathbb{R} \to \mathbb{R}}$$

$$\frac{\mathrm{d}ax^2}{\mathrm{d}x} \rightsquigarrow 2ax$$

$$\frac{\mathrm{d}}{\mathrm{d}x}: \underbrace{f}_{\mathbb{R} \to \mathbb{R}} \mapsto \underbrace{f'}_{\mathbb{R} \to \mathbb{R}}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}:(\mathbb{R}\to\mathbb{R})\to(\mathbb{R}\to\mathbb{R})$$

$$\frac{\mathrm{d}ax^2}{\mathrm{d}x} \rightsquigarrow 2ax$$

$$\frac{\mathrm{d}}{\mathrm{d}x}: \underbrace{f}_{\mathbb{R} \to \mathbb{R}} \mapsto \underbrace{f'}_{\mathbb{R} \to \mathbb{R}}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}:(\mathbb{R}\to\mathbb{R})\to(\mathbb{R}\to\mathbb{R})$$

$$\mathcal{D}: (\mathbb{R} \to \mathbb{R}) \to (\mathbb{R} \to \mathbb{R})$$

$$\frac{\mathrm{d}ax^2}{\mathrm{d}x} \rightsquigarrow 2ax$$

$$\frac{\mathrm{d}}{\mathrm{d}x}: \underbrace{f}_{\mathbb{R} \to \mathbb{R}} \mapsto \underbrace{f'}_{\mathbb{R} \to \mathbb{R}}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}:(\mathbb{R}\to\mathbb{R})\to(\mathbb{R}\to\mathbb{R})$$

$$\mathcal{D}: (\mathbb{R} \to \mathbb{R}) \to (\mathbb{R} \to \mathbb{R})$$

$$\mathcal{D} \lambda x ax^2$$

$$\frac{\partial ax^2y^3}{\partial x}$$

$$\frac{\partial ax^2y^3}{\partial y}$$

$$\frac{\partial ax^2y^3}{\partial x}$$

$$\mathcal{D} \lambda x a x^2 y^3$$

$$\frac{\partial ax^2y^3}{\partial y}$$

$$\mathcal{D} \lambda y ax^2 y^3$$

$$\frac{\partial ax^2y^3}{\partial x}$$

$$\mathcal{D} \lambda x a x^2 v^3$$

$$\mathcal{D}_1 \lambda(x,y) ax^2y^3$$

$$\frac{\partial ax^2y^3}{\partial y}$$

$$\mathcal{D} \; \lambda y \; ax^2y^3$$

$$\mathcal{D}_2 \lambda(x,y) ax^2y^3$$

$$\frac{\partial ax^2y^3}{\partial x} \qquad \frac{\partial ax^2y^3}{\partial y}$$

$$\mathcal{D} \lambda x \ ax^2y^3 \qquad \mathcal{D} \lambda y \ ax^2y^3$$

$$\mathcal{D}_1 \lambda(x,y) \ ax^2y^3 \qquad \mathcal{D}_2 \lambda(x,y) \ ax^2y^3$$

$$\frac{\partial}{\partial x} : \underbrace{f}_{\mathbb{R}^n \to \mathbb{R}} \mapsto \underbrace{f'}_{\mathbb{R}^n \to \mathbb{R}}$$

$$\frac{\partial ax^2y^3}{\partial x} \qquad \frac{\partial ax^2y^3}{\partial y}$$

$$\mathcal{D} \lambda x \ ax^2y^3 \qquad \mathcal{D} \lambda y \ ax^2y^3$$

$$\mathcal{D}_1 \lambda(x, y) \ ax^2y^3 \qquad \mathcal{D}_2 \lambda(x, y) \ ax^2y^3$$

$$\frac{\partial}{\partial x} : \underbrace{f}_{\mathbb{R}^n \to \mathbb{R}} \mapsto \underbrace{f'}_{\mathbb{R}^n \to \mathbb{R}}$$

$$\frac{\partial}{\partial x} : (\mathbb{R}^n \to \mathbb{R}) \to (\mathbb{R}^n \to \mathbb{R})$$

$$\frac{\partial ax^{2}y^{3}}{\partial x} \qquad \frac{\partial ax^{2}y^{3}}{\partial y}$$

$$\mathcal{D} \lambda x \ ax^{2}y^{3} \qquad \mathcal{D} \lambda y \ ax^{2}y^{3}$$

$$\mathcal{D}_{1} \lambda(x, y) \ ax^{2}y^{3} \qquad \mathcal{D}_{2} \lambda(x, y) \ ax^{2}y^{3}$$

$$\frac{\partial}{\partial x} : \underbrace{f}_{\mathbb{R}^{n} \to \mathbb{R}} \mapsto \underbrace{f'}_{\mathbb{R}^{n} \to \mathbb{R}}$$

$$\frac{\partial}{\partial x} : (\mathbb{R}^{n} \to \mathbb{R}) \to (\mathbb{R}^{n} \to \mathbb{R})$$

$$\mathcal{D}_{i} : (\mathbb{R}^{n} \to \mathbb{R}) \to (\mathbb{R}^{n} \to \mathbb{R})$$

Gradients

$$\nabla f \mathbf{x} = (\mathcal{D}_1 f \mathbf{x}), \dots, (\mathcal{D}_n f \mathbf{x})$$

$$\nabla$$
 : $(\mathbb{R}^n \to \mathbb{R}) \to (\mathbb{R}^n \to \mathbb{R}^n)$

Jacobians

$$f: \mathbb{R}^n \to \mathbb{R}^m$$

$$\mathbf{f}$$
 : $(\mathbb{R}^n \to \mathbb{R})^m$

$$(\mathcal{J} f \mathbf{x})[i,j] = (\nabla (\mathbf{f}[i]))[j]$$

$$\mathcal{J}$$
: $(\mathbb{R}^n \to \mathbb{R}^m) \to (\mathbb{R}^n \to \mathbb{R}^{m \times n})$

Operators

 \mathcal{D} , ∇ , and \mathcal{J} are traditionally called *operators*.

A more modern term is higher-order functions.

Higher-order functions are common in mathematics, physics, and engineering:

summations, comprehensions, quantifications, optimizations, integrals, convolutions, filters, edge detectors, Fourier transforms, differential equations, Hamiltonians, . . .

The Chain Rule

$$(f\circ g)\ x=g\ (f\ x)$$

The Chain Rule

$$(f \circ g) \ x = g \ (f \ x)$$

$$\frac{\mathrm{d}g}{\mathrm{d}x} = \frac{\mathrm{d}g}{\mathrm{d}f} \frac{\mathrm{d}f}{\mathrm{d}x}$$

The Chain Rule

$$(f \circ g) \ x = g \ (f \ x)$$

$$\frac{\mathrm{d}g}{\mathrm{d}x} = \frac{\mathrm{d}g}{\mathrm{d}f} \frac{\mathrm{d}f}{\mathrm{d}x}$$

$$\mathcal{D}(f \circ g) x = (\mathcal{D} g(f x)) \times (\mathcal{D} f x)$$

The Chain Rule

$$(f \circ g) \ x = g \ (f \ x)$$

$$\frac{\mathrm{d}g}{\mathrm{d}x} = \frac{\mathrm{d}g}{\mathrm{d}f} \frac{\mathrm{d}f}{\mathrm{d}x}$$

$$\mathcal{D}(f \circ g) x = (\mathcal{D} g(f x)) \times (\mathcal{D} f x)$$

$$\mathcal{J}(f \circ g) \mathbf{x} = (\mathcal{J} g(f \mathbf{x})) \times (\mathcal{J} f \mathbf{x})$$

Outline

- Lambda Calculus
- 2 Differential Calculus in Lambda-Calculus Notation
- 3 Tutorial on AD
 - Forward Mode
 - Reverse Mode
- Essence of the Derivation of Functional Reverse Mode
- AD in Lambda-Calculus Notation
- 6 Examples
- Benefits of this Approach

Outline

- Lambda Calculus
- 2 Differential Calculus in Lambda-Calculus Notation
- 3 Tutorial on AD
 - Forward Mode
 - Reverse Mode
- Essence of the Derivation of Functional Reverse Mode
- AD in Lambda-Calculus Notation
- 6 Examples
- Benefits of this Approach

Straight-Line Code and Jacobians

$$\mathbf{x}_1 = f_1 \ \mathbf{x}_0$$

$$\vdots$$

$$\mathbf{x}_n = f_n \ \mathbf{x}_{n-1}$$

$$f = f_1 \circ \cdots \circ f_n$$

$$\mathcal{J} f \mathbf{x}_0 = (\mathcal{J} f_n \mathbf{x}_{n-1}) \times \cdots \times (\mathcal{J} f_1 \mathbf{x}_0)$$
$$(\mathcal{J} f \mathbf{x}_0)^{\top} = (\mathcal{J} f_1 \mathbf{x}_0)^{\top} \times \cdots \times (\mathcal{J} f_n \mathbf{x}_{n-1})^{\top}$$

One Way to Compute the Jacobian

$$\overline{\mathbf{X}}_{1}' = (\mathcal{J} f_{1} \mathbf{x}_{0})
\overline{\mathbf{X}}_{2}' = (\mathcal{J} f_{2} \mathbf{x}_{1}) \times \overline{\mathbf{X}}_{1}'
\vdots
\overline{\mathbf{X}}_{n}' = (\mathcal{J} f_{n} \mathbf{x}_{n-1}) \times \overline{\mathbf{X}}_{n-1}'$$

$$\overline{\mathbf{X}}_{n}' = \mathcal{J} f \mathbf{x}_{0}$$

Forward-Mode AD

$$\overline{\mathbf{x}_{1}'} = (\mathcal{J} f_{1} \mathbf{x}_{0}) \times \overline{\mathbf{x}_{0}'}$$

$$\vdots$$

$$\overline{\mathbf{x}_{n}'} = (\mathcal{J} f_{n} \mathbf{x}_{n-1}) \times \overline{\mathbf{x}_{n-1}'}$$

$$\overline{\mathbf{x}_n'} = (\mathcal{J} f \mathbf{x}_0) \times \overline{\mathbf{x}_0'}$$

Wengert, R. E. (1964). A simple automatic derivative evaluation program. *Communications of the ACM*, **7**(8):463–4.

Interleaving Forward Mode

$$\mathbf{x}_{1} = f_{1} \mathbf{x}_{0} \qquad \overline{\mathbf{x}'_{1}} = (\mathcal{J} f_{1} \mathbf{x}_{0}) \times \overline{\mathbf{x}'_{0}}$$

$$\vdots \qquad \vdots$$

$$\mathbf{x}_{n} = f_{n} \mathbf{x}_{n-1} \qquad \overline{\mathbf{x}'_{n}} = (\mathcal{J} f_{n} \mathbf{x}_{n-1}) \times \overline{\mathbf{x}_{n-1}}$$

$$\mathbf{x}_{1} = f_{1} \mathbf{x}_{0}$$

$$\mathbf{\overline{x}}_{1}' = (\mathcal{J} f_{1} \mathbf{x}_{0}) \times \mathbf{\overline{x}}_{0}'$$

$$\vdots$$

$$\mathbf{x}_{n} = f_{n} \mathbf{x}_{n-1}$$

$$\mathbf{\overline{x}}_{n}' = (\mathcal{J} f_{n} \mathbf{x}_{n-1}) \times \mathbf{\overline{x}}_{n-1}'$$

Forward Mode as a Transformation

$$\mathbf{x}_{1} = f_{1} \mathbf{x}_{0}
\vdots
\mathbf{x}_{n} = f_{n} \mathbf{x}_{n-1}$$

$$\Leftrightarrow \begin{cases}
\overrightarrow{\mathbf{x}_{1}} = \overrightarrow{f_{1}} \ \overrightarrow{\mathbf{x}_{0}} \\
\vdots \\
\overrightarrow{\mathbf{x}_{n}} = \overrightarrow{f_{n}} \ \overrightarrow{\mathbf{x}_{n-1}}
\end{cases}$$

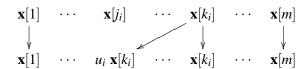
$$\overrightarrow{\mathbf{x}} = (\mathbf{x}, \overrightarrow{\mathbf{x}})$$
 $\overrightarrow{f}(\mathbf{x}, \overrightarrow{\mathbf{x}}) = ((f \mathbf{x}), ((\mathcal{J} f \mathbf{x}) \times \overrightarrow{\mathbf{x}}))$

A Unary Sparse Function

$$(f_i \mathbf{x})[j_i] = u_i \mathbf{x}[k_i]$$

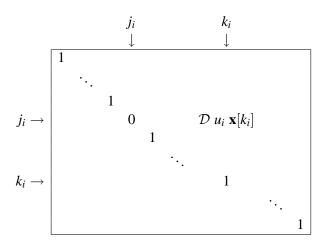
$$(f_i \mathbf{x})[j'] = \mathbf{x}[j']$$

$$j' \neq j_i$$



23 / 86

The Jacobian of a Unary Sparse Function



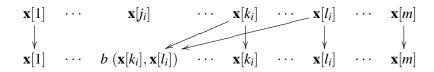
Computing $(\mathcal{J} f_i \mathbf{x}_{i-1}) \times \overline{\mathbf{x}_{i-1}}$ for a Unary Sparse Function

A Binary Sparse Function

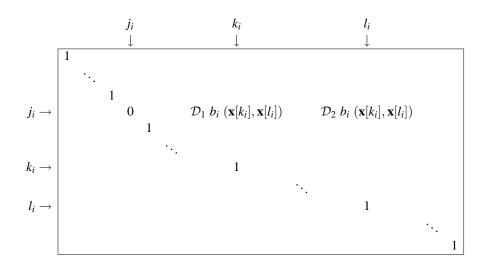
$$(f_i \mathbf{x})[j_i] = b_i (\mathbf{x}[k_i], \mathbf{x}[l_i])$$

$$(f_i \mathbf{x})[j'] = \mathbf{x}[j']$$

$$j' \neq j_i$$



The Jacobian of a Binary Sparse Function



Computing $(\mathcal{J} f_i \mathbf{x}_{i-1}) \times \overline{\mathbf{x}_{i-1}}$ for a Binary Sparse Function

$$\begin{pmatrix} \overline{\mathbf{x}}[1] \\ \vdots \\ \overline{\mathbf{x}}[i_l - 1] \\ ((D; h_l, (\mathbf{x}[k_l], \mathbf{x}[l_l])) \times \overline{\mathbf{x}}[k_l]) + ((D_2, h_l, (\mathbf{x}[k_l], \mathbf{x}[l_l])) \times \overline{\mathbf{x}}[l_l]) \\ \vdots \\ \overline{\mathbf{x}}[j_l + 1] \\ \vdots \\ \overline{\mathbf{x}}[k_l] \\ \vdots \\ \overline{\mathbf{x}}[k_l] \\ \vdots \\ \overline{\mathbf{x}}[m] \end{pmatrix} = \begin{pmatrix} \mathbf{I} \\ \ddots \\ \mathbf{I} \\ 0 & D_1, h_l, (\mathbf{x}[k_l], \mathbf{x}[l_l]) & D_2, h_l, (\mathbf{x}[k_l], \mathbf{x}[l_l]) \\ 1 & 0 & D_1, h_l, (\mathbf{x}[k_l], \mathbf{x}[l_l]) \\ \vdots \\ \overline{\mathbf{x}}[j_l] \\ \vdots \\ \overline{\mathbf{x}}[k_l] \\ \vdots \\ \overline{\mathbf{x}}[k_l] \\ \vdots \\ \overline{\mathbf{x}}[m] \end{pmatrix}$$

Forward Mode as a Sparse Transformation

$$x_{j_i} := u_i \ x_{k_i} \quad \rightsquigarrow \quad \overrightarrow{x_{j_i}} := \overrightarrow{u_i} \ \overrightarrow{x_{k_i}}$$

$$x_{j_i} := b_i \ (x_{k_i}, x_{l_i}) \quad \rightsquigarrow \quad \overrightarrow{x_{j_i}} := \overrightarrow{b_i} \ (\overrightarrow{x_{k_i}}, \overrightarrow{x_{l_i}})$$

$$\overrightarrow{x} = (x, \overrightarrow{x})$$

$$\overrightarrow{u} (x, \overrightarrow{x}) = ((u x), ((\mathcal{D} u x) \times \overrightarrow{x}))$$

$$\overrightarrow{b} ((x_1, \overline{x_1}), (x_2, \overline{x_2})) = ((b (x_1, x_2)), (((\mathcal{D}_1 b (x_1, x_2)) \times \overline{x_1}) + ((\mathcal{D}_2 b (x_1, x_2)) \times \overline{x_2})))$$

Outline

- Tutorial on AD
 - Forward Mode
 - Reverse Mode

Straight-Line Code and Jacobians

$$\mathbf{x}_1 = f_1 \ \mathbf{x}_0$$

$$\vdots$$

$$\mathbf{x}_n = f_n \ \mathbf{x}_{n-1}$$

$$f = f_1 \circ \cdots \circ f_n$$

$$\mathcal{J} f \mathbf{x}_0 = (\mathcal{J} f_n \mathbf{x}_{n-1}) \times \cdots \times (\mathcal{J} f_1 \mathbf{x}_0)$$
$$(\mathcal{J} f \mathbf{x}_0)^{\top} = (\mathcal{J} f_1 \mathbf{x}_0)^{\top} \times \cdots \times (\mathcal{J} f_n \mathbf{x}_{n-1})^{\top}$$

Another Way to Compute the Jacobian

$$\mathbf{\overline{X}_{n-1}} = (\mathcal{J} f_n \mathbf{x}_{n-1})^{\top}
\mathbf{\overline{X}_{n-2}} = (\mathcal{J} f_{n-1} \mathbf{x}_{n-2})^{\top} \times \mathbf{\overline{X}_{n-1}}
\vdots
\mathbf{\overline{X}_0} = (\mathcal{J} f_1 \mathbf{x}_0)^{\top} \times \mathbf{\overline{X}_1}$$

$$\mathbf{X}_0 = (\mathcal{J} f \mathbf{x}_0)^{\mathsf{T}}$$

Reverse-Mode AD

$$\mathbf{\overline{x}}_{n-1} = (\mathcal{J} f_n \ \mathbf{x}_{n-1})^{\top} \times \mathbf{\overline{x}}_n$$

$$\vdots$$

$$\mathbf{\overline{x}}_0 = (\mathcal{J} f_1 \ \mathbf{x}_0)^{\top} \times \mathbf{\overline{x}}_1$$

$$\mathbf{x}_0 = (\mathcal{J} f \mathbf{x}_0)^{\mathsf{T}} \times \mathbf{x}_n$$

Speelpenning, B. (1980). *Compiling Fast Partial Derivatives of Functions Given by Algorithms*. PhD thesis, Department of Computer Science, University of Illinois at Urbana-Champaign.

Reverse Mode Cannot be Interleaved

$$\mathbf{x}_{1} = f_{1} \mathbf{x}_{0}$$

$$\vdots$$

$$\mathbf{x}_{n} = f_{n} \mathbf{x}_{n-1}$$

$$\mathbf{\overline{x}}_{n-1} = (\mathcal{J} f_{n} \mathbf{x}_{n-1})^{\top} \times \mathbf{\overline{x}}_{n}$$

$$\vdots$$

$$\mathbf{\overline{x}}_{0} = (\mathcal{J} f_{1} \mathbf{x}_{0})^{\top} \times \mathbf{\overline{x}}_{1}$$

Reverse Mode via Backpropagators

$$\mathbf{x}_{1} = f_{1} \mathbf{x}_{0}$$

$$\mathbf{\overline{x}}_{1} = \lambda \mathbf{\overline{x}} \mathbf{\overline{x}}_{0} ((\mathcal{J} f_{1} \mathbf{x}_{0})^{\top} \times \mathbf{\overline{x}})$$

$$\vdots$$

$$\mathbf{x}_{n} = f_{n} \mathbf{x}_{n-1}$$

$$\mathbf{\overline{x}}_{n} = \lambda \mathbf{\overline{x}} \mathbf{\overline{x}}_{n-1} ((\mathcal{J} f_{n} \mathbf{x}_{n-1})^{\top} \times \mathbf{\overline{x}})$$

 $\overline{\mathbf{X}_n} \mathbf{X}_n$

Reverse Mode as a Transformation

$$\mathbf{x}_{1} = f_{1} \mathbf{x}_{0}
\vdots
\mathbf{x}_{n} = f_{n} \mathbf{x}_{n-1}$$

$$\Leftrightarrow \begin{cases}
\overleftarrow{\mathbf{x}_{1}} = \overleftarrow{f_{1}} \overleftarrow{\mathbf{x}_{0}} \\
\vdots \\
\overleftarrow{\mathbf{x}_{n}} = \overleftarrow{f_{n}} \overleftarrow{\mathbf{x}_{n-1}}$$

$$\frac{\overleftarrow{\mathbf{x}}}{f} = (\mathbf{x}, \overline{\mathbf{x}})$$

$$\frac{\overleftarrow{f}}{f} (\mathbf{x}, \overline{\mathbf{x}}) = ((f \mathbf{x}), (\lambda^{\overline{\mathbf{x}}} \overline{\mathbf{x}} ((\mathcal{J} f \mathbf{x})^{T} \times \overline{\mathbf{x}})))$$

Reverse Mode via a Tape

$$\mathbf{x}_{1} = f_{1} \mathbf{x}_{0}
\vdots
\mathbf{x}_{n} = f_{n} \mathbf{x}_{n-1}$$

$$\overset{\leftarrow}{\mathbf{x}_{1}} = \overset{\leftarrow}{f_{1}} \overset{\leftarrow}{\mathbf{x}_{0}}
\vdots
\overset{\leftarrow}{\mathbf{x}_{n}} = \overset{\leftarrow}{f_{n}} \overset{\leftarrow}{\mathbf{x}_{n-1}}$$

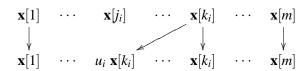
$$\begin{array}{rcl} \overleftarrow{\mathbf{x}} & = & \mathbf{x} \\ \overleftarrow{f} & \mathbf{x} & = & \mathbf{begin} \ \overline{\mathbf{x}} := \lambda \overleftarrow{\mathbf{x}} \ \overline{\mathbf{x}} \ ((\mathcal{J} f \ \mathbf{x})^\top \times \overleftarrow{\mathbf{x}}); \\ & & & (f \ \mathbf{x}) \ \mathbf{end} \end{array}$$

A Unary Sparse Function

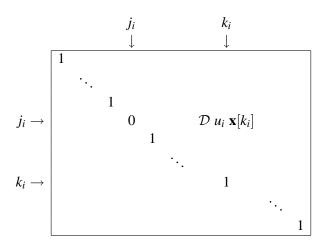
$$(f_i \mathbf{x})[j_i] = u_i \mathbf{x}[k_i]$$

$$(f_i \mathbf{x})[j'] = \mathbf{x}[j']$$

$$j' \neq j_i$$



The Jacobian of a Unary Sparse Function



The Transpose of the Jacobian of a Unary Sparse Function

Computing $(\mathcal{J} f_i \mathbf{x}_{i-1})^{\top} \times \overline{\mathbf{x}}_i$ for a Unary Sparse Function

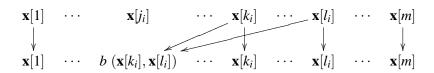
$$\begin{pmatrix} \mathbf{\bar{x}}[1] \\ \vdots \\ \mathbf{\bar{x}}[j_i-1] \\ 0 \\ \mathbf{\bar{x}}[j_i+1] \\ \vdots \\ ((\mathcal{D}\,u_i\,\mathbf{x}[k_i])\times\mathbf{\bar{x}}[j_i]) + \mathbf{\bar{x}}[k_i] \end{pmatrix} = \begin{pmatrix} 1 \\ & \ddots & & & \\ & 1 \\ & & 0 \\ & & & 1 \\ & & & \ddots \\ & & & \mathcal{D}\,u_i\,\mathbf{x}[k_i] & & 1 \\ \vdots \\ \mathbf{\bar{x}}[m] \end{pmatrix} \begin{pmatrix} \mathbf{\bar{x}}[1] \\ \vdots \\ \mathbf{\bar{x}}[j_i-1] \\ \mathbf{\bar{x}}[j_i] \\ \mathbf{\bar{x}}[j_i+1] \\ \vdots \\ \mathbf{\bar{x}}[k_i] \\ \vdots \\ \mathbf{\bar{x}}[m] \end{pmatrix}$$

A Binary Sparse Function

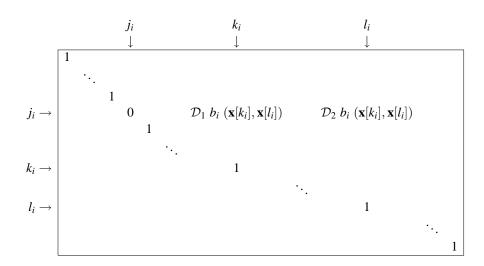
$$(f_i \mathbf{x})[j_i] = b_i (\mathbf{x}[k_i], \mathbf{x}[l_i])$$

$$(f_i \mathbf{x})[j'] = \mathbf{x}[j']$$

$$j' \neq j_i$$



The Jacobian of a Binary Sparse Function



The Transpose of the Jacobian of a Binary Sparse Function

Computing $(\mathcal{J} f_i \mathbf{x}_{i-1})^{\top} \times \overline{\mathbf{x}_i}$ for a Binary Sparse Function

$$\begin{pmatrix} \overline{\mathbf{x}}[1] \\ \vdots \\ \overline{\mathbf{x}}[j_i-1] \\ 0 \\ \overline{\mathbf{x}}[j_i+1] \\ \vdots \\ ((\mathcal{D}_1 \ b_i \ (\mathbf{x}[k_i], \mathbf{x}[l_i])) \times \overline{\mathbf{x}}[j_i]) + \overline{\mathbf{x}}[k_i] \\ \vdots \\ (\mathcal{D}_2 \ b_i \ (\mathbf{x}[k_i], \mathbf{x}[l_i])) \times \overline{\mathbf{x}}[j_i]) + \overline{\mathbf{x}}[k_i] \\ \vdots \\ \overline{\mathbf{x}}[m] \end{pmatrix} = \begin{pmatrix} 1 \\ \ddots \\ 1 \\ 0 \\ 0 \\ \mathcal{D}_1 \ b_i \ (\mathbf{x}[k_i], \mathbf{x}[l_i]) & 1 \\ & \mathcal{D}_2 \ b_i \ (\mathbf{x}[k_i], \mathbf{x}[l_i]) & 1 \\ & \mathcal{D}_2 \ b_i \ (\mathbf{x}[k_i], \mathbf{x}[l_i]) & 1 \\ & \vdots \\ \overline{\mathbf{x}}[m] \end{pmatrix}$$

Sparse Reverse Mode via a Tape

$$\begin{array}{lll} x_{j_i} := u_i \ x_{k_i} & \leadsto & \overline{x} := \lambda[\] \ \textbf{begin} \ \overline{x_{k_i}} + := (\mathcal{D} \ u_i \ x_{k_i}) \times \overline{x_{j_i}}; \\ \overline{x_{j_i}} := 0; \\ \overline{x} \ [\] \ \textbf{end}; \\ x_{j_i} := u_i \ x_{k_i} \\ \\ x_{j_i} := b_i \ (x_{k_i}, x_{l_i}) & \leadsto & \overline{x} := \lambda[\] \ \textbf{begin} \ \overline{x_{k_i}} + := (\mathcal{D}_1 \ b_i \ (x_{k_i}, x_{l_i})) \times \overline{x_{j_i}}; \\ \overline{x_{l_i}} + := (\mathcal{D}_2 \ b_i \ (x_{k_i}, x_{l_i})) \times \overline{x_{j_i}}; \\ \overline{x_{j_i}} := 0; \\ \overline{x} \ [\] \ \textbf{end}; \\ x_{j_i} := b_i \ (x_{k_i}, x_{l_i}) \end{array}$$

Outline

- Lambda Calculus
- Differential Calculus in Lambda-Calculus Notation
- 3 Tutorial on AD
 - Forward Mode
 - Reverse Mode
- 4 Essence of the Derivation of Functional Reverse Mode
- 5 AD in Lambda-Calculus Notation
- 6 Examples
- Benefits of this Approach

Reverse Mode on Imperative Programs

$$x_2 := u x_1$$

$$\begin{array}{ccc} x_4 & := & b \ (x_2, x_3) \\ & \vdots & \end{array}$$

Reverse Mode on Imperative Programs

Reverse Mode on Imperative Programs

$$\begin{array}{c} \vdots \\ \text{PUSH } x_1 \\ x_2 & := & u \, x_1 \\ \text{PUSH } x_2 \\ \text{PUSH } x_3 \\ x_2 & := & b \, (x_2, x_3) \\ \vdots \\ \vdots \\ \text{POP } x_3 \\ \text{POP } x_2 \\ \hline x_2 & + := & (\mathcal{D}_1 \, b \, (x_2, x_3)) \times \overline{x_2} \\ \hline x_3 & + := & (\mathcal{D}_2 \, b \, (x_2, x_3)) \times \overline{x_2} \\ \text{POP } x_1 \\ \hline x_1 & + := & (\mathcal{D} \, u \, x_1) \times \overline{x_2} \\ \vdots \end{array} \right\} \textit{reverse phase}$$

Notation

In the following slides, I use \mathbf{x} , \mathbf{y} , \mathbf{x}_i , and \mathbf{y}_i to denote tuples of scalar variables, i.e. (x_{47}, x_{19}, x_{33}) .

Notation

In the following slides, I use \mathbf{x} , \mathbf{y} , \mathbf{x}_i , and \mathbf{y}_i to denote tuples of scalar variables, i.e. (x_{47}, x_{19}, x_{33}) .

I use $\mathbf{\bar{x}}$, $\mathbf{\bar{y}}$, $\mathbf{\bar{x}}_i$, and $\mathbf{\bar{y}}_i$ to denote tuples of corresponding sensitivities of scalar variables, i.e. $(\mathbf{\bar{x}}_{47}, \mathbf{\bar{x}}_{19}, \mathbf{\bar{x}}_{33})$.

Unary Primitives

 $u:x\mapsto y$

Unary Primitives

$$u: x \mapsto y$$

$$\frac{\longleftarrow}{u} : x \mapsto y \qquad \stackrel{\triangle}{=} \qquad \left\{ \begin{array}{l} \text{PUSH } x \\ y := u x \end{array} \right.$$

$$\overline{u}: \overline{y} \mapsto \overline{x} \stackrel{\triangle}{=} \left\{ \begin{array}{l} \operatorname{POP} x \\ \overline{x} + := (\mathcal{D} u x) \times \overline{y} \end{array} \right.$$

Binary Primitives

$$b:(x,y)\mapsto z$$

Binary Primitives

$$b:(x,y)\mapsto z$$

$$\frac{\checkmark}{b} : (x, y) \mapsto z \qquad \stackrel{\triangle}{=} \begin{cases} \text{PUSH } x \\ \text{PUSH } y \\ z := b \ (x, y) \end{cases}$$

$$\overline{b}: \overline{z} \mapsto (\overline{x}, \overline{y}) \stackrel{\triangle}{=} \begin{cases} POP x \\ POP y \\ \overline{x} + := (\mathcal{D}_1 b(x, y)) \times \overline{z} \\ \overline{y} + := (\mathcal{D}_2 b(x, y)) \times \overline{z} \end{cases}$$

User-Defined Functions

$$f: \mathbf{x} \mapsto \mathbf{y} \qquad \stackrel{\triangle}{=} \quad \left\{ \begin{array}{l} \mathbf{y}_1 & := f_1 \mathbf{x}_1 \\ & \vdots \\ \mathbf{y}_n & := f_n \mathbf{x}_n \end{array} \right.$$

User-Defined Functions

$$f: \mathbf{x} \mapsto \mathbf{y}$$
 $\stackrel{\triangle}{=}$ $\begin{cases} \mathbf{y}_1 & := f_1 \mathbf{x}_1 \\ & \vdots \\ \mathbf{y}_n & := f_n \mathbf{x}_n \end{cases}$

$$\stackrel{\smile}{f} : \mathbf{x} \mapsto \mathbf{y} \quad \stackrel{\triangle}{=} \quad \begin{cases}
\mathbf{y}_1 & := \overline{f_1} \mathbf{x}_1 \\
\vdots \\
\mathbf{y}_n & := \overline{f_n} \mathbf{x}_n
\end{cases}$$

$$\bar{f}: \mathbf{\bar{y}} \mapsto \mathbf{\bar{x}} \stackrel{\triangle}{=} \begin{cases} \mathbf{\bar{x}}_n & +:= \overline{f_n} \mathbf{\bar{y}}_n \\ \vdots \\ \mathbf{\bar{x}}_1 & +:= \overline{f_1} \mathbf{\bar{y}}_1 \end{cases}$$

Representing the Tape as Function Arguments and Results Unary Primitives

$$u: x \mapsto y$$

$$\stackrel{\longleftarrow}{u}: x \mapsto (y, x) \stackrel{\triangle}{=} \{ y := u x \}$$

$$\overline{u}:(x,\overline{y})\mapsto\overline{x}\stackrel{\triangle}{=}\{\overline{x}+:=(\mathcal{D}ux)\times\overline{y}\}$$

Representing the Tape as Function Arguments and Results Binary Primitives

$$b:(x,y)\mapsto z$$

$$\stackrel{\smile}{b}:(x,y)\mapsto(z,(x,y))$$
 $\stackrel{\triangle}{=}$ $\{z:=b(x,y)\}$

$$\overline{b}: ((x,y), \overline{z}) \mapsto (\overline{x}, \overline{y}) \stackrel{\triangle}{=} \begin{cases} \overline{x} & +:= (\mathcal{D}_1 \ b \ (x,y)) \times \overline{z} \\ \overline{y} & +:= (\mathcal{D}_2 \ b \ (x,y)) \times \overline{z} \end{cases}$$

Representing the Tape as Function Arguments and Results

User-Defined Functions

$$f: \mathbf{x} \mapsto \mathbf{y} \qquad \qquad \stackrel{\triangle}{=} \quad \left\{ \begin{array}{l} \mathbf{y}_1 & := f_1 \mathbf{x}_1 \\ \vdots \\ \mathbf{y}_n & := f_n \mathbf{x}_n \end{array} \right.$$

$$\frac{\checkmark}{f}: \mathbf{x} \mapsto (\mathbf{y}, (\mathbf{t}_1, \dots, \mathbf{t}_n)) \stackrel{\triangle}{=} \begin{cases}
\mathbf{y}_1, \mathbf{t}_1 & := f_1 \mathbf{x}_1 \\
\vdots \\
\mathbf{y}_n, \mathbf{t}_n & := f_n \mathbf{x}_n
\end{cases}$$

$$\bar{f}: ((\mathbf{t}_1, \dots, \mathbf{t}_n), \mathbf{\bar{y}}) \mapsto \mathbf{\bar{x}} \stackrel{\triangle}{=} \begin{cases} \mathbf{\bar{x}}_n & +:= \overline{f_n} \ (\mathbf{t}_n, \mathbf{\bar{y}}_n) \\ \vdots \\ \mathbf{\bar{x}}_1 & +:= \overline{f_1} \ (\mathbf{t}_1, \mathbf{\bar{y}}_1) \end{cases}$$

Representing the Tape as Closures

Unary Primitives

$$u: x \mapsto y$$

$$\frac{\overleftarrow{u}: x \mapsto (y, \overline{u})}{=} \begin{cases}
y & := u x \\
\overline{u}: \overleftarrow{y} \mapsto \overleftarrow{x} \stackrel{\triangle}{=} {\overrightarrow{x}} + := (\mathcal{D} u x) \times \overleftarrow{y}
\end{cases}$$

Representing the Tape as Closures

Binary Primitives

$$b:(x,y)\mapsto z$$

$$\frac{\overleftarrow{b}:(x,y)\mapsto(z,\overline{b})}{\overleftarrow{b}:\overleftarrow{z}\mapsto(\overleftarrow{x},\overleftarrow{y})} \stackrel{\triangle}{=} \begin{cases}
z & := b(x,y) \\
\overline{b}:\overleftarrow{z}\mapsto(\overleftarrow{x},\overleftarrow{y}) \stackrel{\triangle}{=} \begin{cases}
\overleftarrow{x} & +:= (\mathcal{D}_1 \ b(x,y)) \times \overleftarrow{z} \\
\overleftarrow{y} & +:= (\mathcal{D}_2 \ b(x,y)) \times \overleftarrow{z}
\end{cases}$$

Representing the Tape as Closures

User-Defined Functions

$$f: \mathbf{x} \mapsto \mathbf{y}$$
 $\stackrel{\triangle}{=}$ $\begin{cases} \mathbf{y}_1 & := f_1 \mathbf{x}_1 \\ & \vdots \\ \mathbf{y}_n & := f_n \mathbf{x}_n \end{cases}$

$$\frac{\overleftarrow{f}}: \mathbf{x} \mapsto (\mathbf{y}, \overline{f}) \stackrel{\triangle}{=} \begin{cases}
\mathbf{y}_{1}, \overline{f_{1}} & := \frac{\overleftarrow{f_{1}}}{f_{1}} \mathbf{x}_{1} \\
\vdots & := \frac{\overleftarrow{f_{n}}}{f_{n}} \mathbf{x}_{n} \\
\overline{f}: \mathbf{y} \mapsto \mathbf{x} \stackrel{\triangle}{=} \begin{cases}
\mathbf{x}_{n} + := \overline{f_{n}} \mathbf{y}_{n} \\
\vdots \\
\mathbf{x}_{1} + := \overline{f_{1}} \mathbf{y}_{1}
\end{cases}$$

Details for Handling Closures Omitted

Outline

- Lambda Calculus
- 2 Differential Calculus in Lambda-Calculus Notation
- 3 Tutorial on AD
 - Forward Mode
 - Reverse Mode
- 4 Essence of the Derivation of Functional Reverse Mode
- 6 AD in Lambda-Calculus Notation
- 6 Examples
- Benefits of this Approach

Traditional Formulation of AD as Transformations

Forward Mode: $\mathbb{R}^n \to \mathbb{R}^m \leadsto (\mathbb{R}^n \times \mathbb{R}^n) \to (\mathbb{R}^m \times \mathbb{R}^m)$

Reverse Mode: $\mathbb{R}^n \to \mathbb{R}^m \leadsto (\mathbb{R}^n \to (\mathbb{R}^m \times \mathbb{R}^l)) \times ((\mathbb{R}^m \times \mathbb{R}^l) \to \mathbb{R}^n)$

New Formulation of AD as Higher-Order Functions

Perturbation Types

$$\overline{\mathbf{null}} = \mathbf{null}$$

$$\overline{\mathbb{R}} = \mathbb{R}$$

$$\overline{\tau_1 \times \tau_2'} = \overline{\tau_1'} \times \overline{\tau_2'}$$

$$\overline{\tau_1} \xrightarrow{\tau_1', \dots, \tau_n'} \overline{\tau_2} = \overline{\tau_1'} \times \dots \times \overline{\tau_n'}$$

New Formulation of AD as Higher-Order Functions

Forward Types

$$\overrightarrow{\mathbf{null}} = \mathbf{null} \times \overrightarrow{\mathbf{null}}$$

$$\overrightarrow{\mathbb{R}} = \mathbb{R} \times \overrightarrow{\mathbb{R}}$$

$$\overrightarrow{\tau_1 \times \tau_2} = \overrightarrow{\tau_1} \times \overrightarrow{\tau_2}$$

$$\overrightarrow{\tau_1} \xrightarrow{\tau_1', \dots, \tau_n'} \tau_2 = \overrightarrow{\tau_1} \xrightarrow{\overrightarrow{\tau_1'}, \dots, \overrightarrow{\tau_n'}} \overrightarrow{\tau_2}$$

New Formulation of AD as Higher-Order Functions Sensitivity Types

New Formulation of AD as Higher-Order Functions

Reverse Types

$$\frac{\overleftarrow{\mathbf{null}}}{\mathbb{R}} = \mathbf{null}$$

$$\frac{\overleftarrow{\mathbb{R}}}{\tau_1 \times \tau_2} = \overleftarrow{\tau_1} \times \overleftarrow{\tau_2}$$

$$\frac{\overleftarrow{\tau_1', \dots, \tau_n'}}{\tau_1' \xrightarrow{\tau_1', \dots, \tau_n'}} = \underbrace{\overleftarrow{\tau_1}} \overleftarrow{\tau_1', \dots, \tau_n'} (\overleftarrow{\tau_2} \times (\overleftarrow{\tau_2} \to (\overleftarrow{\tau_1'} \times \dots \times \overleftarrow{\tau_n'}) \times \overleftarrow{\tau_1}))$$

New Formulation of AD as Higher-Order Functions

Forward Mode: $\overrightarrow{\mathcal{J}}: \tau \to \overrightarrow{\tau}$ Reverse Mode: $\overleftarrow{\mathcal{J}}: \tau \to \overleftarrow{\tau}$

Outline

- Lambda Calculus
- 2 Differential Calculus in Lambda-Calculus Notation
- 3 Tutorial on AD
 - Forward Mode
 - Reverse Mode
- 4 Essence of the Derivation of Functional Reverse Mode
- AD in Lambda-Calculus Notation
- 6 Examples
- Benefits of this Approach

Derivatives

$$\mathcal{D}f x \stackrel{\triangle}{=} \operatorname{TANGENT} ((\overrightarrow{\mathcal{J}}f) (x \blacktriangleright 1))$$

$$\mathcal{D}f x \stackrel{\triangle}{=} \operatorname{CDR} ((\operatorname{CDR} ((\overleftarrow{\mathcal{J}}f) (\overleftarrow{\mathcal{J}}x))) 1)$$

Roots using Newton-Raphson

ROOT
$$(f, x_0, \epsilon) \stackrel{\triangle}{=}$$
 let $x' \stackrel{\triangle}{=} x_0 - \frac{f x_0}{\mathcal{D} f x_0}$ in if $|x_0 - x'| \le \epsilon$ then x_0 else ROOT (f, x', ϵ)

Univariate Minimizer

Line Search

LineSearch
$$(f, x_0, \epsilon) \stackrel{\triangle}{=} \text{Root } ((\mathcal{D} f), x_0, \epsilon)$$

Gradients

$$\nabla f x \stackrel{\triangle}{=} \mathbf{let} n \stackrel{\triangle}{=} \mathbf{LENGTH} x$$

$$\mathbf{in} \, \mathbf{MAP} \, ((\lambda i \, \mathbf{TANGENT} \, ((\overrightarrow{\mathcal{J}} f) \, (x \blacktriangleright e_{i,n}))), (\iota \, n))$$

$$\nabla f x \stackrel{\triangle}{=} \mathbf{CDR} \, ((\mathbf{CDR} \, ((\overleftarrow{\mathcal{J}} f) \, (\overleftarrow{\mathcal{J}} \, x))) \, 1)$$

Multivariate Minimizer

Gradient Descent

```
Gradient Descent (f, x_0, \epsilon) \stackrel{\triangle}{=}

let g \stackrel{\triangle}{=} \nabla f x_0

in if \|g\| \le \epsilon

then x_0

else Gradient Descent

(f, (x_0 + ((\text{Line Search}((\lambda k f (x_0 + (k \times g))), \epsilon)) \times g)), \epsilon)
```

Saddle Points

 $\mathbf{x}: \mathbb{R}^m$

Continuous Two-Person Zero Sum Games

```
\begin{aligned} \mathbf{y} &: \mathbb{R}^n \\ \text{PAYOFF} &: \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R} \\ \min_{\mathbf{x}} \max_{\mathbf{y}} \text{PAYOFF} \ (\mathbf{x}, \mathbf{y}) \end{aligned}
```

Saddle Points

 $\mathbf{x}: \mathbb{R}^m$

Continuous Two-Person Zero Sum Games

```
\mathbf{y}: \mathbb{R}^n
PAYOFF: \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}
min max PAYOFF (\mathbf{x}, \mathbf{y})
```

$$\begin{aligned} (\mathbf{x}^*, \mathbf{y}^*) &= \mathbf{let} \ \mathbf{x}^* \overset{\triangle}{=} \operatorname{Argmin} \left((\lambda \mathbf{x} \ \operatorname{Max} \left((\lambda \mathbf{y} \ \operatorname{Payoff} \ (\mathbf{x}, \mathbf{y})), \mathbf{y}_0, \epsilon)), \mathbf{x}_0, \epsilon \right) \\ &\quad \quad \mathbf{in} \ (\mathbf{x}^*, (\operatorname{Argmax} \left((\lambda \mathbf{y} \ \operatorname{Payoff} \ (\mathbf{x}^*, \mathbf{y})), \mathbf{y}_0, \epsilon))) \end{aligned}$$

Saddle Points

 $\mathbf{x}:\mathbb{R}^m$

Continuous Two-Person Zero Sum Games

```
\mathbf{y}: \mathbb{R}^n
PAYOFF: \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}
min max PAYOFF (\mathbf{x}, \mathbf{y})
```

$$\begin{aligned} (\mathbf{x}^*, \mathbf{y}^*) &= \mathbf{let} \ \mathbf{x}^* \overset{\triangle}{=} \operatorname{Argmin} \left((\lambda \mathbf{x} \ \operatorname{Max} \left((\lambda \mathbf{y} \ \operatorname{Payoff} \ (\mathbf{x}, \mathbf{y})), \mathbf{y}_0, \epsilon) \right), \mathbf{x}_0, \epsilon \right) \\ &\quad \mathbf{in} \ (\mathbf{x}^*, (\operatorname{Argmax} \left((\lambda \mathbf{y} \ \operatorname{Payoff} \ (\mathbf{x}^*, \mathbf{y})), \mathbf{y}_0, \epsilon) \right)) \end{aligned}$$

von Neumann, J. and Morgenstern, O. (1944). *Theory of Games and Economic Behavior*. Princeton University Press, Princeton, NJ.

Carl Gauss

Christoph Gudermann

Karl Weierstrass

Hermann Schwarz

Leopold Fejér

John von Neumann

Function Inversion

$$f^{-1} y \stackrel{\triangle}{=} \text{Root} ((\lambda x | (f x) - y |), x_0, \epsilon)$$

Neural Nets

NEURON
$$(\mathbf{w}, \mathbf{x}) \stackrel{\triangle}{=} \operatorname{SIGMOID}(\mathbf{w} \cdot \mathbf{x})$$

NEURALNET $([\mathbf{w}''; \mathbf{w}'_1; \dots; \mathbf{w}'_m], \mathbf{x}) \stackrel{\triangle}{=}$
NEURON $(\mathbf{w}'', [\operatorname{NEURON}(\mathbf{w}'_1, \mathbf{x}); \dots; \operatorname{NEURON}(\mathbf{w}'_m, \mathbf{x})])$
ERROR $\mathbf{w} \stackrel{\triangle}{=}$
 $\|[y_1; \dots; y_n] - [\operatorname{NEURALNET}(\mathbf{w}, \mathbf{x}_1); \dots; \operatorname{NEURALNET}(\mathbf{w}, \mathbf{x}_n)]\|$

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by back-propagating errors. *Nature*, **323**:533–6.

GRADIENT DESCENT (ERROR, \mathbf{w}_0, ϵ)

Supervised Machine Learning

Function Approximation

Error
$$\theta \stackrel{\triangle}{=} ||[y_1; \dots; y_n] - [f(\theta, \mathbf{x}_1); \dots; f(\theta, \mathbf{x}_n)]||$$

GradientDescent (Error, θ_0 , ϵ)

Maximum Likelihood Estimation

$$\mathsf{GRADIENTDESCENT} \; \left(\left(\lambda \theta \; \left(- \prod_{\mathbf{x} \in \mathcal{X}} P(\mathbf{x} | \theta) \right) \right), \theta_0, \epsilon \right)$$

Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. *Philos. Trans. Roy. Soc. London Ser. A*, **222**:309–68.

Engineering Design

```
PerformanceOf SplineControlPoints \stackrel{\triangle}{=}

let wing \stackrel{\triangle}{=} SplineToSurface SplineControlPoints;

airflow \stackrel{\triangle}{=} PDEsolver (wing, NavierStokes);

lift, drag \stackrel{\triangle}{=} SurfaceIntegral (wing, airflow, force);

performance \stackrel{\triangle}{=} DesignMetric (lift, drag, (weight wing))

in performance
```

GradientDescent (PerformanceOf, SplineControlPoints $_0, \epsilon$)

Outline

- Lambda Calculus
- Differential Calculus in Lambda-Calculus Notation
- 3 Tutorial on AD
 - Forward Mode
 - Reverse Mode
- 4 Essence of the Derivation of Functional Reverse Mode
- AD in Lambda-Calculus Notation
- 6 Examples
- Benefits of this Approach

• source-to-source transformation

- source-to-source transformation
- no overloading
- no interpretation of tape

- source-to-source transformation
- no overloading
- no interpretation of tape
- transformation conceptually done reflectively at run-time

- source-to-source transformation
- no overloading
- no interpretation of tape
- transformation conceptually done reflectively at run-time
- sophisticated compilation techniques can move transformation to compile-time

• Can apply $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$ to any function

• Can apply $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$ to *any* function including $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$ themselves.

- Can apply $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$ to *any* function including $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$ themselves.
- ullet The output of $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$ are functions.

- Can apply $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$ to *any* function including $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$ themselves.
- The output of $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$ are functions.
- Can apply $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$ to the output of $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$.

- Can apply $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$ to *any* function including $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$ themselves.
- The output of $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$ are functions.
- Can apply $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$ to the output of $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$.
- Can take derivatives of arbitrary order.

$$Argmin_1(f,f')$$
 $\stackrel{\triangle}{=}$...

$$Argmin_1(f,f')$$
 $\stackrel{\triangle}{=}$...

... ARGMIN₁
$$(f, f')$$
 ...

$$\begin{array}{lll} \operatorname{Argmin}_1(f,f') & \stackrel{\triangle}{=} & \dots \\ \operatorname{Argmin}_2(f,f',f'') & \stackrel{\triangle}{=} & \dots \end{array}$$

... ARGMIN₁
$$(f, f')$$
 ...

$$\begin{array}{lll} \operatorname{ARGMIN}_1(f,f') & \stackrel{\triangle}{=} & \dots \\ \operatorname{ARGMIN}_2(f,f',f'') & \stackrel{\triangle}{=} & \dots \end{array}$$

... ARGMIN₂
$$(f, f', f'')$$
 ...

$$\mathsf{ARGMIN}_1 f \ \stackrel{\triangle}{=} \ \ldots (\stackrel{\longleftrightarrow}{\mathcal{J}} f) \ldots$$

$$\operatorname{Argmin}_1 f \stackrel{\triangle}{=} \dots (\stackrel{\longleftrightarrow}{\mathcal{J}} f) \dots$$

 \dots ARGMIN₁ $f \dots$

$$Argmin_1 f \stackrel{\triangle}{=} \dots (\stackrel{\longleftrightarrow}{\mathcal{J}} f) \dots$$

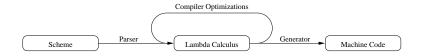
$$\operatorname{Argmin}_2 f \stackrel{\triangle}{=} \ldots (\stackrel{\longleftrightarrow}{\mathcal{J}} f) \ldots (\stackrel{\longleftrightarrow}{\mathcal{J}} (\stackrel{\longleftrightarrow}{\mathcal{J}} f)) \ldots$$

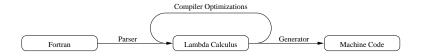
 \dots ARGMIN₁ $f \dots$

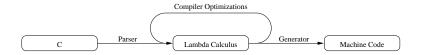
$$Argmin_1 f \stackrel{\triangle}{=} \dots (\stackrel{\longleftrightarrow}{\mathcal{J}} f) \dots$$

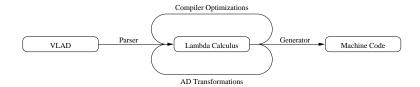
$$\operatorname{Argmin}_2 f \stackrel{\triangle}{=} \ldots (\stackrel{\longleftrightarrow}{\mathcal{J}} f) \ldots (\stackrel{\longleftrightarrow}{\mathcal{J}} (\stackrel{\longleftrightarrow}{\mathcal{J}} f)) \ldots$$

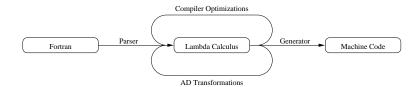
 \dots ARGMIN₂ $f \dots$

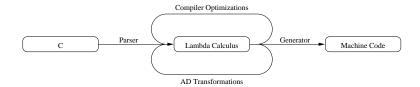


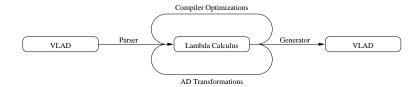


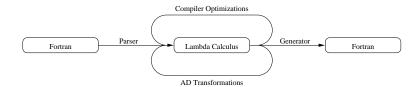


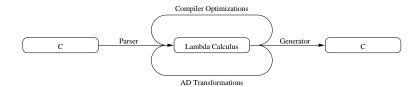












Prior Work

Prior Work

STALIN compiler for SCHEME

Prior Work

STALIN compiler for SCHEME ruthless, brutal, good at execution

Prior Work

STALIN compiler for SCHEME ruthless, brutal, good at execution $20 \times \text{FORTRAN}$

Prior Work

STALIN compiler for SCHEME ruthless, brutal, good at execution $20 \times \text{FORTRAN}$

Current Work

Prior Work

STALIN compiler for SCHEME ruthless, brutal, good at execution $20 \times \text{FORTRAN}$

Current Work

theory: $\lambda \nabla$ -calculus

Prior Work

STALIN compiler for SCHEME ruthless, brutal, good at execution
$$20 \times \text{FORTRAN}$$

Current Work

theory:
$$\lambda \nabla$$
-calculus λ -calculus $+ \overrightarrow{\mathcal{J}} + \overleftarrow{\mathcal{J}}$

Prior Work

STALIN compiler for SCHEME ruthless, brutal, good at execution $20 \times \text{FORTRAN}$

Current Work

theory: $\lambda \nabla$ -calculus

$$\lambda$$
-calculus $+\overrightarrow{\mathcal{J}}+\overleftarrow{\mathcal{J}}$

language: VLAD

Prior Work

STALIN compiler for SCHEME ruthless, brutal, good at execution $20 \times \text{FORTRAN}$

Current Work

theory: $\lambda \nabla$ -calculus

$$\lambda$$
-calculus $+\overrightarrow{\mathcal{J}}+\overleftarrow{\mathcal{J}}$

language: VLAD

$$SCHEME + \overrightarrow{\mathcal{J}} + \overleftarrow{\mathcal{J}}$$

Prior Work

STALIN compiler for SCHEME ruthless, brutal, good at execution $20 \times \text{FORTRAN}$

Current Work

theory: $\lambda \nabla$ -calculus

$$\lambda$$
-calculus $+\overrightarrow{\mathcal{J}}+\overleftarrow{\mathcal{J}}$

language: VLAD

Scheme
$$+\overrightarrow{\mathcal{J}}+\overleftarrow{\mathcal{J}}$$

Functional Language for AD

Prior Work

STALIN compiler for SCHEME

ruthless, brutal, good at execution

 $20 \times FORTRAN$

Current Work

theory: $\lambda \nabla$ -calculus

 λ -calculus $+\overrightarrow{\mathcal{J}}+\overleftarrow{\mathcal{J}}$

language: VLAD

Scheme $+\overrightarrow{\mathcal{J}}+\overleftarrow{\mathcal{J}}$

Functional Language for AD

compiler: STALIN∇

Prior Work

STALIN compiler for SCHEME ruthless, brutal, good at execution $20 \times \text{FORTRAN}$

Current Work

theory: $\lambda \nabla$ -calculus

 λ -calculus $+\overrightarrow{\mathcal{J}}+\overleftarrow{\mathcal{J}}$

language: VLAD

Scheme $+\overrightarrow{\mathcal{J}}+\overleftarrow{\mathcal{J}}$

<u>Functional Language for AD</u>

compiler: STALIN∇

manuscripts and code:

http://www-bcl.cs.nuim.ie/~gobi/stalingrad/