Nesting, Variable Capture, Programming Language Theory, and AD

Jeffrey Mark Siskind qobi@purdue.edu

School of Electrical and Computer Engineering Purdue University

2nd European Workshop on Automatic Differentiation 18 November 2005

Joint work with Barak A. Pearlmutter.

Outline

- Lambda Calculus
- 2 Differential Calculus in Lambda-Calculus Notation
- 3 Essence of the Derivation of Functional Reverse Mode
- 4 AD in Lambda-Calculus Notation
- 6 An Example
- 6 Benefits of this Approach

Outline

- Lambda Calculus
- Differential Calculus in Lambda-Calculus Notation
- 3 Essence of the Derivation of Functional Reverse Mode
- 4 AD in Lambda-Calculus Notation
- 6 An Example
- 6 Benefits of this Approach

FOLD
$$(m, n, u, b, i) \stackrel{\triangle}{=} \mathbf{if} \ m > n$$

then i
else $b ((u \ m), (\text{FOLD} (m + 1, n, u, b, i)))$

FOLD
$$(m, n, u, b, i) \stackrel{\triangle}{=} if m > n$$

then i
else $b((u m), (\text{FOLD}(m + 1, n, u, b, i)))$

$$\sum_{i=1}^{n} \sin i$$

FOLD
$$(m, n, u, b, i) \stackrel{\triangle}{=} if m > n$$

then i
else $b((u m), (\text{FOLD}(m+1, n, u, b, i)))$

$$\sum_{i=m}^{n} \sin i : \text{FOLD}(m, n, \sin, +, 0)$$

FOLD
$$(m, n, u, b, i) \stackrel{\triangle}{=} \text{if } m > n$$

then i
else $b ((u m), (\text{FOLD } (m + 1, n, u, b, i)))$

$$\sum_{i=m}^{n} \cos i : \text{FOLD } (m, n, \cos, +, 0)$$

FOLD
$$(m, n, u, b, i) \stackrel{\triangle}{=} if m > n$$

then i
else $b((u m), (\text{FOLD}(m + 1, n, u, b, i)))$

$$\prod_{i=m}^{n} \sin i : \text{FOLD}(m, n, \sin, \times, 1)$$

$$\sum_{i=m}^{n} i^2$$

$$\sum_{i=m}^{n} i^{2}$$

$$SQR i \stackrel{\triangle}{=} i \times i$$

$$\sum_{i=m}^{n} i^{2} = \text{FOLD}(m, n, \text{SQR}, +, 0)$$

$$\text{SQR} i \stackrel{\triangle}{=} i \times i$$

$$\sum_{i=-m}^{n} i^{2} = \text{Fold}(m, n, (\lambda i \ i \times i), +, 0)$$

$$(\lambda x \ 2 \times x) \ 3 = 6$$

$$(\lambda x \ 2 \times x) \ 3 = 6$$

$$((\lambda x \, \lambda y \, x + y) \, 3) \, 4 = 7$$

$$(\lambda x \ 2 \times x) \ 3 = 6$$

$$(\lambda x \, \lambda y \, x + y) \, 3 \qquad = \ ?$$

$$(\lambda x \ 2 \times x) \ 3 = 6$$

$$(\lambda x \, \lambda y \, x + y) \, 3 = \langle \{x \mapsto 3\}, \lambda y \, x + y \rangle$$

It is, of course, not excluded that the range of arguments or range of values of a function should consist wholly or partly of functions. The derivative, as this notion appears in the elementary differential calculus, is a familiar mathematical example of a function for which both ranges consist of functions.

 $(p. 1 \P 4)$

Church, A. (1941). *The Calculi of Lambda Conversion*. Princeton University Press, Princeton, NJ.

Gottfried Leibniz Jacob Bernoulli Johann Bernoulli Leonhard Euler Joseph Louis Lagrange Simeon Poisson Michel Chasles Hubert Anson Newton Eliakim Hastings Moore Oswald Veblen Alonzo Church

Outline

- Lambda Calculus
- 2 Differential Calculus in Lambda-Calculus Notation
- 3 Essence of the Derivation of Functional Reverse Mode
- 4 AD in Lambda-Calculus Notation
- 6 An Example
- 6 Benefits of this Approach

$$\frac{\mathrm{d}ax^2}{\mathrm{d}x} \rightsquigarrow 2ax$$

$$\frac{\mathrm{d}ax^2}{\mathrm{d}x} \rightsquigarrow 2ax$$

$$\frac{\mathrm{d}}{\mathrm{d}x}: \underbrace{f}_{\mathbb{R} \to \mathbb{R}} \mapsto \underbrace{f'}_{\mathbb{R} \to \mathbb{R}}$$

$$\frac{\mathrm{d}ax^2}{\mathrm{d}x} \rightsquigarrow 2ax$$

$$\frac{\mathrm{d}}{\mathrm{d}x}: \underbrace{f}_{\mathbb{R} \to \mathbb{R}} \mapsto \underbrace{f'}_{\mathbb{R} \to \mathbb{R}}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}: (\mathbb{R} \to \mathbb{R}) \to (\mathbb{R} \to \mathbb{R})$$

$$\frac{\mathrm{d}ax^2}{\mathrm{d}x} \rightsquigarrow 2ax$$

$$\frac{\mathrm{d}}{\mathrm{d}x}: \underbrace{f}_{\mathbb{R} \to \mathbb{R}} \mapsto \underbrace{f'}_{\mathbb{R} \to \mathbb{R}}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}:(\mathbb{R}\to\mathbb{R})\to(\mathbb{R}\to\mathbb{R})$$

$$\mathcal{D}: (\mathbb{R} \to \mathbb{R}) \to (\mathbb{R} \to \mathbb{R})$$

$$\frac{\mathrm{d}ax^2}{\mathrm{d}x} \rightsquigarrow 2ax$$

$$\frac{\mathrm{d}}{\mathrm{d}x}: \underbrace{f}_{\mathbb{R} \to \mathbb{R}} \mapsto \underbrace{f'}_{\mathbb{R} \to \mathbb{R}}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}:(\mathbb{R}\to\mathbb{R})\to(\mathbb{R}\to\mathbb{R})$$

$$\mathcal{D}: (\mathbb{R} \to \mathbb{R}) \to (\mathbb{R} \to \mathbb{R})$$

$$\frac{\partial ax^2y^3}{\partial x}$$

$$\frac{\partial ax^2y^3}{\partial y}$$

$$\frac{\partial ax^2y^3}{\partial x}$$

$$\mathcal{D} \lambda x a x^2 y^3$$

$$\frac{\partial ax^2y^3}{\partial y}$$

$$\mathcal{D} \lambda y \, ax^2 y^3$$

$$\frac{\partial ax^2y^3}{\partial x}$$

$$\mathcal{D} \lambda x a x^2 y^3$$

$$\mathcal{D}_1 \lambda(x, y) ax^2y^3$$

$$\frac{\partial ax^2y^3}{\partial y}$$

$$\mathcal{D} \lambda y ax^2y^3$$

$$\mathcal{D}_2 \lambda(x,y) ax^2y^3$$

$$\frac{\partial ax^2y^3}{\partial x} \qquad \frac{\partial ax^2y^3}{\partial y}$$

$$\mathcal{D} \lambda x \ ax^2y^3 \qquad \mathcal{D} \lambda y \ ax^2y^3$$

$$\mathcal{D}_1 \lambda(x,y) \ ax^2y^3 \qquad \mathcal{D}_2 \lambda(x,y) \ ax^2y^3$$

$$\frac{\partial}{\partial x} : \underbrace{f}_{\mathbb{R}^n \to \mathbb{R}} \mapsto \underbrace{f'}_{\mathbb{R}^n \to \mathbb{R}}$$

$$\frac{\partial ax^2y^3}{\partial x} \qquad \frac{\partial ax^2y^3}{\partial y}$$

$$\mathcal{D} \lambda x \ ax^2y^3 \qquad \mathcal{D} \lambda y \ ax^2y^3$$

$$\mathcal{D}_1 \lambda(x, y) \ ax^2y^3 \qquad \mathcal{D}_2 \lambda(x, y) \ ax^2y^3$$

$$\frac{\partial}{\partial x} : \underbrace{f}_{\mathbb{R}^n \to \mathbb{R}} \mapsto \underbrace{f'}_{\mathbb{R}^n \to \mathbb{R}}$$

$$\frac{\partial}{\partial x} : (\mathbb{R}^n \to \mathbb{R}) \to (\mathbb{R}^n \to \mathbb{R})$$

$$\frac{\partial ax^2y^3}{\partial x} \qquad \frac{\partial ax^2y^3}{\partial y}$$

$$\mathcal{D} \lambda x \, ax^2y^3 \qquad \mathcal{D} \lambda y \, ax^2y^3$$

$$\mathcal{D}_1 \lambda(x, y) \, ax^2y^3 \qquad \mathcal{D}_2 \lambda(x, y) \, ax^2y^3$$

$$\frac{\partial}{\partial x} : \underbrace{f}_{\mathbb{R}^n \to \mathbb{R}} \mapsto \underbrace{f'}_{\mathbb{R}^n \to \mathbb{R}}$$

$$\frac{\partial}{\partial x} : (\mathbb{R}^n \to \mathbb{R}) \to (\mathbb{R}^n \to \mathbb{R})$$

$$\mathcal{D}_i : (\mathbb{R}^n \to \mathbb{R}) \to (\mathbb{R}^n \to \mathbb{R})$$

Gradients

$$\nabla f \mathbf{x} = (\mathcal{D}_1 f \mathbf{x}), \dots, (\mathcal{D}_n f \mathbf{x})$$

$$\nabla : (\mathbb{R}^n \to \mathbb{R}) \to (\mathbb{R}^n \to \mathbb{R}^n)$$

Jacobians

$$f: \mathbb{R}^n \to \mathbb{R}^m$$

$$\mathbf{f}$$
 : $(\mathbb{R}^n \to \mathbb{R})^m$

$$(\mathcal{J} f \mathbf{x})[i,j] = (\nabla (\mathbf{f}[i]))[j]$$

$$\mathcal{J}$$
: $(\mathbb{R}^n \to \mathbb{R}^m) \to (\mathbb{R}^n \to \mathbb{R}^{m \times n})$

Operators

 \mathcal{D} , ∇ , and \mathcal{J} are traditionally called *operators*.

A more modern term is higher-order functions.

Higher-order functions are common in mathematics, physics, and engineering:

summations, comprehensions, quantifications, optimizations, integrals, convolutions, filters, edge detectors, Fourier transforms, differential equations, Hamiltonians, . . .

Outline

- Lambda Calculus
- Differential Calculus in Lambda-Calculus Notation
- 3 Essence of the Derivation of Functional Reverse Mode
- AD in Lambda-Calculus Notation
- 6 An Example
- 6 Benefits of this Approach

Reverse Mode on Imperative Programs

$$\begin{array}{ccc}
\vdots \\
x_2 & := & u x_1
\end{array}$$

$$\begin{array}{ccc} x_4 & := & b (x_2, x_3) \\ & \vdots & & \end{array}$$

Reverse Mode on Imperative Programs

$$\begin{array}{c} \vdots \\ \text{PUSH } x_1 \\ x_2 & := & u \, x_1 \\ \text{PUSH } x_2 \\ \text{PUSH } x_3 \\ x_2 & := & b \, (x_2, x_3) \\ \vdots \\ \vdots \\ \text{POP } x_3 \\ \text{POP } x_2 \\ \hline x_2 & + := & (\mathcal{D}_1 \, b \, (x_2, x_3)) \times \overline{x_2} \\ \hline x_3 & + := & (\mathcal{D}_2 \, b \, (x_2, x_3)) \times \overline{x_2} \\ \text{POP } x_1 \\ \hline x_1 & + := & (\mathcal{D} \, u \, x_1) \times \overline{x_2} \\ \vdots \\ \end{array} \right\} \textit{reverse phase}$$

Notation

In the following slides, I use \mathbf{x} , \mathbf{y} , \mathbf{x}_i , and \mathbf{y}_i to denote tuples of scalar variables, i.e. (x_{47}, x_{19}, x_{33}) .

Notation

In the following slides, I use \mathbf{x} , \mathbf{y} , \mathbf{x}_i , and \mathbf{y}_i to denote tuples of scalar variables, i.e. (x_{47}, x_{19}, x_{33}) .

I use $\overline{\mathbf{x}}$, $\overline{\mathbf{y}}$, $\overline{\mathbf{x}}_i$, and $\overline{\mathbf{y}}_i$ to denote tuples of corresponding sensitivities of scalar variables, i.e. $(\overline{x}_{47}, \overline{x}_{19}, \overline{x}_{33})$.

Unary Primitives

$$u:x\mapsto y$$

Unary Primitives

$$u: x \mapsto y$$

$$\stackrel{\longleftarrow}{u}: x \mapsto y \stackrel{\triangle}{=} \begin{cases} PUSH x \\ y := u x \end{cases}$$

$$\overline{u}: \overline{y} \mapsto \overline{x} \stackrel{\triangle}{=} \begin{cases} POP x \\ \overline{x} + := (\mathcal{D} u x) \times \overline{y} \end{cases}$$

Binary Primitives

$$b:(x,y)\mapsto z$$

Binary Primitives

$$b:(x,y)\mapsto z$$

$$\stackrel{\smile}{b}:(x,y)\mapsto z$$
 $\stackrel{\triangle}{=}$ $\left\{ \begin{array}{l} \text{PUSH }x\\ \text{PUSH }y\\ z:=b\ (x,y) \end{array} \right.$

$$\overline{b}: \overline{z} \mapsto (\overline{x}, \overline{y}) \stackrel{\triangle}{=} \begin{cases} POP x \\ POP y \\ \overline{x} + := (\mathcal{D}_1 b(x, y)) \times \overline{z} \\ \overline{y} + := (\mathcal{D}_2 b(x, y)) \times \overline{z} \end{cases}$$

User-Defined Functions

$$f: \mathbf{x} \mapsto \mathbf{y}$$
 $\stackrel{\triangle}{=}$ $\begin{cases} \mathbf{y}_1 & := f_1 \mathbf{x}_1 \\ & \vdots \\ \mathbf{y}_n & := f_n \mathbf{x}_n \end{cases}$

User-Defined Functions

$$f: \mathbf{x} \mapsto \mathbf{y}$$
 $\stackrel{\triangle}{=}$ $\begin{cases} \mathbf{y}_1 & := f_1 \mathbf{x}_1 \\ & \vdots \\ \mathbf{y}_n & := f_n \mathbf{x}_n \end{cases}$

$$\stackrel{\smile}{f} : \mathbf{x} \mapsto \mathbf{y} \quad \stackrel{\triangle}{=} \quad \begin{cases}
\mathbf{y}_1 & := \overline{f_1} \mathbf{x}_1 \\
\vdots \\
\mathbf{y}_n & := \stackrel{\smile}{f_n} \mathbf{x}_n
\end{cases}$$

$$\bar{f}: \mathbf{\bar{y}} \mapsto \mathbf{\bar{x}} \stackrel{\triangle}{=} \begin{cases} \mathbf{\bar{x}}_n & +:= \overline{f_n} \mathbf{\bar{y}}_n \\ \vdots \\ \mathbf{\bar{x}}_1 & +:= \overline{f_1} \mathbf{\bar{y}}_1 \end{cases}$$

Representing the Tape as Function Arguments and Results Unary Primitives

$$u: x \mapsto y$$

$$\stackrel{\longleftarrow}{u}: x \mapsto (y, x) \stackrel{\triangle}{=} \{ y := u x \}$$

$$\overline{u}:(x,\overline{y})\mapsto\overline{x}\stackrel{\triangle}{=}\{\overline{x}+:=(\mathcal{D}ux)\times\overline{y}\}$$

Representing the Tape as Function Arguments and Results Binary Primitives

$$b:(x,y)\mapsto z$$

$$\stackrel{\leftharpoonup}{b}:(x,y)\mapsto(z,(x,y))$$
 $\stackrel{\triangle}{=}$ $\{z:=b(x,y)$

$$\overline{b}: ((x,y), \overline{z}) \mapsto (\overline{x}, \overline{y}) \stackrel{\triangle}{=} \begin{cases} \overline{x} & +:= (\mathcal{D}_1 \ b \ (x,y)) \times \overline{z} \\ \overline{y} & +:= (\mathcal{D}_2 \ b \ (x,y)) \times \overline{z} \end{cases}$$

Representing the Tape as Function Arguments and Results

User-Defined Functions

$$f: \mathbf{x} \mapsto \mathbf{y} \qquad \qquad \stackrel{\triangle}{=} \begin{cases} \mathbf{y}_1 &:= f_1 \mathbf{x}_1 \\ &: \\ \mathbf{y}_n &:= f_n \mathbf{x}_n \end{cases}$$

$$\overleftarrow{f}: \mathbf{x} \mapsto (\mathbf{y}, (\mathbf{t}_1, \dots, \mathbf{t}_n)) \stackrel{\triangle}{=} \begin{cases}
\mathbf{y}_1, \mathbf{t}_1 & := f_1 \mathbf{x}_1 \\
\vdots \\
\mathbf{y}_n, \mathbf{t}_n & := \overleftarrow{f_n} \mathbf{x}_n
\end{cases}$$

$$\bar{f}: ((\mathbf{t}_1, \dots, \mathbf{t}_n), \mathbf{\bar{y}}) \mapsto \mathbf{\bar{x}} \stackrel{\triangle}{=} \begin{cases} \mathbf{\bar{x}}_n & +:= \overline{f_n} (\mathbf{t}_n, \mathbf{\bar{y}}_n) \\ \vdots \\ \mathbf{\bar{x}}_1 & +:= \overline{f_1} (\mathbf{t}_1, \mathbf{\bar{y}}_1) \end{cases}$$

Representing the Tape as Closures

Unary Primitives

$$u: x \mapsto y$$

$$\stackrel{\longleftarrow}{u}: x \mapsto (y, \overline{u}) \stackrel{\triangle}{=} \begin{cases} y & := u x \\ \overline{u}: \overline{y} \mapsto \overline{x} \stackrel{\triangle}{=} \{ \overline{x} + := (\mathcal{D} u x) \times \overline{y} \end{cases}$$

Representing the Tape as Closures

Binary Primitives

$$b:(x,y)\mapsto z$$

$$\frac{\overleftarrow{b}:(x,y)\mapsto(z,\overline{b})}{\overleftarrow{b}:\overleftarrow{z}\mapsto(\overleftarrow{x},\overleftarrow{y})} \stackrel{\triangle}{=} \begin{cases}
z &:= b(x,y) \\
\overleftarrow{b}:\overleftarrow{z}\mapsto(\overleftarrow{x},\overleftarrow{y}) \stackrel{\triangle}{=} \begin{cases}
\overleftarrow{x} +:= (\mathcal{D}_1 b(x,y)) \times \overleftarrow{z} \\
\overleftarrow{y} +:= (\mathcal{D}_2 b(x,y)) \times \overleftarrow{z}
\end{cases}$$

Representing the Tape as Closures

User-Defined Functions

$$f: \mathbf{x} \mapsto \mathbf{y}$$
 $\stackrel{\triangle}{=}$ $\begin{cases} \mathbf{y}_1 & := f_1 \mathbf{x}_1 \\ & : \\ \mathbf{y}_n & := f_n \mathbf{x}_n \end{cases}$

$$\stackrel{\leftarrow}{f}: \mathbf{x} \mapsto (\mathbf{y}, \overline{f}) \stackrel{\triangle}{=} \begin{cases}
\mathbf{y}_{1}, \overline{f_{1}} & := \stackrel{\leftarrow}{f_{1}} \mathbf{x}_{1} \\
\vdots & \vdots \\
\mathbf{y}_{n}, \overline{f_{n}} & := \stackrel{\leftarrow}{f_{n}} \mathbf{x}_{n} \\
\overline{f}: \overline{\mathbf{y}} \mapsto \overline{\mathbf{x}} \stackrel{\triangle}{=} \begin{cases}
\overline{\mathbf{x}}_{n} + := \overline{f_{n}} \overline{\mathbf{y}}_{n} \\
\vdots \\
\overline{\mathbf{x}}_{1} + := \overline{f_{1}} \overline{\mathbf{y}}_{1}
\end{cases}$$

Details for Handling Closures Omitted

Outline

- Lambda Calculus
- Differential Calculus in Lambda-Calculus Notation
- 3 Essence of the Derivation of Functional Reverse Mode
- 4 AD in Lambda-Calculus Notation
- 6 An Example
- 6 Benefits of this Approach

Traditional Formulation of AD as Transformations

```
Forward Mode: \mathbb{R}^n \to \mathbb{R}^m \leadsto (\mathbb{R}^n \times \mathbb{R}^n) \to (\mathbb{R}^m \times \mathbb{R}^m)
```

Reverse Mode:
$$\mathbb{R}^n \to \mathbb{R}^m \leadsto (\mathbb{R}^n \to (\mathbb{R}^m \times \mathbb{R}^l)) \times ((\mathbb{R}^m \times \mathbb{R}^l) \to \mathbb{R}^n)$$

Perturbation Types

$$\overline{\mathbf{null}} = \mathbf{null}$$

$$\overline{\mathbb{R}} = \mathbb{R}$$

$$\overline{\tau_1 \times \tau_2'} = \overline{\tau_1'} \times \overline{\tau_2'}$$

$$\overline{\tau_1} \xrightarrow{\tau_1', \dots, \tau_n'} \overline{\tau_2} = \overline{\tau_1'} \times \dots \times \overline{\tau_n'}$$

Forward Types

$$\overrightarrow{\mathbf{null}} = \mathbf{null} \times \overrightarrow{\mathbf{null}}$$

$$\overrightarrow{\mathbb{R}} = \mathbb{R} \times \overrightarrow{\mathbb{R}}$$

$$\overrightarrow{\tau_1 \times \tau_2} = \overrightarrow{\tau_1} \times \overrightarrow{\tau_2}$$

$$\overrightarrow{\tau_1} \xrightarrow{\tau_1', \dots, \tau_n'} \tau_2 = \overrightarrow{\tau_1} \xrightarrow{\overrightarrow{\tau_1'}, \dots, \overrightarrow{\tau_n'}} \overrightarrow{\tau_2}$$

Sensitivity Types

Reverse Types

$$\frac{\overleftarrow{\mathbf{null}}}{\mathbb{R}} = \mathbf{null}$$

$$\frac{\overleftarrow{\mathbb{R}}}{\tau_1 \times \tau_2} = \overleftarrow{\tau_1} \times \overleftarrow{\tau_2}$$

$$\frac{\overleftarrow{\tau_1', \dots, \tau_n'}}{\tau_1 \xrightarrow{\tau_1', \dots, \tau_n'}} = \underbrace{\overleftarrow{\tau_1}}{\tau_1', \dots, \overleftarrow{\tau_n'}} (\overleftarrow{\tau_2} \times (\overleftarrow{\tau_2} \to (\overleftarrow{\tau_1'} \times \dots \times \overleftarrow{\tau_n'}) \times \overleftarrow{\tau_1}))$$

Forward Mode: $\overrightarrow{\mathcal{J}}: \tau \to \overrightarrow{\tau}$ Reverse Mode: $\overleftarrow{\mathcal{J}}: \tau \to \overleftarrow{\tau}$

Outline

- Lambda Calculus
- 2 Differential Calculus in Lambda-Calculus Notation
- 3 Essence of the Derivation of Functional Reverse Mode
- AD in Lambda-Calculus Notation
- 6 An Example
- 6 Benefits of this Approach

Saddle Points

Continuous Two-Person Zero Sum Games

```
\begin{aligned} \mathbf{x} : \mathbb{R}^m \\ \mathbf{y} : \mathbb{R}^n \\ \text{PAYOFF} : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R} \\ \min_{\mathbf{x}} \max_{\mathbf{y}} \text{PAYOFF} \ (\mathbf{x}, \mathbf{y}) \end{aligned}
```

Saddle Points

Continuous Two-Person Zero Sum Games

```
\mathbf{x}: \mathbb{R}^m
\mathbf{y}: \mathbb{R}^n
\mathsf{PAYOFF}: \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}
\min_{\mathbf{x}} \max_{\mathbf{y}} \mathsf{PAYOFF}(\mathbf{x}, \mathbf{y})
```

$$\begin{aligned} (\mathbf{x}^*, \mathbf{y}^*) &= \mathbf{let} \ \mathbf{x}^* \stackrel{\triangle}{=} \operatorname{Argmin} \left((\lambda \mathbf{x} \ \operatorname{Max} \left((\lambda \mathbf{y} \ \operatorname{Payoff} \ (\mathbf{x}, \mathbf{y})), \mathbf{y}_0, \epsilon)), \mathbf{x}_0, \epsilon \right) \\ &\quad \mathbf{in} \ (\mathbf{x}^*, (\operatorname{Argmax} \left((\lambda \mathbf{y} \ \operatorname{Payoff} \ (\mathbf{x}^*, \mathbf{y})), \mathbf{y}_0, \epsilon))) \end{aligned}$$

Outline

- Lambda Calculus
- Differential Calculus in Lambda-Calculus Notation
- 3 Essence of the Derivation of Functional Reverse Mode
- 4 AD in Lambda-Calculus Notation
- 6 An Example
- 6 Benefits of this Approach

Our Approach is Efficient

Our Approach is Efficient

• source-to-source transformation

Our Approach is Efficient

- source-to-source transformation
- no overloading
- no interpretation of tape

Our Approach is Efficient

- source-to-source transformation
- no overloading
- no interpretation of tape
- transformation conceptually done reflectively at run-time

Our Approach is Efficient

- source-to-source transformation
- no overloading
- no interpretation of tape
- transformation conceptually done reflectively at run-time
- sophisticated compilation techniques can move transformation to compile-time

• Can apply $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$ to any function

• Can apply $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$ to *any* function including $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$ themselves.

- Can apply $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$ to *any* function including $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$ themselves.
- The output of $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$ are functions.

- Can apply $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$ to *any* function including $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$ themselves.
- The output of $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$ are functions.
- Can apply $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$ to the output of $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$.

- Can apply $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$ to *any* function including $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$ themselves.
- The output of $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$ are functions.
- Can apply $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$ to the output of $\overrightarrow{\mathcal{J}}$ and $\overleftarrow{\mathcal{J}}$.
- Can take derivatives of arbitrary order.

$$Argmin_1(f,f')$$
 $\stackrel{\triangle}{=}$...

$$Argmin_1(f,f')$$
 $\stackrel{\triangle}{=}$...

$$\dots$$
 Argmin₁ $(f,f')\dots$

$$Argmin_1(f,f') \stackrel{\triangle}{=} \dots$$
 $Argmin_2(f,f',f'') \stackrel{\triangle}{=} \dots$

... ARGMIN₁ (f, f') ...

$$\begin{array}{lll} \operatorname{ARGMIN}_1(f,f') & \stackrel{\triangle}{=} & \dots \\ \operatorname{ARGMIN}_2(f,f',f'') & \stackrel{\triangle}{=} & \dots \end{array}$$

... ARGMIN₂
$$(f, f', f'')$$
 ...

$$Argmin_1 f \stackrel{\triangle}{=} \dots (\stackrel{\longleftrightarrow}{\mathcal{J}} f) \dots$$

$$\operatorname{Argmin}_1 f \stackrel{\triangle}{=} \dots (\stackrel{\longleftrightarrow}{\mathcal{J}} f) \dots$$

 \dots ARGMIN₁ $f \dots$

$$ARGMIN_1 f \stackrel{\triangle}{=} \dots (\stackrel{\longleftrightarrow}{\mathcal{J}} f) \dots$$

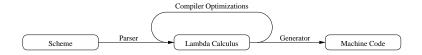
$$\operatorname{Argmin}_2 f \stackrel{\triangle}{=} \dots (\stackrel{\longleftrightarrow}{\mathcal{J}} f) \dots (\stackrel{\longleftrightarrow}{\mathcal{J}} (\stackrel{\longleftrightarrow}{\mathcal{J}} f)) \dots$$

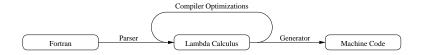
 \dots ARGMIN₁ $f \dots$

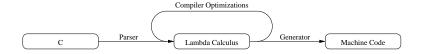
$$ARGMIN_1 f \stackrel{\triangle}{=} \dots (\stackrel{\longleftrightarrow}{\mathcal{J}} f) \dots$$

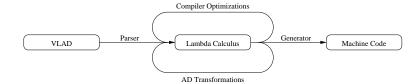
$$\operatorname{Argmin}_2 f \stackrel{\triangle}{=} \dots (\stackrel{\longleftrightarrow}{\mathcal{J}} f) \dots (\stackrel{\longleftrightarrow}{\mathcal{J}} (\stackrel{\longleftrightarrow}{\mathcal{J}} f)) \dots$$

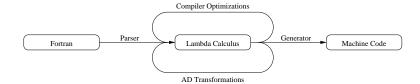
 \dots ARGMIN₂ $f \dots$

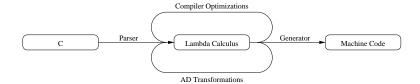


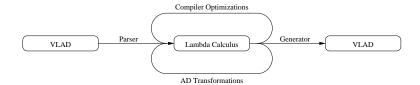


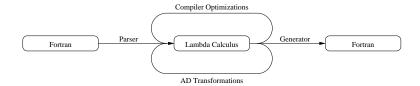


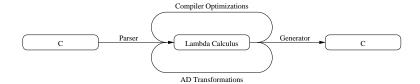












Prior Work

Prior Work

STALIN compiler for SCHEME

Prior Work

STALIN compiler for SCHEME ruthless, brutal, good at execution

Prior Work

STALIN compiler for SCHEME ruthless, brutal, good at execution $20 \times \text{FORTRAN}$

Prior Work

STALIN compiler for SCHEME ruthless, brutal, good at execution $20 \times FORTRAN$

Current Work

Prior Work

STALIN compiler for SCHEME ruthless, brutal, good at execution $20 \times \text{FORTRAN}$

Current Work

theory: $\lambda \nabla$ -calculus

Prior Work

STALIN compiler for SCHEME ruthless, brutal, good at execution
$$20 \times \text{FORTRAN}$$

Current Work

theory:
$$\lambda \nabla$$
-calculus λ -calculus $+ \overrightarrow{\mathcal{J}} + \overleftarrow{\mathcal{J}}$

Prior Work

STALIN compiler for SCHEME ruthless, brutal, good at execution
$$20 \times FORTRAN$$

Current Work

theory:
$$\lambda \nabla$$
-calculus λ -calculus $+ \overrightarrow{\mathcal{J}} + \overleftarrow{\mathcal{J}}$

language: VLAD

Prior Work

STALIN compiler for SCHEME ruthless, brutal, good at execution $20 \times \text{FORTRAN}$

Current Work

theory: $\lambda \nabla$ -calculus λ -calculus $+ \overrightarrow{\mathcal{J}} + \overleftarrow{\mathcal{J}}$

language: VLAD

 $\mathsf{SCHEME} + \overrightarrow{\mathcal{J}} + \overleftarrow{\mathcal{J}}$

Prior Work

STALIN compiler for SCHEME ruthless, brutal, good at execution
$$20 \times \text{FORTRAN}$$

Current Work

theory:
$$\lambda \nabla$$
-calculus λ -calculus $+ \overrightarrow{\mathcal{J}} + \overleftarrow{\mathcal{J}}$

$$\mathsf{SCHEME} + \overrightarrow{\mathcal{J}} + \overleftarrow{\mathcal{J}}$$

Functional Language for AD

Prior Work

STALIN compiler for SCHEME ruthless, brutal, good at execution
$$20 \times \text{FORTRAN}$$

Current Work

theory:
$$\lambda \nabla$$
-calculus λ -calculus $+ \overrightarrow{\mathcal{J}} + \overleftarrow{\mathcal{J}}$

language: VLAD

$$\mathsf{SCHEME} + \overrightarrow{\mathcal{J}} + \overleftarrow{\mathcal{J}}$$

<u>Functional Language for AD</u>

compiler: STALIN∇