AD in FORTRAN
Implementation via Prepreprocessor

Alexey Radul†* Barak A. Pearlmutter†‡ Jeffrey Mark Siskind§

† Hamilton Institute
‡ Department of Computer Science
NUI Maynooth, Co. Kildare, Ireland

§ School of Electrical and Computer Engineering
Purdue University, West Lafayette, IN, USA

* Boston Fusion Corporation, Burlington, MA, USA
(current affiliation)
Outline of Talk

- motivation
- description by example
- implementation sketch
- take-home lessons
motivation
desiderata
desiderata

AD which is:

- first class
 - integrated into language
 - can be used anywhere
 - can apply to anything
- convenient & natural
- modular
- expressive
- fast
what we did:

add AD to FORTRAN

(implementation: leverage existing AD tools)
The Thrills - The Chills of Witchcraft Today

The City of the Dead

Christopher Lee • Dennis Lotis
Betta St John • Patricia Jessel

With Valentine Dyall
Introducing Venetia Stevenson

X Adults Only
The Little Shop of Horrors

Starring
JONATHAN HAZE
JACKIE JOSEPH
MEL WELLES

Produced and Directed by ROGER CORMAN

THE FUNNIEST PICTURE THIS YEAR!

A FILMGROUP PRESENTATION
Traditional API for AD

FUNCTION RAPHSN(F, FPRIME, X0, N)
EXTERNAL F, FPRIME
X = X0
DO 1690 I=1,N
1690 X = X-F(X)/FPRIME(X)
RAPHSN = X
END

Note: caller provides both F and FPRIME.

Manually coding FPRIME from F is often mechanical, tedious, and error prone.

Automatic differentiation (Speelpenning, 1980; Wengert, 1964) eliminates that, but the caller of RAPHSN still needs to provide FPRIME, perhaps also arranging for it to be generated automatically from F.
allow callee derives
Farfel: add AD block constructs to Fortran

Compute derivative PHIprm of PHI wrt SIGMA by forward AD:

\[
\begin{align*}
\text{ADF (TANGENT (SIGMA) = 1.0)} \\
\text{PHI} &= \frac{1}{\sqrt{2\pi SIGMA^2}} \cdot \exp(-0.5 \cdot (\text{TANGENT (PHI)})^2) \\
\text{END ADF (PHIPRM = TANGENT (PHI))}
\end{align*}
\]
Compute derivative ϕ_{iprm} of ϕ wrt σ by forward AD:

$$
\text{ADF } (\text{TANGENT}(\sigma)=1.0) \\
\phi = \frac{1}{\sqrt{2 \pi \sigma^2}} \exp\left(-0.5 \left(\frac{((}{\text{END} \text{ ADF } (\phi_{\text{iprm}}=\text{TANGENT}(\phi))
$$

Same, by reverse AD:

$$
\text{ADR } (\text{COTANGENT}(\phi)=1.0) \\
\phi = \frac{1}{\sqrt{2 \pi \sigma^2}} \exp\left(-0.5 \left(\frac{((}{\text{END} \text{ ADR } (\phi_{\text{iprm}}=\text{COTANGENT}(\sigma))
$$
FARFEL: add AD block constructs to FORTRAN

Compute derivative \(\text{PHIPRM} \) of \(\text{PHI} \) wrt \(\text{SIGMA} \) by forward AD:

\[
\text{ADF} \left(\text{TANGENT} \left(\text{SIGMA} \right) = 1.0 \right) \\
\text{PHI} = \frac{1}{\sqrt{2 \pi \text{SIGMA}^2}} \times \exp \left(-0.5 \times \left(\frac{\text{PHI}}{\text{TANGENT} \left(\text{PHI} \right)} \right)^2 \right) \\
\text{END AD} \left(\text{PHIPRM} = \text{TANGENT} \left(\text{PHI} \right) \right)
\]

Same, by reverse AD:

\[
\text{ADR} \left(\text{COTANGENT} \left(\text{PHI} \right) = 1.0 \right) \\
\text{PHI} = \frac{1}{\sqrt{2 \pi \text{SIGMA}^2}} \times \exp \left(-0.5 \times \left(\frac{\text{PHI}}{\text{COTANGENT} \left(\text{SIGMA} \right)} \right)^2 \right) \\
\text{END AD} \left(\text{PHIPRM} = \text{COTANGENT} \left(\text{SIGMA} \right) \right)
\]

Syntactically similar to the Naumann and Riehme (2005) NAGWARE 95 extensions, but more (a) general, (b) expressive, (c) available, (d) performant, (e) examples to follow.
SUBROUTINE GRAD(F, X, N, DX)
EXTERNAL F
DIMENSION X(N), DX(N)
DO 1492 I=1,N
ADF ((TANGENT(X(J))=0.0, J=1,N), TANGENT(X(I))=1.0)
Y = F(X, N)
1492 END ADF (DX(I)=TANGENT(Y))
END

SUBROUTINE GRAD(F, X, N, DX)
EXTERNAL F
DIMENSION X(N), DX(N)
ADR (COTANGENT(Y)=1.0)
Y = F(X, N)
END ADR ((DX(I)=COTANGENT(X(I)), I=1,N))
END

- callee derives
- same API for both versions
- implied DO syntax for arrays
- no restrictions, EXTERNAL parameters allowed
$$\text{XSTAR} = \text{ARGMAX}(F, \ X0)$$
C CHECKPOINT REVERSE F->G.
C BOTH F AND G ARE 1ST ARG IN, 2ND ARG OUT
CALL F(X, Y)
ADR ((COTANGENT(Z(I))=DZ(I), I=1,NZ))
CALL G(Y, Z)
END ADR ((DY(I)=COTANGENT(Y(I)), I=1,NY))
ADR ((COTANGENT(Y(I))=DY(I), I=1,NY))
CALL F(X, Y)
END ADR ((DX(I)=COTANGENT(X(I)), I=1,NX))
Allowing nested definitions is synergistic with first-class AD.

```c
MAXIMIZE F ALONG THE LINE PARALLEL TO XDIR THROUGH X
SUBROUTINE LINMAX(F, X, XDIR, LENX, N, XOUT)
EXTERNAL F
DIMENSION X(LENX), XDIR(LENX), XOUT(LENX)

FUNCTION ALINE(DIST)
DIMENSION Y(50)
DO 2012 I=1,LENX
2012 Y(I) = X(I) + DIST * XDIR(I)
ALINE = F(Y, LENX)
END

BESTD = ARGMAX(ALINE, 0.0, N)
DO 2013 I=1,LENX
2013 XOUT(I) = X(I) + BESTD * XDIR(I)
END
```

Optimise scalar $a(s) = f(\bar{x} + s \cdot \vec{dir})$
encapsulation
modularity
nesting for modularity?
nesting for expressivity!
Two player non-zero-sum continuous-strategy game

Player A’s strategy is a.
Player A’s return is $A(a, b)$.
Player B’s strategy is b.
Player B’s return is $B(a, b)$.

Two player non-zero-sum continuous-strategy game

Player A’s strategy is a. Player B’s strategy is b.
Player A’s return is $A(a, b)$. Player B’s return is $B(a, b)$.

Equilibria must satisfy:

$$ a^* = \arg\max_{a} A(a, b^*) \quad b^* = \arg\max_{b} B(a^*, b) $$
Two player non-zero-sum continuous-strategy game

Player A’s strategy is a. Player B’s strategy is b. Player A’s return is $A(a, b)$. Player B’s return is $B(a, b)$.

Equilibria must satisfy:

$$a^* = \arg\max_a A(a, b^*) \quad b^* = \arg\max_b B(a^*, b)$$

Find by solving:

$$a^* = \arg\max_a A(a, \arg\max_b B(a^*, b))$$
Two player non-zero-sum continuous-strategy game

Player A’s strategy is a. Player B’s strategy is b.
Player A’s return is $A(a, b)$. Player B’s return is $B(a, b)$.

Equilibria must satisfy:

$$a^* = \arg\max_a A(a, b^*) \quad b^* = \arg\max_b B(a^*, b)$$

Find by solving:

$$a^* = \arg\max_a A(a, \arg\max_b B(a^*, b))$$

nesting
Two player non-zero-sum continuous-strategy game

Player A’s strategy is a. Player B’s strategy is b.
Player A’s return is $A(a, b)$. Player B’s return is $B(a, b)$.

Equilibria must satisfy:

$$a^* = \underset{a}{\text{argmax}} A(a, b^*)$$
$$b^* = \underset{b}{\text{argmax}} B(a^*, b)$$

Find by solving:

$$a^* = \underset{a}{\text{argmax}} A(a, \underset{b}{\text{argmax}} B(a^*, b))$$

aka

$$\text{root} \underset{a^*}{\text{argmax}} A(a, \underset{b}{\text{argmax}} B(a^*, b)) - a^*$$
\[
\text{root} \ \arg \max_{a^*} A(a, \arg \max_{b} B(a^*, b)) - a^*
\]

Five levels of nesting. (One from \text{ROOT}, two from each \text{ARGMAX}.)

C

ASTAR & BSTAR: GUESSES IN, OPTIMIZED VALUES OUT

SUBROUTINE EQLBRM(BIGA, BIGB, ASTAR, BSTAR, N)

EXTERNAL BIGA, BIGB

FUNCTION F(ASTAR)

FUNCTION G(A)

FUNCTION H(B)

H = BIGB(ASTAR, B)

END

BSTAR = \arg \max_{H} (H, BSTAR, N)

G = BIGA(A, BSTAR)

END

F = \arg \max_{G} (G, ASTAR, N) - ASTAR

END

ASTAR = \text{ROOT}(F, ASTAR, N)

END
FUNCTION ARGMAX(F, X0, N)
 FUNCTION FPRIME(X)
 FPRIME = DERIV1(F, X)
 END
 ARGMAX = ROOT(FPRIME, X0, N)
END

FUNCTION ROOT(F, X0, N)
 X = X0
 DO 1669 I=1,N
 CALL DERIV2(F, X, Y, YPRIME)
 1669 X = X - Y/YPRIME
 ROOT = X
END

FUNCTION DERIV1(F, X)
 EXTERNAL F
 ADF(X)
 Y = F(X)
 END ADF(DERIV1 = TANGENT(Y))
END

SUBROUTINE DERIV2(F, X, Y, YPRIME)
 EXTERNAL F
 ADF(X)
 Y = F(X)
 END ADF(YPRIME = TANGENT(Y))
END
implementation
Curry Prevention Services
Possible Implementation Strategies:

- native (integrated into compiler)
- preprocessor (generate FORTRAN)
- prepreprocessor (generate input to AD tools)
Possible Implementation Strategies:

- native (integrated into compiler)
- preprocessor (generate FORTRAN)
- prepreprocessor (generate input to AD tools)

FARFALLED implementation of FARFEL:

- move contents of AD blocks into (nested) subroutines
- closure-convert nested subprograms to top level
- specialize away **EXTERNAL** constructs
- target TAPENADE or ADIFOR
灌木林步行徑
若非與經驗步行者同行，請勿步過警告牌。

登山길 경고문
登山에 관한 전문지식이나 경험이 적으신 분들은 이 표지판 다음으로 넘어가지말아주시길 바랍니다。

ブッシュ・ウォーキング(山歩き)コース
ブッシュ・ウォーキング(山歩き)の熟練者以外は、これより先には行かないで下さい。

THIS SIGN IS TO PREVENT FOREIGN TOURISTS FROM GETTING LOST
AD block contents to nested subroutines

```fortran
PROGRAM MAIN
SIGMA = 1.0
PI = 3.14159
X = 1.0
XBAR = 1.0
ADF (TANGENT (SIGMA) = 1.0)
PHI = 1/SQRT(2*PI*SIGMA**2)*EXP(-0.5*((X-XBAR)/SIGMA)**2)
END ADF

PHIPRM = TANGENT(PHI)
PRINT *, PHIPRM
END
```

```fortran
PROGRAM MAIN
SIGMA = 1.0
PI = 3.14159
X = 1.0
XBAR = 1.0

SUBROUTINE ADF1(PHI, SIGMA)
PHI = 1/SQRT(2*PI*SIGMA**2)*EXP(-0.5*((X-XBAR)/SIGMA)**2)
END

SIGMA_G1 = 1.0
ADF CALL ADF1(PHI, PHI_G1, SIGMA, SIGMA_G1)

PHIPRM = PHI_G1
PRINT *, PHIPRM
END
```

Closure Conversion

```plaintext
PROGRAM MAIN
SIGMA = 1.0
PI = 3.14159
X = 1.0
XBAR = 1.0

SUBROUTINE ADF1(PHI, SIGMA)
    PHI = 1/SQRT(2*PI*SIGMA**2) * EXP(-0.5*((X-XBAR)/SIGMA)**2)
END

SIGMA_G1 = 1.0
ADF CALL ADF1(PHI, PHI_G1, SIGMA, SIGMA_G1)
PHIPRM = PHI_G1
PRINT *, PHIPRM
END

↓

SUBROUTINE MAIN_ADF1(PHI, SIGMA, PI, X, XBAR)
    PHI = 1/SQRT(2*PI*SIGMA**2) * EXP(-0.5*((X-XBAR)/SIGMA)**2)
END

PROGRAM MAIN
SIGMA = 1.0
PI = 3.14159
X = 1.0
XBAR = 1.0
SIGMA_G1 = 1.0
ADF CALL MAIN_ADF1(PHI, PHI_G1, SIGMA, SIGMA_G1, PI, X, XBAR)
PHIPRM = PHI_G1
PRINT *, PHIPRM
END
```
Specialization

```fortran
SUBROUTINE QUAD(F, A, B, STEP, OUT)
EXTERNAL F
OUT = 0.0
DO 5 X = A, B, STEP
  5 OUT = OUT + F(X)
END

CALL QUAD(EXP, 0.0, 5.0, 0.1, Z)
CALL QUAD(SQRT, 1.0, 6.0, 0.1, X)

SUBROUTINE QUAD_SQRT(A, B, STEP, OUT)
OUT = 0.0
DO 5 X = A, B, STEP
  5 OUT = OUT + SQRT(X)
END

SUBROUTINE QUAD_EXP(A, B, STEP, OUT)
OUT = 0.0
DO 5 X = A, B, STEP
  5 OUT = OUT + EXP(X)
END

CALL QUAD_EXP(0.0, 5.0, 0.1, Z)
CALL QUAD_SQRT(1.0, 6.0, 0.1, X)
```
Calling Conventions

SUBROUTINE MAIN_ADF1(PHI, SIGMA, PI, X, XBAR)
PHI = 1/SQRT(2*PI*SIGMA**2) * EXP(-0.5*((X-XBAR)/SIGMA)**2)
END

PROGRAM MAIN
SIGMA = 1.0
PI = 3.14159
X = 1.0
XBAR = 1.0
SIGMA_G1 = 1.0
ADF CALL MAIN_ADF1(PHI, PHI_G1, SIGMA, SIGMA_G1, PI, X, + XBAR)
PHIPRM = PHI_G1
PRINT *, PHIPRM
END

SUBROUTINE MAIN_ADF1_G1(PHI, PHI_G1, SIGMA, SIGMA_G1, PI, X, + XBAR)
PHI = 1/SQRT(2*PI*SIGMA**2) * EXP(-0.5*((X-XBAR)/SIGMA)**2)
END

PROGRAM MAIN
SIGMA = 1.0
PI = 3.14159
X = 1.0
XBAR = 1.0
SIGMA_G1 = 1.0
CALL MAIN_ADF1_G1(PHI, PHI_G1, SIGMA, SIGMA_G1, PI, X, + XBAR)
PHIPRM = PHI_G1
PRINT *, PHIPRM
END
The full EQLBRM example

FUNCTION GMBIGB(A, B)
PRICE = 20 - 0.1 * B - 0.0999 * A
COSTS = B * (10.005 - 0.05 * B)
GMBIGB = B * PRICE - COSTS
END

FUNCTION EQLBRM_GMBIGA_GMBIGB_F_G_H(ASTAR, B)
EQLBRM_GMBIGA_GMBIGB_F_G_H = GMBIGB(ASTAR, B)
END

SUBROUTINE DERIV1_EQLBRM_GMBIGA_GMBIGB_F_G_H_ADF(ASTAR, X, Y)
Y = EQLBRM_GMBIGA_GMBIGB_F_G_H(ASTAR, X)
END

FUNCTION DERIV1_EQLBRM_GMBIGA_GMBIGB_F_G_H(ASTAR, BSTAR, N, X)
X_G1 = 1.0
ASTAR_G1 = 0.0
Y_G1 = 0.0
CALL DERIV1_EQLBRM_GMBIGA_GMBIGB_F_G_H_ADF_G1(ASTAR, ASTAR_G1, X, X_G1, Y, Y_G1)
DERIV1_EQLBRM_GMBIGA_GMBIGB_F_G_H = Y_G1
END

FUNCTION ARGMAX_EQLBRM_GMBIGA_GMBIGB_F_G_H_FPRIME(ASTAR, X)
ARGMAX_EQLBRM_GMBIGA_GMBIGB_F_G_H_FPRIME = DERIV1_EQLBRM_GMBIGA_GMBIGB_CM +GBIG_F_G_H(ASTAR, X)
END

SUBROUTINE DERIV2_ARGMAX_EQLBRM_GMBIGA_GMBIGB_F_G_H_FPRIME_ADF(ASTAR, BSTAR, N, X, Y)
Y = ARGMAX_EQLBRM_GMBIGA_GMBIGB_F_G_H_FPRIME(ASTAR, BSTAR, N, X)
END

SUBROUTINE DERIV2_ARGMAX_EQLBRM_GMBIGA_GMBIGB_F_G_H_FPRIME(ASTAR, BSTAR, N, X, Y, YPRIME)
X_G2 = 1.0
ASTAR_G2 = 0.0
BSTAR_G2 = 0.0
N_G2 = 0.0
Y_G2 = 0.0
YPRIME = Y_G2
END

FUNCTION ROOT_ARGMAX_EQLBRM_GMBIGA_GMBIGB_F_G_H_FPRIME(ASTAR, BSTAR, N)
X = ASTAR
DO 1669 I = 1, N
CALL DERIV2_ARGMAX_EQLBRM_GMBIGA_GMBIGB_F_G_H_FPRIME(BSTAR, N, X, Y, YPRIME)
1669 X = X - Y / YPRIME
ROOT_ARGMAX_EQLBRM_GMBIGA_GMBIGB_F_G_H_FPRIME = X
END

FUNCTION ARGMAX_EQLBRM_GMBIGA_GMBIGB_F_G_H(ASTAR, BSTAR, N)
ARGMAX_EQLBRM_GMBIGA_GMBIGB_F_G_H = ROOT_ARGMAX_EQLBRM_GMBIGA_GMBIGB_F_G_H_FPRIME(ASTAR, BSTAR, N)
END

FUNCTION EQLBRM_GMBIGA_GMBIGB_F(BSTAR, N, ASTAR)
EQLBRM_GMBIGA_GMBIGB_F = ARGMAX_EQLBRM_GMBIGA_GMBIGB_F_G_H(ASTAR, BSTAR, N) - ASTAR
END

SUBROUTINE DERIV2_EQLBRM_GMBIGA_GMBIGB_F_ADF(BSTAR, N, X, Y)
Y = EQLBRM_GMBIGA_GMBIGB_F(BSTAR, N, X)
END

SUBROUTINE DERIV2_EQLBRM_GMBIGA_GMBIGB_F(BSTAR, N, X, Y, YPRIME)
X_G5 = 1.0
BSTAR_G5 = 0.0
N_G5 = 0.0
Y_G5 = 0.0
CALL DERIV2_EQLBRM_GMBIGA_GMBIGB_F_ADF_G5(BSTAR, BSTAR_G5, N_G5, X, X_G5, Y, Y_G5)
YPRIME = Y_G5
END

FUNCTION ROOT_EQLBRM_GMBIGA_GMBIGB_F(BSTAR, N, X0)
X = X0
DO 1669 I = 1, N
CALL DERIV2_EQLBRM_GMBIGA_GMBIGB_F(BSTAR, N, X, Y, YPRIME)
1669 X = X - Y / YPRIME
ROOT_EQLBRM_GMBIGA_GMBIGB_F = X
END

FUNCTION EQLBRM_GMBIGA_GMBIGB_F(BSTAR, N, ASTAR)
EQLBRM_GMBIGA_GMBIGB_F = ARGMAX_EQLBRM_GMBIGA_GMBIGB_F_G_H(ASTAR, BSTAR, N) - ASTAR
END

SUBROUTINE EQLBRM_GMBIGA_GMBIGB(ASTAR, BSTAR, N)
ASTAR = ROOT_EQLBRM_GMBIGA_GMBIGB_F(BSTAR, N)
END

PROGRAM MAIN
READ *, ASTAR
READ *, BSTAR
READ *, N
CALL EQLBRM_GMBIGA_GMBIGB(ASTAR, BSTAR, N)
PRINT *, ASTAR, BSTAR
END
#! /bin/bash

tapenade -root deriv1_2_adf2 -d -o eqlbrm42
 -diffvarname "_g2" -difffuncname "_g2"
eqlbrm42.f

.tapenade -root deriv2_1_2_adf4 -d -o eqlbrm42
 -diffvarname "_g4" -difffuncname "_g4"
eqlbrm42{,_g2}.f

.tapenade -root deriv1_1_adf1 -d -o eqlbrm42
 -diffvarname "_g1" -difffuncname "_g1"
eqlbrm42{,_g2,_g4}.f

.tapenade -root deriv2_1_1_adf3 -d -o eqlbrm42
 -diffvarname "_g3" -difffuncname "_g3"
eqlbrm42{,_g2,_g4,_g1}.f

.tapenade -root deriv2_2_adf5 -d -o eqlbrm42
 -diffvarname "_g5" -difffuncname "_g5"
eqlbrm42{,_g2,_g4,_g1,_g3}.f
bugs
“issues”
BUGS BUGS BUGS! (Just a taste of the yummy bug juice.)

(a) Deliberate errors on corner cases complicates automated use. (E.g., refusal to process routine with no active inputs or no body.)

(b) Inconsistent or incomplete or unpredictable name transformation.
 - DIFFSIZES.INC, ND, NBDIRS, NBDIRSMAX, etc.
 - ADIFOR prefixing interacts poorly with **IMPLICIT** declarations.
 - One-character ADIFOR prefix limit constitutes a limited resource.

(c) Activity declarations are not respected.
 - Only sometimes.
 - By both ADIFOR and TAPENADE.
 - In different ways.
 - That vary by release.
 - (Sometimes they determine an input inactive but if you ask for it to be inactive it will be made active.)
 - Need to know in order to call.
 - Must parse tool output to determine.

(d) Reverse mode sometimes does not generate primal result.
 - Must parse tool output to determine.
 - Workarounds can interact catastrophically with impure primal.

(e) No way to make cotangent inputs dependent upon primal result.

(f) Many nesting issues, e.g., ADIFOR by default generates singularity check code which cannot itself be transformed, must set `AD_EXCEPTION=performance`.
EQLBRM example in VLAD
Same “EQLBRM” example in VLAD

\[
\text{EQLBRM}(A, B, a_0, b_0, n) \triangleq \\
\text{let } a^* = \text{ROOT}_{a^*}(\text{ARGMAX}_a(A(a, (\text{ARGMAX}_b(B(a^*, b), b_0, n))), a_0, n) - a^*, a_0, n) \\
b^* = \text{ARGMAX}_b(B(a^*, b), b_0, n) \\
in \langle a^*, b^* \rangle
\]

\[
\text{ARGMAX}(f, x_0, n) \triangleq \text{let } f'(x) \triangleq \text{DERIV}_1(f, x) \text{ in } \text{ROOT}(f', x_0, n)
\]

\[
\text{ROOT}(f, x, n) \triangleq \\
\text{if } n = 0 \text{ then } x \text{ else let } \langle y, y' \rangle = \text{DERIV}_2(f, x) \text{ in } \text{ROOT}(f, x - \frac{y}{y'}, n - 1)
\]

\[
\text{DERIV}_1(f, x) \triangleq \text{let } \langle x, y \rangle = \overrightarrow{f}(f, x, 1) \text{ in } y
\]

\[
\text{DERIV}_2(f, x) \triangleq \overrightarrow{f}(f, x, 1)
\]

The \(\overrightarrow{f}\) symbol is a differential-geometric pushforward operator, analogous to the FARFEL ADF block construct.

There is an analogous \(\overleftarrow{f}\) pullback operator that corresponds to the ADR block construct.

For details on the language and its implementation see Pearlmutter and Siskind (2008a,b); Siskind and Pearlmutter (2008).
performance
THEIR FIRST BIG SCREEN ADVENTURE IN COLOUR!

GERRY ANDERSON'S

THUNDERBIRDS ARE GO

SUPERMARIONATION AND TECHNICOLOR

PRODUCED BY SYLVIA ANDERSON DIRECTED BY DAVID LANE RELEASED THROUGH UNITED ARTISTS

* ADULTS OVER 16 SHOULD BE ACCOMPANIED BY CHILDREN
<table>
<thead>
<tr>
<th>Farfallen</th>
<th>Tapenade</th>
<th>Adifor</th>
<th>Stalingrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.97</td>
<td>8.92</td>
<td>5.83</td>
<td></td>
</tr>
</tbody>
</table>
AVAILABLE NOW!
lessons
seeking PhD students / postdocs
This work was supported, in part, by Science Foundation Ireland grant 09/IN.1/I2637, National Science Foundation grant CCF-0438806, the Naval Research Laboratory under Contract Number N00173-10-1-G023, and the Army Research Laboratory accomplished under Cooperative Agreement Number W911NF-10-2-0060. Any views, opinions, findings, conclusions, or recommendations contained or expressed in this document or material are those of the author(s) and do not necessarily reflect or represent the views or official policies, either expressed or implied, of SFI, NSF, NRL, the Office of Naval Research, ARL, or the Irish or U.S. Governments.
References

FAQs
FORTRAN 77
We would *love* to extend FARFALLEN from FORTRAN 77 to FORTRAN 95 or FORTRAN 2008 *aka* ISO/IEC 1539-1:2010.
no
yes
The EXISTENCE OR UNIQUENESS OF AN EQUILIBRIUM IS NOT IN GENERAL GUARANTEED, but our particular A and B have a unique equilibrium.

COORDINATE DESCENT (alternating optimization of a^* and b^*) would require less nesting, but HAS INFERIOR CONVERGENCE PROPERTIES.

Although this example involves AD THROUGH ITERATIVE PROCESSES, we do not address that issue in this work: it IS BEYOND THE SCOPE OF THIS PAPER, and used here only in a benign fashion, for vividness.

On our concrete objective functions THESE CONVERGE RAPIDLY, so for clarity we SKIP the clutter of CONVERGENCE DETECTION.
CRAWLING, SLIMY THINGS TERROR-BENT ON DESTROYING THE WORLD!

the Brain Eaters

Starring: EDWIN NELSON - JOANNA LEE - ALAN FROST
Produced by EDWIN NELSON - Directed by BRUNO VESOTA - Story & Screenplay by GORDON URQUHART - AN AMERICAN INTERNATIONAL PICTURE
FARFEL vs Naumann and Riehme (2005)

FARFEL constructs and features that the NAGWARE 95 AD extensions could not, to our knowledge, handle:

- **EXTERNAL** arguments
- nested internal definitions (lexically scoped)
- derivatives of derivatives (nesting)

This would impact all of the examples in this talk.