probabilistic-lambda-calculus-R-ikarus.scm
(define (make-constant-expression value) (list 0 value))
(define (constant-expression? expression) (d= (first expression) 0))
(define (constant-expression-value expression) (second expression))
(define (make-variable-access-expression variable) (list 1 variable))
(define (variable-access-expression? expression) (d= (first expression) 1))
(define (variable-access-expression-variable expression) (second expression))
(define (make-lambda-expression variable body) (list 2 variable body))
(define (lambda-expression? expression) (d= (first expression) 2))
(define (lambda-expression-variable expression) (second expression))
(define (lambda-expression-body expression) (third expression))
(define (make-application callee argument) (list 3 callee argument))
(define (application-callee expression) (second expression))
(define (application-argument expression) (third expression))
(define (make-ignore) 0)
(define (make-if-procedure) 1)
(define (make-x0) 2)
(define (make-x1) 3)
(define (make-binding variable value) (list variable value))
(define (binding-variable binding) (first binding))
(define (binding-value binding) (second binding))
(define (make-triple p environment value) (list p environment value))
(define (triple-p triple) (first triple))
(define (triple-environment triple) (second triple))
(define (triple-value triple) (third triple))
(define (binds? environment variable)
(and (not (null? environment))
(or (equal? variable (binding-variable (first environment)))
(binds? (rest environment) variable))))
(define (lookup-value variable environment)
(if (equal? variable (binding-variable (first environment)))
(binding-value (first environment))
(lookup-value variable (rest environment))))
(define (merge-environments environment1 environment2)
(if (null? environment1)
environment2
(let ((environment (merge-environments (rest environment1) environment2)))
(if (boolean? environment)
#f
(if (binds? environment (binding-variable (first environment1)))
(if (equal? (lookup-value
(binding-variable (first environment1))
environment)
(binding-value (first environment1)))
environment
#f)
(cons (first environment1) environment))))))
(define (singleton-tagged-distribution value)
(list (make-triple 1.0 '() value)))
(define (boolean-distribution p variable)
(list (make-triple (d- 1.0 p) (list (make-binding variable #f)) #f)
(make-triple p (list (make-binding variable #t)) #t)))
(define (normalize-tagged-distribution tagged-distribution)
(let ((n (let loop ((tagged-distribution tagged-distribution))
(if (null? tagged-distribution)
0.0
(d+ (triple-p (first tagged-distribution))
(loop (rest tagged-distribution)))))))
(map (lambda (triple)
(make-triple (d/ (triple-p triple) n)
(triple-environment triple)
(triple-value triple)))
tagged-distribution)))
(define (map-tagged-distribution f tagged-distribution)
(normalize-tagged-distribution
(let loop ((tagged-distribution tagged-distribution))
(if (null? tagged-distribution)
'()
(append
(remove-if
(lambda (triple) (boolean? (triple-environment triple)))
(map (lambda (triple)
(make-triple (d* (triple-p (first tagged-distribution))
(triple-p triple))
(merge-environments
(triple-environment (first tagged-distribution))
(triple-environment triple))
(triple-value triple)))
(f (triple-value (first tagged-distribution)))))
(loop (rest tagged-distribution)))))))
(define (evaluate expression environment)
(cond
((constant-expression? expression)
(singleton-tagged-distribution (constant-expression-value expression)))
((variable-access-expression? expression)
(lookup-value (variable-access-expression-variable expression) environment))
((lambda-expression? expression)
(singleton-tagged-distribution
(lambda (tagged-distribution)
(evaluate (lambda-expression-body expression)
(cons (make-binding (lambda-expression-variable expression)
tagged-distribution)
environment)))))
(else (let ((tagged-distribution
(evaluate (application-argument expression) environment)))
(map-tagged-distribution
(lambda (value) (value tagged-distribution))
(evaluate (application-callee expression) environment))))))
(define (likelihood value tagged-distribution)
(if (null? tagged-distribution)
0.0
(d+ (if (equal? value (triple-value (first tagged-distribution)))
(triple-p (first tagged-distribution))
0.0)
(likelihood value (rest tagged-distribution)))))
(define (make-if antecedent consequent alternate)
(make-application
(make-application
(make-application
(make-variable-access-expression (make-if-procedure)) antecedent)
(make-lambda-expression (make-ignore) consequent))
(make-lambda-expression (make-ignore) alternate)))
(define (example)
(gradient-ascent-R
(lambda (p)
(let ((tagged-distribution
(evaluate
(make-if (make-variable-access-expression (make-x0))
(make-constant-expression 0)
(make-if (make-variable-access-expression (make-x1))
(make-constant-expression 1)
(make-constant-expression 2)))
(list (make-binding
(make-x0) (boolean-distribution (list-ref p 0) (make-x0)))
(make-binding
(make-x1) (boolean-distribution (list-ref p 1) (make-x1)))
(make-binding
(make-if-procedure)
(singleton-tagged-distribution
(lambda (x)
(singleton-tagged-distribution
(lambda (y)
(singleton-tagged-distribution
(lambda (z)
(map-tagged-distribution
(lambda (xe)
(map-tagged-distribution
(lambda (ye)
(map-tagged-distribution
(lambda (ze) (if xe (ye #f) (ze #f))) z))
y))
x))))))))))))
(map-reduce
d*
1.0
(lambda (observation) (likelihood observation tagged-distribution))
'(0 1 2 2))))
'(0.5 0.5)
1000.0
0.1))
(define (run)
(let loop ((i 10.0) (result (list 0.0 0.0)))
(if (dzero? i)
result
(let ((p (first (example))))
(loop (d- i 1)
(list (write-real (list-ref p 0))
(write-real (list-ref p 1))))))))
Generated by GNU enscript 1.6.4.