common-scmutils.scm
(define (primal* p)
(if (and (pair? p) (eq? (car p) '*diff*)) (cadr (assq '() (cdr p))) p))
(define (lift-real^n->boolean f) (lambda ps (apply f (map primal* ps))))
(define d= (lift-real^n->boolean =))
(define d< (lift-real^n->boolean <))
(define d> (lift-real^n->boolean >))
(define d<= (lift-real^n->boolean <=))
(define d>= (lift-real^n->boolean >=))
(define dzero? (let ((= =)) (lift-real^n->boolean (lambda (x) (= x 0)))))
(define dpositive? (lift-real^n->boolean positive?))
(define dnegative? (lift-real^n->boolean negative?))
(define dreal? (lift-real^n->boolean real?))
(define (derivative-F f) (D f))
(define (replace-ith x i xi)
(if (dzero? i)
(cons xi (cdr x))
(cons (car x) (replace-ith (cdr x) (- i 1) xi))))
(define (gradient-F f)
(lambda (x)
((map-n
(lambda (i)
((derivative-F (lambda (xi) (f (replace-ith x i xi)))) (list-ref x i))))
(length x))))
(define (write-real x) (write x) (newline) x)
(define (first x) (car x))
(define (second x) (car (cdr x)))
(define (third x) (car (cdr (cdr x))))
(define (fourth x) (car (cdr (cdr (cdr x)))))
(define (rest x) (cdr x))
(define (sqr x) (* x x))
(define (map-n f)
(lambda (n)
(letrec ((loop (lambda (i) (if (d= i n) '() (cons (f i) (loop (+ i 1)))))))
(loop 0))))
(define (reduce f i)
(lambda (l) (if (null? l) i (f (car l) ((reduce f i) (cdr l))))))
(define (map-reduce g i f l)
(if (null? l) i (g (f (first l)) (map-reduce g i f (rest l)))))
(define (remove-if p l)
(cond ((null? l) '())
((p (first l)) (remove-if p (rest l)))
(else (cons (first l) (remove-if p (rest l))))))
(define (v+ u v) (map + u v))
(define (v- u v) (map - u v))
(define (k*v k v) (map (lambda (x) (* k x)) v))
(define (magnitude-squared x) ((reduce + 0.0) (map sqr x)))
(define (magnitude x) (sqrt (magnitude-squared x)))
(define (distance-squared u v) (magnitude-squared (v- v u)))
(define (distance u v) (sqrt (distance-squared u v)))
(define (gradient-ascent-F f x0 n eta)
(if (dzero? n)
(list x0 (f x0) ((gradient-F f) x0))
(gradient-ascent-F
f
(map (lambda (xi gi) (+ xi (* eta gi))) x0 ((gradient-F f) x0))
(- n 1)
eta)))
(define (multivariate-argmin-F f x)
(let ((g (gradient-F f)))
(letrec ((loop
(lambda (x fx gx eta i)
(cond ((d<= (magnitude gx) 1e-5) x)
((d= i 10) (loop x fx gx (* 2.0 eta) 0))
(else
(let ((x-prime (v- x (k*v eta gx))))
(if (d<= (distance x x-prime) 1e-5)
x
(let ((fx-prime (f x-prime)))
(if (d< fx-prime fx)
(loop x-prime fx-prime (g x-prime) eta (+ i 1))
(loop x fx gx (/ eta 2.0) 0))))))))))
(loop x (f x) (g x) 1e-5 0))))
(define (multivariate-argmax-F f x)
(multivariate-argmin-F (lambda (x) (- 0.0 (f x))) x))
(define (multivariate-max-F f x) (f (multivariate-argmax-F f x)))
Generated by GNU enscript 1.6.4.