backprop-R-mlton.sml
fun sum_activities activities (bias::ws) =
foldl op + bias (ListPair.map op * (ws, activities))
fun sum_layer activities ws_layer = map (sum_activities activities) ws_layer
fun sigmoid x = (Base 1.0)/((exp ((Base 0.0)-x))+(Base 1.0))
fun forward_pass [] in1 = in1
| forward_pass (ws_layer::ws_layers) in1 =
forward_pass ws_layers (map sigmoid (sum_layer in1 ws_layer))
fun error_on_dataset dataset ws_layers =
foldl op +
(Base 0.0)
(map (fn (in1, target) =>
(Base 0.5)*
(magnitude_squared
(vminus (forward_pass ws_layers in1) target)))
dataset)
fun s_kstar ws k y =
ListPair.map (fn (l, y) =>
ListPair.map (fn (u, y) =>
ListPair.map (fn (w, y) => w-k*y)
(u, y))
(l, y))
(ws, y)
fun weight_gradient f ws =
(epsilon := !epsilon+(Base 1.0);
let val ws = map (fn l =>
map (fn u =>
map (fn w => (tape (!epsilon) w [] [])) u) l)
ws
in (case f ws of
Dual_number _ => ()
| y as Tape (e1, _, _, _, _, _) =>
if e1<(!epsilon)
then ()
else (determine_fanout y; reverse_phase (Base 1.0) y)
| Base _ => ());
epsilon := !epsilon-(Base 1.0);
map (fn l =>
map (fn u =>
map (fn (Tape (_, _, _, _, _, sensitivity)) =>
!sensitivity)
u)
l)
ws end)
fun vanilla f w0 n eta =
if n<=(Base 0.0) andalso (Base 0.0)<=n
then f w0
else vanilla f (s_kstar w0 eta (weight_gradient f w0)) (n-(Base 1.0)) eta
val xor_ws0 = [[[Base 0.0, Base ~0.284227, Base 1.16054],
[Base 0.0, Base 0.617194, Base 1.30467]],
[[Base 0.0, Base ~0.084395, Base 0.648461]]]
val xor_data = [([Base 0.0, Base 0.0], [Base 0.0]),
([Base 0.0, Base 1.0], [Base 1.0]),
([Base 1.0, Base 0.0], [Base 1.0]),
([Base 1.0, Base 1.0], [Base 0.0])]
val _ = write_real (vanilla (error_on_dataset xor_data)
xor_ws0
(Base 1000000.0)
(Base 0.3))
Generated by GNU enscript 1.6.4.