backprop-Fv-adolc.cpp
#define ADOLC_TAPELESS
#define NUMBER_DIRECTIONS 9
#include "adolc/adouble.h"
#include <iomanip>
#include <math.h>
using namespace std;
#define N_SAMPLES 4
#define N_IN 2
#define N_OUT 1
#define LAYERS 2
#define ELEMENTS_LAYER1 2
#define ELEMENTS_LAYER2 1
#define ELEMENTS_LAYER_MAX 2
#define WEIGHTS 3
struct w_layer {
int n;
int w;
adtl::adouble **layer;};
adtl::adouble magnitude_squared(int n_x, adtl::adouble *x) {
adtl::adouble r = 0.0;
int j;
for (j = 0; j<n_x; j++) r += x[j]*x[j];
return r;}
void sum_layer_sigmoid(adtl::adouble *activities, struct w_layer ws_layer,
adtl::adouble *out) {
int i, j;
for (i = 0; i<ws_layer.n; i++) {
out[i] = ws_layer.layer[i][0];
for (j = 0; j<ws_layer.w-1; j++)
out[i] += activities[j]*ws_layer.layer[i][j+1];
out[i] = 1.0/(exp(-1.0*out[i])+1.0);}}
void forward_pass(int n_ws_layers, struct w_layer *ws_layers, int n_in,
adtl::adouble *in, int n_out, adtl::adouble *out) {
int i, j;
adtl::adouble temp_in[ELEMENTS_LAYER_MAX];
adtl::adouble temp_out[ELEMENTS_LAYER_MAX];
for (i = 0; i<n_in; i++) temp_in[i] = in[i];
for (i = 0; i<n_ws_layers; i++) {
sum_layer_sigmoid(&temp_in[0], ws_layers[i], &temp_out[0]);
for (j = 0; j<ws_layers[i].n; j++) temp_in[j] = temp_out[j];}
for (i = 0; i<n_out; i++) out[i] = temp_out[i];}
adtl::adouble error_on_dataset(int n_ws_layers, struct w_layer *ws_layers) {
adtl::adouble xor_data[N_SAMPLES][N_IN+N_OUT];
int i, j;
adtl::adouble error;
adtl::adouble in[N_IN];
adtl::adouble out[N_OUT], absolute_error[N_OUT];
xor_data[0][0] = 0.0;
xor_data[0][1] = 0.0;
xor_data[0][2] = 0.0;
xor_data[1][0] = 0.0;
xor_data[1][1] = 1.0;
xor_data[1][2] = 1.0;
xor_data[2][0] = 1.0;
xor_data[2][1] = 0.0;
xor_data[2][2] = 1.0;
xor_data[3][0] = 1.0;
xor_data[3][1] = 1.0;
xor_data[3][2] = 0.0;
error = 0.0;
for (i = 0; i<N_SAMPLES; i++) {
for (j = 0; j<N_IN; j++) in[j] = xor_data[i][j];
forward_pass(n_ws_layers, ws_layers, N_IN, &in[0], N_OUT, &out[0]);
for (j = 0; j<N_OUT; j++) absolute_error[j] = out[j]-xor_data[i][j+N_IN];
error += 0.5*magnitude_squared(N_OUT, &absolute_error[0]);}
return error;}
void weight_gradient(adtl::adouble f(int, struct w_layer *), int n_ws_layers,
struct w_layer *ws_layers, struct w_layer *grad_f) {
int i, j, k, n, count;
adtl::adouble result;
n = 0;
for (i = 0; i<n_ws_layers; i++) n += ws_layers[i].n*ws_layers[i].w;
count = 0;
for (i = 0; i<n_ws_layers; i++) {
for (j = 0; j<ws_layers[i].n; j++) {
for (k = 0; k<ws_layers[i].w; k++) {
ws_layers[i].layer[j][k].setADValue(count, 1.0);
count++;}}}
result = f(n_ws_layers, ws_layers);
count = 0;
for (i = 0; i<n_ws_layers; i++) {
for (j = 0; j<ws_layers[i].n; j++) {
for (k = 0; k<ws_layers[i].w; k++) {
grad_f[i].layer[j][k] = result.getADValue(count);
count++;}}}}
void vanilla(adtl::adouble f(int, struct w_layer *), int n_w0,
struct w_layer *w0, int n, double eta) {
int i, j, k, l;
struct w_layer grad_f[n_w0];
for (i = 0; i<n_w0; i++) {
grad_f[i].n = w0[i].n;
grad_f[i].w = w0[i].w;
grad_f[i].layer = new adtl::adouble * [grad_f[i].n];
for (j = 0; j<grad_f[i].n; j++)
grad_f[i].layer[j] = new adtl::adouble [grad_f[i].w];}
for (i = 0; i<n; i++) {
weight_gradient(f, n_w0, w0, &grad_f[0]);
for (j = 0; j<n_w0; j++)
for (k = 0; k<w0[j].n; k++)
for (l = 0; l<w0[j].w; l++)
w0[j].layer[k][l] =
w0[j].layer[k][l].getValue()-eta*grad_f[j].layer[k][l].getValue();}
for (i = 0; i<n_w0; i++) {
for (j = 0; j<grad_f[i].n; j++) delete[] grad_f[i].layer[j];
delete[] grad_f[i].layer;}}
int main() {
int i, j;
struct w_layer xor_ws0[LAYERS];
adtl::adouble error;
xor_ws0[0].n = ELEMENTS_LAYER1;
xor_ws0[1].n = ELEMENTS_LAYER2;
xor_ws0[0].w = WEIGHTS;
xor_ws0[1].w = WEIGHTS;
for (i = 0; i<LAYERS; i++) {
xor_ws0[i].layer = new adtl::adouble * [xor_ws0[i].n];
for (j = 0; j<xor_ws0[i].n; j++)
xor_ws0[i].layer[j] = new adtl::adouble [xor_ws0[i].w];}
xor_ws0[0].layer[0][0] = 0.0;
xor_ws0[0].layer[0][1] = -0.284227;
xor_ws0[0].layer[0][2] = 1.16054;
xor_ws0[0].layer[1][0] = 0.0;
xor_ws0[0].layer[1][1] = 0.617194;
xor_ws0[0].layer[1][2] = 1.30467;
xor_ws0[1].layer[0][0] = 0.0;
xor_ws0[1].layer[0][1] = -0.084395;
xor_ws0[1].layer[0][2] = 0.648461;
vanilla(error_on_dataset, LAYERS, xor_ws0, 1000000, 0.3);
error = error_on_dataset(LAYERS, xor_ws0);
for (i = 0; i<LAYERS; i++) {
for (j = 0; j<xor_ws0[i].n; j++) delete[] xor_ws0[i].layer[j];
delete[] xor_ws0[i].layer;}
cout << setprecision(18) << error.getValue() << endl;
return EXIT_SUCCESS;}
Generated by GNU enscript 1.6.4.