The Culprit Pointer Method for Selective

Backtracking
by
Jeffrey Mark Siskind

B.A. Computer Science, Technion, Israel Institute of Technology
(1979)

Submitted to the Department of
Electrical Engineering and Computer Science
in Partial Fulfillment of the
Requirements of the Degree of
Master of Science in
Electrical Engineering and Computer Science
at the
Massachusetts Institute of Technology
January 1989

(© Massachusetts Institute of Technology 1989

Signature of Author

Department of Electrical Engineering and Computer Science
January 30, 1989

Certified by

David Allen McAllester
Assistant Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by

Arthur C. Smith
Chairman, Departmental Committee on Graduate Students

The Culprit Pointer Method for Selective
Backtracking

by
Jeffrey Mark Siskind

Submitted to the Department of Electrical Engineering and Computer Science
on January 30, 1989, in partial fulfillment of the
requirements for the Degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

Many techniques have been proposed for performing selective backtracking in PROLOG. These tech-
niques tradeoff time spent in supporting the search pruning versus time saved from the search. One
technique which performs very effective pruning is the MULTIPLE NOGOOD algorithm which computes
all minimal nogoods upon unification failure, hyperresolves these nogoods upon goal failure, and selects
as the backtrack choice-point, the earliest choice-point among the latest choice-points of each resulting
nogood. Unfortunately, this method can require exponential time and space per backtrack decision.
This thesis attempts to answer the open question as to whether an algorithm exists which makes the
same backtrack decisions as the MULTIPLE NOGOOD algorithm in polynomial time. A novel algorithm,
the CULPRIT POINTER METHOD, is presented which appears to make the same backtrack decisions as
the MULTIPLE NOGOOD algorithm, but only for goal failures which do not contain nested failures for
which a selective backtrack was taken. This method requires space overhead which is linear in the depth
of the choice-point stack, and time overhead per unification failure which is quadratic in the depth of
the choice-point stack. The algorithm is very general and can be applied to variety of search problems
ranging from constraint satisfaction problems to extensions of PROLOG such as CLP(R). This thesis
presents the algorithm, proves its correctness, discusses its incorporation into an efficient implementation
of PROLOG based on the Warren Abstract Machine, and gives some benchmarks of that implementation.

Thesis Supervisor: David Allen McAllester
Title: Assistant Professor of Computer Science and Engineering

Acknowledgments

This thesis is long overdue. Although I have spent over five and a half years completing my masters, and
three and a half years of that on this project, I am very embarrassed by the result, or lack thereof. If
it were not for stubbornness, and the misguidance of faculty and fellow graduate students, I would have
abandoned this research topic long ago and switched to a more fruitful one to produce a more satisfying
thesis. One thing that I have learned from this experience—something that I hope others will learn as
well—is that one can make an honest mistake in pursuing a research topic that leads nowhere. That
can happen no matter how much due diligence you invest up front to determine the project’s feasibility
and difficulty. It takes a certain amount of responsibility to realize when your assessment of the project
changes and to cut ones loses by switching topics. At least three times during this project I had the
foresight to talk with the faculty at M. I. T. about switching topics. Each time I was advised to stick
with the project, finish the preliminary results that I had, and write them up. No one could accept the
fact that despite all the time I had invested in the topic, I had a great deal of understanding but no
tangible results. “You must have gained some knowledge which is worth sharing with others”, is a sound
which still rings in my ears. Traditionally, acceptable results in Artificial Intelligence and Computer
Science have fallen into one of three categories: demonstrated useful working systems, proven positive
results, and mathematically proven negative results. Unlike other fields, discussions of approaches which
have been tried but which have failed are usually not considered respectable without some proof that
explains why the failure is fundamental and must have occurred. I did not have any acceptable results
then. Unfortunately, two years later I still do not have any results. This thesis is more an expression of
bureaucratic desperation rather than scientific accomplishment.

A number of people and organizations have offered tremendous support to me during this long project.
Without them I would not have been able to waste so much time and yet learn so much from that process.
Charles Leiserson, my first advisor, helped me return to academia after a three year absence. How true
was his insight in predicting that it would take me about two years to get back into the swing of things
at M. I. T. T am greatly indebted to him for supporting me, and to the theory group for providing me
a haven, during that period of readjustment. David McAllester, first an unofficial advisor, and finally
the professor who will sign this thesis, has been a continual sounding board for my ideas. Not the kind
which just absorbs and muffles the sound, but rather which selectively resonates with and amplifies the
good ideas while filtering out the bad ones. About a year ago, David asked whether I would mind having
such a junior faculty member as him as an advisor. I replied that every dentist has some patient whose
teeth are his first to drill. Well, in retrospect it hasn’t been that painful. I truly believe that David will
grow up to be a great dentist—oops great professor—some day.

AT&T Bell Laboratories has provided exceedingly generous support for the past two and a half years
through a Ph.D. scholarship. I hope someday to repay that generosity in ways above and beyond my long
distance phone bill which has grown tremendously during the past month. Xerox PARC has supported
me and my research during two summer visits and one winter visit. Being at PARC is like being a child
in a candy store—with grandpa there to buy you whatever you want. I can’t remember ever having as
euphoric a research experience as I have had during my stays at PARC. I can’t express my appreciation
to Johan de Kleer and Per-Kristian Halvorsen, my supervisors at PARC, for offering me that experience,
and for believing in me even when I didn’t.

Ramin Zabih has been my partner in crime. Hey Ramin, do you finally agree with me that it is
not worthwhile to work on an algorithm with greater than linear complexity!? Philip Klein, Ronald
Greenberg, and Tom Cormen have listened to my babbling, given useful feedback, and in general helped
unwedge my mathematics as well as my I¥TEX macros. Mark Shirley cushioned the brunt of my frustra-
tion during the final months of thesis writing. I wish I had gotten to know him better earlier on during
his and my tenure at M. I. T. Finally, Jeremy Wertheimer and I spent two years as scientific &ITTIT],
meeting twice a week to push each other along to finish our respective theses. Jeremy, would you ever

have believed that we would both actually finish?! Lets get on with it and move on to more productive
research topics.

I am far too ashamed to acknowledge my family, friends, and teachers on such a meager and paltry
document. That will have to wait for my Ph.D. Perhaps then I can present a document worthy of
acknowledging them.

Contents

1 Introduction

2 The Culprit Pointer Method

2.1 The Algorithm
2.2 An Example.
2.3 Complexity Analysis oo e
3 Applying the Culprit Pointer Method to Prolog
3.1 AND/OR-TI€ES . . . o o oot e e
3.2 Searching AND/OR-Trees Using Depth-First Search
3.3 The Culprit Pointer Method For AND/OR-Trees
3.4 Complexity Analysis oo
4 Implementation as an Extended Warren Abstract Machine
4.1 Compiling Prolog into Lisp o
4.2 Modifications to Support The Culprit Pointer Method
4.3 Additional Details of the Compilation Process
4.3.1 Tail Recursion
4.3.2 Clause Indexing L
4.3.3 Is. . o
5 Experimental Results
5.1 The Map Coloring Example
5.2 The N-Queens Example
5.3 The N-Queens Example as a Constraint Satisfaction Problem

6 Conclusion
6.1 History e
6.2 Future Work s

List of Figures

1.1

2.1
2.2
2.3
2.4

3.1
3.2

5.1
5.2

Futile backtracking in Prologo 7
Selective backtracking for constraint satisfaction problems 12
Selective backtracking at an external exhaustion 13
Selective backtracking at an internal exhaustion 0oL 14
Unsound use of culprit pointers L 16
Depth-First Search 21
Culprit Pointer Depth-First Search 25
Prolog code for the map coloring benchmark 54
Prolog code for the N-Queens benchmark 56

List of Tables

2.1

5.1
5.2
5.3

Trace of the unsound use of culprit pointers 17
Statistics gathered when running the map coloring benchmark 55
Statistics gathered when running the Prolog version of the N-Queens benchmark 56
Statistics gathered when running the CSP version of the N-Queens benchmark 57

Chapter 1

Introduction

PROLOG programs, as well as other problem solvers performing blind search, often exhibit anomalous
backtracking behavior. Consider the example given in figure 1.1. When the first alternative is taken
for the goals gen(X) and gen(Y), the goal test(X) will fail and backtrack to the goal gen(Y) even
though no possible alternative for this goal can lead to a solution. We desire a technique which will
allow backtracking directly to the goal gen(X) in such a situation.

In [29] de Kleer enumerates four different kinds of anomalous search behavior—futile backtracking,
rediscovering contradictions, rediscovering inferences, and incorrect ordering—and gives examples of the
occurrence of each while solving a simple constraint problem. Each of these anomalous behaviors may
also be exhibited by PROLOG programs as well as other search problems. Of the four different anomalies,
the program in figure 1.1 exhibits mainly futile backtracking. This thesis focuses on one technique which
attempts to reduce futile backtracking. This technique can be applied both to PROLOG implementations
as well as to other search problems such as constraint satisfaction problems.

Many techniques have been proposed in the literature for alleviating the search anomalies discussed by
de Kleer. Different techniques focus on different subsets of these anomalies. Some attempt to alleviate
only futile backtracking while others attempt to alleviate all four of the anomalies. Previously pub-
lished accounts of search pruning techniques include those applied to PROLOG[88, 42], non-deterministic
Lisp[11, 95, 97, 98], constraint languages, and a variety of problem solvers[33, 32, 83, 39, 38, 61, 62,
63, 64, 80, 41, 29, 30, 31] Within the framework of PROLOG implementations, strategies which focus on

7- gen(X) ,gen(Y),test(X).
gen(a) .
gen(b) .
gen(c) .
gen(d) .
gen(e) .
test(b).
test(d).

Figure 1.1: A PROLOG program demonstrating futile backtracking. Failure of the goal test(X)
will backtrack to the goal gen(Y) even though no alternative for that goal will prevent the failure
of test(X). Selective backtracking refers to a class of techniques which ideally would backtrack
directly to the goal gen(X) in situations similar to this.

8 CHAPTER 1. INTRODUCTION

alleviating only futile backtracking (in contrast to the other three search anomalies) have commonly been
called selective backtracking or intelligent backtracking techniques.! Many methods have been proposed
for performing intelligent backtracking in PROLOG[8, 23, 25, 9, 57, 55, 50] These techniques differ from
one another in both their effectiveness, how well they succeed in pruning the search space, and in their
cost, how much overhead is involved in performing the pruning. It can be shown that, irrespective of the
cost of applying the different techniques, generally no technique dominates another in the effectiveness of
the pruning it performs. Nonetheless, experience has shown that in practice, there is usually a tradeoff
between cost and effectiveness; increased effectiveness implies increased cost and decreased cost implies
decreased effectiveness. The objective is to choose a technique with the proper balance for solving some
class of problems efficiently.

One very effective selective backtracking technique is the MULTIPLE NOGOOD algorithm. Although
this algorithm seems never to have been published, it combines ideas from numerous other published
methods and seems to be well known. It has been alluded to by a number of authors. The essence of
this algorithm is as follows. Conceptually, the MULTIPLE NOGOOD algorithm maintains a single set of
nogoods called the nogood cache. Each nogood is a set of choices which is known to entail failure. A
choice is an association of a choice-point with a particular alternative chosen for that choice-point. Each
choice implies some constraint which in the case of PROLOG is the unification of a goal term associated
with the choice-point with the head of the clause chosen as the current alternative for that choice-point.
A set of choices may be inconsistent, and thus be a nogood, for one of two reasons: either the constraints
implied by those choices are themselves immediately inconsistent, or it is known that within the context
of the current search problem, there is no solution which is a superset of those choices. On unification
failure, the MULTIPLE NOGOOD algorithm computes all minimal non-unifiable subsets of the failed set
of unifications and adds the choices underlying those minimal sets to the nogood cache as nogoods. This
process, called dependency analysis, produces nogoods of the first type. On goal failure, hyperresolution
is used to derive new nogoods from those produced by dependency analysis. These new nogoods are of
the second type. Hyperresolution proceeds as follows. The set of all choices corresponding to all of the
alternatives of the failing goal is viewed as a positive clause. This clause is hyperresolved against all of
the nogoods in the nogood cache which are viewed as negative clauses. If the positive clause contains
the choices {ax, ..., ax}, then for each choice a; € {a,...,ax} find a nogood n; in the nogood cache
which contains that assumption. A new nogood can be computed from these nogoods by the following

formula:
n

U n; — {Ozl}

i=1
The new nogoods produced by hyperresolution are then added to the nogood cache. The culprit, i.e. the
desired backtrack point, is selected by finding the most recent choice-point from each nogood produced
by hyperresolution and selecting the least recent choice-point from this set. Finally, when a choice-point
is popped off the stack, all nogoods in the nogood cache which reference this choice-point are discarded.
This last step forfeits the ability to perform lateral pruning[95, 97, 98] in an attempt to reduce the
overhead of the algorithm.

Although this algorithm can be particularly effective at reducing futile backtracking, that effectiveness
comes at a high cost. Wolfram has shown[93] that there may be an exponential number of minimal
non-unifiable subsets of a set of unifications. Therefore, dependency analysis, and thus the process of
making each backtracking decision can require exponential time and space, at least with a straightforward
implementation. It is an open question whether an algorithm exists which is as effective as the MULTIPLE

IThe terms dependency-directed, intelligent, and selective backtracking have been used both imprecisely and ambigu-
ously in the literature to refer to various techniques which attempt to alleviate different subsets of the aforementioned
anomalies. Throughout this thesis, the term selective backtracking is used to refer to any technique which maintains the
stack based discipline of depth-first search but which allows backtracking directly to a choice which is not the most recent
one on the stack. With the exception of chapter 6, this thesis refrains from using the other terminology.

NoGoOD algorithm but whose time and space complexity for making a backtrack decision at each failure
are polynomial in the depth of the choice-point stack at that failure. Note that it is conceivable that
such an algorithm exist despite the fact that for finite problems, the search problem as a whole is
NP-complete because finding a solution may still require an exponential number of (polynomial time
computable) backtracks.

This thesis discusses an attempt to answer this question. An algorithm is presented, called the
CULPRIT POINTER METHOD, which makes backtrack decisions in polynomial time. One advantage
of this algorithm is that it is applicable to almost any search problem, not just ones like PROLOG,
which are based on unification. Its drawback however, is that it only performs selective backtracking
for failures which are not selectively-nested. A failure is selectively-nested if a selective backtrack was
performed for a failure nested under the currently failing choice-point. On the positive side, it seems that
the CULPRIT POINTER METHOD does make the same selective backtrack decisions as the MULTIPLE
NoGOOD algorithm for non-selectively-nested failures although this conjecture has not yet been proven.

This thesis addresses the open question of whether an algorithm exists which makes the same back-
track decisions as the MULTIPLE NOGOOD algorithm with polynomial overhead per backtrack decision.
During the research which led to this thesis, significant effort was expended both trying to find such
an algorithm, as well as proving that it could not exist. While the CULPRIT POINTER METHOD comes
close, it appears to do so only for non-selectively-nested failures and even this conjecture has not been
proven. Wolfram[93] believes that his results show that a polynomial time equivalent to the MULTIPLE
NocooD algorithm cannot exist. The last chapter of this thesis discusses why I believe that his results
are not conclusive and that if it indeed turns out that a polynomial time equivalent to the MULTIPLE
NoGooD algorithm does not exist, techniques more powerful then those given in [93] will be necessary
to demonstrate this fact.

The remainder of this thesis is divided into five chapters. Chapter 2 present the CULPRIT POINTER
METHOD as a technique for performing selective backtracking while solving constraint satisfaction prob-
lems (CSPs). The CULPRIT POINTER METHOD is presented first in the context of CSPs rather than
directly for PROLOG because CSPs lack the hierarchal dependent choices of PROLOG and are thus a
simpler framework for presenting the essential ideas of the algorithm. In this chapter, the algorithm is
presented, its soundness is proved, and several examples of its operation are given. In particular, an exam-
ple is given which demonstrates how the technique can be unsound if it is extended to selectively-nested
failures. Chapter 3 extends the CULPRIT POINTER METHOD to PROLOG. An abstraction of PRoOLOG
called AND/OR-trees is presented which can model a variety of search problems other than those based
on unification. Since the CULPRIT POINTER METHOD is applicable to all such AND/OR-trees, it can be
extended without modification to other constraint-based search languages such as CLP(R)[46, 47, 45].

Many previous search pruning algorithms, especially those based on computing, manipulating, and
storing nogoods, are difficult to integrate into efficient PROLOG implementations without incurring a large
overhead. One advantage of the CULPRIT POINTER METHOD is that in addition to having low complexity
on failure, the constant factor of the overhead is small because it can be integrated fairly smoothly
into efficiently compiled PROLOG code. Chapter 4 illustrates this by presenting a PROLOG compiler
based on the Warren Abstract Machine which has been modified to generate code which incorporates
the CUuLPRIT POINTER METHOD. Chapter 5 compares the performance of this compiler—with the
CuLPRIT POINTER METHOD both enabled and disabled—on a number of well known benchmarks from
the literature. Chapter 6 summarizes the results of the thesis and offers some guidelines for future work.

Chapter 2

The Culprit Pointer Method

This chapter describes an algorithm for solving constraint satisfaction problems (CSPs) using a technique
called the CULPRIT POINTER METHOD. Constraint satisfaction problems are simpler than PrRoOLOG
programs since CSPs have only a single level of choices and lack the dependent choices needed to
represent arbitrary PROLOG programs. Because of the simpler nature of CSP problems over PROLOG
programs, the CULPRIT POINTER METHOD is presented first in the context of CSPs. The next chapter
extends the CULPRIT POINTER METHOD to cover a broader class of search problems which include
dependent choices, including PROLOG programs.

2.1 The Algorithm

A constraint satisfaction problem[49] consists of a finite set of variables {z1, ..., x,} where each z; ranges
over some enumerable set D; called its domain. An assignment X is a partial map from variables to
elements in their domains. An assignment is complete if it maps all n variables to some value. Along
with the variables and their domains, a function CHECK is provided which maps assignments, both
complete and incomplete, to {true, false}. If CHECK(X) returns true then we say that X is consistent;
otherwise it is inconsistent. We require that CHECK be monotonic, i.e. every subset of every consistent
set must be consistent, and every superset of every inconsistent set must be inconsistent. The problem
then, is to find one (or perhaps all) complete consistent assignments.

One method for solving constraint satisfaction problems is depth-first backtracking search. It is
well known that in many situations, backtracking search can exhibit thrashing behavior. The CULPRIT
POINTER METHOD is a technique, which when added to backtracking search, can sometimes reduce the
amount of thrashing at the expense of some more computation.

An assignment X' is an extension of another incomplete assignment X if X’ agrees with X on all
of the variables mapped by X. During depth-first search, finding that an assignment is inconsistent
is called a check failure. Furthermore, completing the exploration of all extensions of some assign-
ment {x1,...,2;-1} is called an exhaustion failure of choice-point j. Some of these extensions may be
solutions (i.e. complete and consistent) while others may be found to be inconsistent. If some assign-
ment {z1,...,x;-1} exhausts because for every value in the domain of x; the extension {x1,...,z;} is
inconsistent, then this exhaustion is called an internal exhaustion failure. Exhaustion failures which are
not internal are called external. In normal backtracking, when some assignment {x1, ..., z;_1} exhausts,
the search continues by exploring the extensions of {z1,...,z;_2} which have not yet been considered.
This is called backtracking from choice-point j to choice-point j — 1. Sometimes, however, there exists
some k < j—1 such that when {z1,...,z,...,2z;_1} exhausts, it can be proven that no complete exten-

10

2.1. THE ALGORITHM 11

sion of {x1,..., 2k}, is consistent. In this case, it would be sound to ignore searching those extensions
and resume the search with an extension of {x1,...,zr_1} which has not yet been considered. This is
called selectively backtracking from choice-point j to choice-point k.

There are many methods for performing sound selective backtracking. Some perform selective back-
tracking only for external exhaustion failures. The method described in this thesis, the CULPRIT
PoOINTER METHOD, performs sound selective backtracking not only at external exhaustion failures but
many internal ones as well. The essence of the CULPRIT POINTER METHOD, is captured by the following
soundness theorem.

Theorem 1 IfY is an assignment, and X is an extension of Y, and D is a set of extensions of Y such
that

o cvery complete extension of X is an extension of some assignment in D, and
e no assignment in D maps variables that are mapped by X but not by Y, and
o cvery assignment in D is inconsistent,

then every complete extension of Y is inconsistent.

Proof: Since CHECK is monotonic, it suffices to show that every complete extension of Y is
an extension of some assignment in D. This can be proved by contradiction. Assume that
some assignment Z is a complete extension of Y but is not an extension of any assignment
in D. Construct the assignment Z’ which is an extension of X which agrees with Z for those
variables not mapped by X. Since Z’ is a complete extension of X it must be an extension
of some assignment in D. But since Z’ differs from Z only on variables mapped by X but
not Y, and no assignment in D maps these variables, Z must be an extension of the same
assignment in D as Z’. Contradiction. O

The soundness theorem provides a sufficient (though not necessary) condition for determining when it
is sound to selectively backtrack from choice-point j to choice-point k. Let X be an assignment

{xla"'axka"'axjfl}

which exhausts and let Y be the assignment {x1,...,x;} for some k < j. If X exhausts without finding
a solution then it does so by examining a finite set D’ of inconsistent extensions of X of the form

{CCl,...,.Ik,...,.fj,l,fbj,...,.fi}
where ¢ and x;,...,x; vary for each extension. Take D to be the assignments in D’ with the mappings
for xp41,...,xj—1 removed. Each assignment in D thus has the form
{z1,.. ., Tk, xj, ..., T}

Finding the largest £ such that each assignment in D is inconsistent will allow selectively backtracking
from choice-point j to choice-point k.

In ordinary depth-first search the first and third conditions of the soundness theorem are true when-
ever some choice-point j exhausts without finding a solution. The CULPRIT POINTER METHOD is a
technique for finding some k such that the second condition of the soundness theorem is also true, allowing
a selective backtrack from choice-point j to choice-point k. It does this by maintaining for each choice-
point j, a culprit pointer K;. This culprit pointer is initialized to zero when the choice-point is created.
Whenever during the search some assignment {z1,...,z;} is found to be inconsistent, all culprit point-
ers K for 1 < j < are updated by the following method. If the assignment {x;,...,z;} is inconsistent

12 CHAPTER 2. THE CULPRIT POINTER METHOD

Algorithm SorvE CSPs UsiNG THE CULPRIT POINTER METHOD:

1. [INITIALIZATION] Set 4 to 0.

2. [SoruTION] If ¢ = n then {z1,...2z,} is a solution. Reset the culprit pointers by looping over
all 7 <n toset K; to j —1 and go to step 4.

3. [CREATE A CHOICE-POINT| Set i to ¢ + 1, K; to 0, and A; to D;.

4. [BACKTRACK] If A; is empty then backtrack. If K; # 4 — 1 then it is first necessary to reset the
culprit pointers by looping over all j < K; and setting K; to j — 1. Backtrack by setting i to K;.
If ¢ = 0 then halt. Otherwise, repeat step 4.

5. [CHOOSE AN ALTERNATIVE] Choose a member z; of A;. Remove z; from A;.

6. [CHECK CONSISTENCY] If {z1,...,a;} is consistent then go to step 2.
7. [UPDATE CULPRIT POINTERS| For each j from 1 to ¢ such that {z;,...,x;} is consistent find the
least k such that {x1,..., 2k, 2;,...,2;} is inconsistent and set K; to the maximum of k and its

previous value. Go to step 5. O

Figure 2.1: A depth-first search algorithm for solving constraint satisfaction problems which incorpo-
rates the CULPRIT POINTER METHOD for performing selective backtracking at non-selectively-nested
failures.

then K is not updated. Otherwise, find the smallest k such that the assignment {z1,..., g, ;,..., 2}
is inconsistent. Such a k clearly exists since if £ = j — 1 the original inconsistent assignment results.
Update K; to the maximum of k£ and its previous value.

Whenever choice-point j exhausts, it is sound to backtrack to K; (which results is a selective backtrack
if K; < j—1) if two criteria are met. First, no solution has been found as an extension of {z1,...,z;_1}.
This is necessary to enforce the third condition of the soundness theorem. Second, no selective backtrack
has been taken for some choice-point j/ > j on an extension of {1, ..., z;_1}. Thisis necessary to enforce
the first condition of the soundness theorem. One way to enforce both of these restrictions is to simply
reset all of the culprit pointers K; to j — 1 whenever either a solution is found, or a selective backtrack
is taken. The exhaustion of some choice-point j is termed selectively-nested if some choice-point 7' > j
exhausted and performed a selective backtrack on an extension of {z1,...,z;-1}. Figure 2.1 gives a
variation on depth-first search for solving constraint satisfaction problems which enforces the soundness
theorem using culprit pointers. This algorithm performs selective backtracks only for exhaustion failures
which are not selectively-nested.

2.2 An Example

The easiest way to illustrate the operation of the CULPRIT POINTER METHOD on constraint satisfaction
problems is by way of an example. Consider the well known N-Queens problem, the problem of placing
n non-attacking queens on an n X n chess board. Although deterministic methods, as well as fast
nondeterministic heuristic search techniques are known[85, 40, 79] for finding one solution to the N-
Queens problem for each n, no fast method is known for enumerating all solutions for a given n, so at
present there is no recourse but to resort to search.

In the N-Queens problem, situations arise where it is sound to selectively backtrack upon an external

2.2. AN EXAMPLE 13

1@

0 E::!!::

3 o

5 3 i
"""" alternative

6 |

7

8

Figure 2.2: An example demonstrating selective backtracking at an external exhaustion in the 8-
Queens problem. Row 6 is an external exhaustion since all of its alternatives are attacked by
previously placed queens. Since each alternative is still attacked even if the queen in row 5 is
removed, the search can selectively backtrack to row 4, thus skipping over the alternative (5,8) in
row 5.

exhaustion failure. Figure 2.2 shows a scenario which might arise after placing five queens on an 8 x
8 board in positions (1,1), (2,3), (3,5), (4,2), and (5,4). When attempting to place a queen in row 6
we discover that all of the alternatives for that row are attacked by previously placed queens; i.e. it
externally exhausts. Applying the CULPRIT POINTER METHOD to this problem maintains a culprit
pointer for row 6 as follows: It is set to row 1 when position (6,1) is found to be inconsistent, and then
to row 3 when position (6, 2) is found to be inconsistent. When position (6, 3) fails, there is no change in
the culprit pointer since its current value is row 3 and the earliest queen which attacks (6, 3) is in row 2.
The failure of position (6,4) sets the culprit pointer to row 4. As no subsequent alternative increments
the culprit pointer any further, the search can selectively backtrack to row 4 when row 6 exhausts. This
eliminates the consideration of the consistent alternative (5,8) in row 5.

Although the previous scenario illustrates selective backtracking on an external exhaustion failure,
situations can arise where it is sound to backtrack selectively on an internal exhaustion failure as well.
Such a situation is illustrated by the example in figure 2.3.1 In this scenario, six queens have been
placed on an 8 x 8 board at locations (1, 2), (2,6), (3,3), (4,7), (5,4), and (6,1). When trying to place
a queen in row 7 we find that positions (7,1), (7,2), (7,3), (7,4), (7,6), (7,7), and (7,8) are attacked
by queens in rows 1 through 4 even if the queens in rows 5 and 6 are removed. Although position (7,5)
is not under attack, placing a queen at position (7,5) causes row 8 to exhaust. Furthermore, each of
the alternatives for row 8 is still attacked even if the queen in row 6 is removed (but not if the queen in
row 5 is removed). Therefore, there is no need to try the remaining alternative (6, 8) for row 6 as this
will inevitably lead to a failure. When row 7 exhausts, it can selectively backtrack to row 5.

Lets see how the CULPRIT POINTER METHOD applies to the example in figure 2.3. Before placing
any queens in row 7, a choice-point is created with its culprit pointer initialized to 0. When a queen

T highlight this scenario because not all selective backtracking techniques can perform as well as the CULPRIT POINTER
METHOD for internal exhaustion failures such as the one in this scenario.

14 CHAPTER 2. THE CULPRIT POINTER METHOD

1 2 3 4 5 6 7 8

1
2E P
3 ®
4 N |
5 -\
------- o Skip
0 N
7
8

Figure 2.3: An example demonstrating selective backtracking at an internal exhaustion in the 8-
Queens problem. Row 7 is an internal exhaustion since although position (7,5) is not attacked by
previously placed queens, placing a queen at that position will result in row 8 exhausting. Even if
the queen in row 6 is removed, all of the alternatives for row 7, except for (7,5) remain under attack,
and likewise, after placing a queen at (7,5), all of the alternatives for row 8 remain under attack.
Thus the search can selectively backtrack from row 7 to row 5, skipping over the alternative (6, 8)
in row 6.

2.3. COMPLEXITY ANALYSIS 15

is placed at (7,1) the culprit pointer for row 7 is set to 2. When a queen is placed at (7,2) the culprit
pointer for row 7 is unchanged because the newly placed queen is inconsistent with the queen in row 1.
Placing a queen at (7, 3) sets the culprit pointer for row 7 to 3, while placing a queen at (7,4) sets it to 4.
Position (7, 5) is consistent so a new choice-point is created for row 8 and its culprit pointer is initialized
to 0. Placing a queen at (8, 1) sets the culprit pointers for both row 7, as well as row 8, to 5. Placing
queens at either (8,2) or (8,3) does not change either culprit pointer as these locations are attacked by
queens in rows 1 and 3 respectively. Placing a queen at (8,4) does not update the culprit pointer for
row 7 as the queens in rows 7 and 8 are mutually inconsistent. It could potentially update the culprit
pointer for row 8 except that that culprit pointer already points to row 5 which is the value it would be
updated to. Placing a queen at (8, 5) does not update the culprit pointer for row 7 for the same reason as
before. It does however, update the culprit pointer for row 8 to point to row 7. At this point, the culprit
pointer for row 8 cannot be incremented any further. When row 8 exhausts, no selective backtracking
will occur. Alternative (8,6) does not cause the culprit pointer for row 7 to be updated because it is
inconsistent with (7,5). The remaining alternatives for row 8, namely (8,7) and (8, 8), do not increment
the culprit for row 7 as they are inconsistent with rows 3 and 1 respectively, and the culprit pointer
already points to row 5. At this point row 8 exhausts, backtracking to row 7. The remaining alternatives
for row 7, namely (7,6), (7,7), and (7,8), do not increment the culprit pointer for row 7 as they are
attacked by queens in rows 2, 3, and 1 respectively, and the culprit pointer already points to row 5.
Thus when row 7 exhausts, it can selectively backtrack to row 5.

The soundness of the CULPRIT POINTER METHOD crucially depends on performing selective back-
tracks only at failures which are not selectively-nested. If a selective backtrack is attempted at a failure
which is selectively-nested, then a solution can be missed. This is illustrated by the scenario arising dur-
ing the 11-Queens example shown in figure 2.4.2 At this point seven queens have already been placed at
locations (1, 2), (2,5), (3,8), (4,11), (5,1), (6,4), and (7,6). A full trace of how the search proceeds from
this point is given in table 2.1. The table shows the queen positions for rows 1 through 11 as well as the
culprit pointers for rows 8 through 11 after each inconsistent queen placement. The problem illustrated
by this example is that when row 8 exhausts, the search selectively backtracks to row 6, skipping over
the alternative (7,7) for row 7, which would have lead to the solution (2,5,8,11,1,4,7,10,3,9,6). This
happens because, the selective backtrack from row 11 to row 9 prevents the consideration of the partial
solution (2,5,8,11,1,4,6, 10, 3,9) which would have incremented the culprit pointer for row 8 to point to
row 7. Backtracking to row 7, instead of to row 6, when row 8 exhausts, would have lead to a solution.

2.3 Complexity Analysis

In general, the overhead required to maintain and update the culprit pointers is O(n?) additional calls to
CHECK upon each CHECK failure. This is to determine the earliest k£ needed to update the culprit pointer
for each choice-point j. Two simple optimizations are possible. First, if the culprit pointers are updated
in decreasing order for j, then whenever {z;,...,z;} is found to be inconsistent, the updating process
can be terminated. Second, whenever some K; = j — 1 it is not necessary to perform the O(n) calls to
CHECK to find the smallest & in that situation since the culprit pointer is already at its maximum value.
In general, since a culprit pointer can only be increased, it is only necessary to check the consistency of
assignments {z1,..., 2%, zj,...,2;} for & > K;. If calls to CHECK during culprit pointer updating are
limited to such values of k, each time that CHECK returns true a culprit pointer is actually incremented.
Thus, for each CHECK failure, it is only necessary to perform at most j — K; — 1 calls to CHECK to

2When this algorithm was first developed this was not realized. The unsoundness of the algorithm without this check
(i.e. the fact that it does not enforce the first requirement of the soundness theorem) was only discovered four months
later as a result of this example. It is surprising that despite the extensive testing of implementations of this algorithm, it
took so long, and such a nontrivial example, to discover this bug.

16

CHAPTER 2. THE CULPRIT POINTER METHOD

1 2 3 4 5 6 7 8 9 10 11
e

© 00 N O ks W N+

10 O
11E O

Figure 2.4: An scenario arising during the 11-Queens problem demonstrating how the CULPRIT
POINTER METHOD can be unsound if applied to selectively-nested exhaustion failures. A trace of
the backtracking behavior exhibited by this example is given in table 2.1. The solid dots indicate
queens positions at an exhaustions failure for row 8. Selectively backtracking to row 6 at this
exhaustion failure misses the solution indicated by the solid dots in rows 1 through 6 combined with
the outlined dots in rows 7 through 11.

2.3. COMPLEXITY ANALYSIS

Queen Positions Culprit Comments
Pointers
1 2 3 4 5 6 7 8 8 9 10
2 5 8 11 1 4 6 1 5 Row 8’s culprit ptr. becomes 5
2 5 8 11 1 4 6 2 5
2 5 8 11 1 4 6 3 5
2 5 8 11 1 4 6 4 5
2 5 8 11 1 4 6 5 5
2 5 8 11 1 4 6 6 6 Row 8’s culprit ptr. becomes 6
2 5 8 11 1 4 6 7 6
2 5 8 11 1 4 6 8 6
2 5 8 11 1 4 6 9 6
2 5 8 11 1 4 6 10 1 6 5 Row 9’s culprit ptr. becomes 5
2 5 8 11 1 4 6 10 2 6 5
2 5 8 11 1 4 6 10 3 1 6 5 3 Row 10’s culprit ptr. becomes 3
2 5 8 11 1 4 6 10 3 2 6 5 3
2 5 8 11 1 4 6 10 3 3 6 5 7 Row 10’s culprit ptr. becomes 7
2 5 8 11 1 4 6 10 3 4 6 5 7
2 5 8 11 1 4 6 10 3 5 6 5 7
2 5 8 11 1 4 6 10 3 6 6 5 7
2 5 8 11 1 4 6 10 3 7 116 5 7 5 | Row 11’s culprit ptr. becomes 5
2 5 8 11 1 4 6 10 3 7 2|6 5 7 5
2 5 8 11 1 4 6 10 3 7 3|6 5 9 9| Row 10’s and row 11’s culprit
ptr. become 9
2 5 8 11 1 4 6 10 3 7 416 5 9 9
2 5 8 11 1 4 6 10 3 7 5|6 5 9 9
2 5 8 11 1 4 6 10 3 7 6|6 5 9 9
2 5 8 11 1 4 6 100 3 7 7|6 5 9 9
2 5 8 11 1 4 6 100 3 7 8|6 5 9 9
2 5 8 11 1 4 6 10 3 7 9|6 6 9 9 | Row 9’s culprit ptr. becomes 6
2 5 8 11 1 4 6 10 3 7 10|16 7 9 9| Row9’s culprit ptr. becomes 7
2 5 8 11 1 4 6 10 3 7 116 7 9 9| Row 1l exhausts,
selectively backtrack to row 9
2 5 8 11 1 4 6 10 4 6 7
2 5 8 11 1 4 6 10 5 6 7
2 5 8 11 1 4 6 10 6 6 7
2 5 8 11 1 4 6 10 7 6 7
2 5 8 11 1 4 6 10 8 6 7
2 5 8 11 1 4 6 10 9 6 8 Row 9’s culprit ptr. becomes 8
2 5 8 11 1 4 6 10 10 6 8
2 5 8 11 1 4 6 10 11 6 8 Row 9 exhausts,
backtrack to row 8
2 5 8 11 1 4 6 11 6 Row 8 exhausts,
unsound backtrack to row 6

Table 2.1: A trace of the unsound backtracking behavior exhibited during the search of the 11-
Queens example in figure 2.4. When row 11 exhausts, a selective backtrack is taken to row 9. This
selective backtrack prevents encountering a CHECK failure which would update the culprit pointer
for row 8 to point to row 7. Because of this, row 8 selectively backtracks to row 6 when it exhausts

when it can soundly backtrack only to row 7.

18 CHAPTER 2. THE CULPRIT POINTER METHOD

update each K. Additionally, this places an upper bound of j — K; — 1 on the number of times that
CHECK can return true while maintaining K; among all CHECK failures during the lifetime of choice-
point j. Unfortunately, there is no similar bound on the number of times that CHECK can return false
in such situations. Since when K; = j — 1 no calls to CHECK are needed, while CHECK must be called
whenever K; < j — 1, even if the difference j — K; — 1 is small, it may be the case that more calls
to CHECK are expended to prove that a selective backtrack is possible then are actually saved by the
resulting selective backtrack. More work is needed to determine when it is desirable to punt the task of
finding a selective backtrack point for a given choice-point j, by setting K; to j — 1, thus reducing the
effort expended.

In the N-Queens problem, or more generally any binary CSP problem, special structure allows a
greater reduction in the overhead of maintaining the culprit pointers. Since each inconsistency results
from a pairwise interaction of only two queens, and since each call to CHECK checks a new extension to
a previously consistent assignment, CHECK need only check the consistency of the new queen placement
with each of the previously placed queens. As a by-product of this single call to CHECK, which takes O(n)
time, the index k, of the earliest queen, as well as the index [, of the latest queen which attack the new
placement, can be calculated in the same O(n) time. Using these indices it is possible to update all
of the culprit pointers in O(n) time with no further calls to CHECK. Simply update only those culprit
pointers for choice-points j > [to the maximum of the single k just found, and their previous value.

Chapter 3

Applying the Culprit Pointer
Method to Prolog

The previous chapter described the CULPRIT POINTER METHOD, a technique for performing selec-
tive backtracking on non-selectively-nested failures while solving constraint satisfaction problems. This
chapter extends this technique to apply to the execution of PROLOG programs.

3.1 AND/OR-Trees

It is easiest to describe how the CULPRIT POINTER METHOD can be applied to PROLOG by examining
an abstraction of PROLOG called AND/OR-trees.

Definition: An AND/OR-tree T is a (possibly infinite) tree where each vertex is either an
atomic vertex labeled with an atomic constraint, or otherwise it is labeled either A or V.
Non-atomic vertices must have a finite number of daughters, while atomic vertices must
not have any daughters. Furthermore, we impose the following additional restrictions on
AND/OR-trees.
e The root vertex must be labeled A.
e Every daughter of every V-vertex must be labeled A.
e One daughter of every A-vertex, except for the root, must be an atomic vertex.
e The non-atomic daughters of every A-vertex must be labeled V.
e Every V-vertex must have at least one daughter.
In this abstraction, the problem solver is presented with an AND/OR-tree T along with a function
CHECK which defines the meaning of the atomic constraints appearing in 7. CHECK maps sets of

atomic constraints into {true, false}. If CHECK(X) returns true we say that X is consistent; otherwise
we say that X is inconsistent. The CHECK function defines the solutions of an AND/OR-tree.

Definition: An AND-subtree T’ of an AND/OR-tree T is a subtree of T' such that:

e T’ contains the root of T,
e for every vertex u in 7" except for the root of T', T” contains the parent of u, and

e for every V-vertex u in 77, T” contains at most one daughter of u in 7.

19

20 CHAPTER 3. APPLYING THE CULPRIT POINTER METHOD TO PROLOG

An AND-subtree 7" of an AND/OR-tree T is complete if:

o for every A-vertex u in 7', T’ contains all of the daughters of w in T, and

e for every V-vertex u in T, T" contains exactly one daughter of u in T.

The atomic constraint set of a (finite) subtree of an AND/OR-tree is the set of atomic
constraints labeling its atomic vertices. A (finite) subtree of an AND/OR-tree is consistent
if its atomic constraint set is consistent. A solution of an AND/OR-tree T is the atomic
constraint set of some complete consistent AND-subtree of T'.

The goal of a problem solver is to enumerate the solutions of an AND/OR-tree given together with a
CHECK function.

PROLOG programs can be unraveled, with suitable renaming of variables, into (potentially infinite)
AND/OR-trees. The root A-vertex corresponds to a query which is a conjunction of goals. Each V-
vertex corresponds to a goal where the daughters are alternative ways of satisfying that goal. Each
A-vertex besides the root corresponds to an attempt to use some clause to satisfy the goal corre-
sponding to its parent vertex. One daughter of such an A-vertex is labeled with an atomic constraint,
which is a pair of terms (s,t), where s is the goal literal and ¢ is the head literal of the clause be-
ing used to satisfy the goal. The remaining daughters of the A-vertex, if any, correspond to the goals
in the body of the clause. For PROLOG programs, the CHECK function is the unifier, which when
given a set of pairs {(s1,t1),...,(Sn,tn)}, determines whether there is a most general unifier ¢ such
that o(s1) = o(t1),...,0(sn) = o(tn). Various extensions of PrROLOG, like CLP(R)[46, 47, 45], cor-
respond to replacing the unifier with a more comprehensive CHECK function capable of determining
the consistency of atomic constraints which are more expressive than simple unifiability of terms. The
generality of the AND/OR-tree abstraction allows the CULPRIT POINTER METHOD to apply to these
extensions as well.

3.2 Searching AND/OR-Trees Using Depth-First Search

Searching an AND/OR-tree to enumerate its solutions requires a representation for the AND/OR-tree.
Since the AND/OR-trees corresponding to unraveled PROLOG programs may be infinite, we will represent
them intensionally via the following three functions:

RooT() Returns the root vertex of the AND/OR-tree. By definition, this will be an A-vertex.

ANDDAUGHTERSOFOR (u) Returns the set of daughters of the V-vertex u. By definition,
these will all be A-vertices.

ATOMICCONSTRAINT(v) Returns the label of the lone atomic daughter of the A-vertex wv.
This function can not be called on the root vertex.

ORDAUGHTERSOFAND(v) Returns the set of non-atomic daughters of the A-vertex v. By
definition, these will all be V-vertices.

Using these functions it is possible to define a search procedure for finding the solutions to an AND/OR-
tree which operates analogously to the conventional search procedure used by PROLOG. The code for
this procedure is given in figure 3.1. It is this procedure which will be modified to incorporate the
CULPRIT POINTER METHOD.

This search procedure, DEPTH-FIRST SEARCH, operates by starting with a trivial AND-subtree con-
taining only the root, and extending this AND-subtree by the addition of vertices, until it is either
complete or inconsistent. Whenever it extends an AND-subtree with an V-vertex it sets up a choice-
point corresponding to that vertex. As the search is depth-first, the choice-points are maintained on

3.2. SEARCHING AND/OR-TREES USING DEPTH-FIRST SEARCH 21

13
14
15
16
17
18
19
20
21
22
23

procedure DEPTH-FIRST SEARCH

loop :

fail :

1<—0;

C«+ NewVector;

C[0].5+{};

C[0]. F+~ORDAUGHTERSOFAND (ROOT());
C[0].A<{};

if Cli].F={}

then SOLUTION(C([i].S); go to fail fi;
us—choose(Cli].F);

Cli|. F«C[i].F — {u};

1+ 1;

Ci]. A<~ ANDDAUGHTERSOFOR(u);

if Cli|.A={}
then i+i— 1;
if ¢ < 0 then return else go to fail fi fi;
vé—choose(Ci].A);
Ci].S«C[i — 1].S U {ATOMICCONSTRAINT(v) };
Cli|.F«C[i — 1].F;
C[i]. A«Cli]. A — {v};
if ~CHECK(C[i].S)
then go to fail fi;
C[i].F«+C[i].F U ORDAUGHTERSOFAND (v);
go to loop end

Figure 3.1: DEPTH-FIRST SEARCH, a depth-first search procedure for AND/OR-trees which is anal-
ogous to the search methodology typically used for PROLOG.

22 CHAPTER 3. APPLYING THE CULPRIT POINTER METHOD TO PROLOG

a stack C[i]. Each choice-point has three fields, (S, F, A). The S field maintains the set of atomic
constraints contained in the AND-subtree represented by that choice-point. Typical PROLOG implemen-
tations represent S by a combination of the unification environment, and the trail, which is necessary
to restore a previous unification environment. The F' field maintains the set of V-vertices that must
be expanded and included in the AND-subtree for it to become complete. PROLOG implementations
represent F', the list of goals remaining to be satisfied, via a stack of saved program counters pointing
to code which must be executed to satisfy those goals. The A field maintains the set of A-vertices which
are the remaining alternative daughters of the V-vertex corresponding to this choice-point. This field
too, is typically represented by a program counter pointing to the code for the remaining alternatives.

The DEPTH-FIRST SEARCH algorithm is underspecified. Line 9 nondeterministically chooses which
V-vertex to add to the current AND-subtree. In PROLOG this corresponds to the choice of which goal to
pursue next. Line 16 nondeterministically chooses which daughter A-vertex to select from the remaining
alternative daughters of the V-vertex associated with some choice-point. In PROLOG this corresponds to
the choice of which clause to use to attempt to satisfy a goal. The fixed left-to-right pursuit of goals, and
the fixed top-to-bottom pursuit of clauses in PROLOG, can be accomplished by making choices in the
appropriate fixed order. Alternatively, the techniques of search rearrangement[96] can be incorporated
into DEPTH-FIRST SEARCH via more complex choice functions.

3.3 The Culprit Pointer Method For AND/OR-Trees

DEPTH-FIRST SEARCH can be modified to incorporate the CULPRIT POINTER METHOD for performing
selective backtracking on non-selectively-nested failures. The essence of this modification is captured
by a variation on the soundness theorem given for constraint satisfaction problems. Before stating this
soundness theorem, several definitions are needed.

Definition: Let X and Y be two AND-subtrees of the same AND/OR-tree T'. Furthermore,
let d be a set of atomic vertices from T'. The notation X 4+Y denotes the tree which contains
all of the vertices of X augmented with vertices from Y as follows. For every A-vertex u
in X 4+Y, X+Y also contains all of the daughters of v which are contained in Y. For every
V-vertex u in X +Y, if Y contains a daughter of v and X does not, then X 4+ Y contains the
daughter of v in Y. It should be obvious that X + Y must always denote an AND-subtree
of T'. If the vertices of X are a subset of the vertices of Y then we say that Y is an extension
of X. If no A-vertex which is an ancestor of a vertex in d is a sibling of a vertex in X then
we say that X ic compatible with d. Likewise, if no A-vertices in X and Y are siblings then
we say that X is compatible with Y. If X is compatible with d, then X Nd denotes the tree
containing all of the vertices in d as well as all of the ancestors of vertices in d so long as they
are also in X. It should be obvious that X N d must always denote an AND-subtree of T
If X is compatible with Y then X UY denotes the tree which contains all of the vertices of X
combined with all of the vertices of Y. It should be obvious that X UY must always denote
an AND-subtree of T'. Finally, if D is a nonempty set whose members are all sets of atomic
vertices from 7', and X is compatible with each d € D, and every complete extension of X
is an extension of some d € D, then we say that D spans X.

Note that since we require that every V-vertex in an AND/OR-tree to have at least one daughter, every
AND-subtree has a complete extension. If the unraveling of a PROLOG program produces an AND/OR-
tree with leaf V-vertices, these vertices must be removed along with their parent A-vertices. In the
following we take some additional liberty in notation. When we state that a C 3, where either a or
or both are trees, we mean that the vertices in « are a subset of the vertices in 5. Additionally, if X
and Y are trees, the notation X — Y denotes the set of vertices which are in X but not in Y.

3.3. THE CULPRIT POINTER METHOD FOR AND/OR-TREES 23

To prove the soundness theorem we begin with the following lemma.

Lemma 2 If X and Z are two AND-subtrees of an AND/OR-tree T, and d’ is a set of atomic vertices
of T,and XNd' CZ, andd C X+ Z thend C Z

Proof: Cousider an arbitrary member e of d’. Since d’ C X + Z then either e € X or e € Z.
If e € Z the conclusion holds. If e € X then since e € d and X Nd' C Z theneec Z. O

Now we can prove the soundness theorem.

Theorem 3 If T is an AND/OR-tree, and X is an AND-subtree of T, and D is a set whose members
are all sets of atomic vertices of T such that D spans X, and

Y= J(&Xnd)

deD

then D spans 'Y .

Proof: Consider an arbitrary complete extension Z of Y. Such a complete extension must
exist since we require all V-vertices to have at least one daughter. Let Z’ be any arbitrary
complete extension of X+ 7. Likewise, Z' must exist as well. Since Z’ is a complete extension
of X and D spans X there must exist some d’ € D such that d’ C Z’. We will first show that
the same d’ C X + 7 and then that d’ C Z. To show that d’ C X + Z notice that sinceY C Z
it follows that X — Z C X — Y and therefore descendants(X — Z) C descendants(X —Y).
Furthermore, since Z is complete, any vertex added to X +Z to form Z’ must be a descendant
of some vertex in X — Z and therefore of some vertex in X — Y as well. To show that d’ C
X + Z it suffices to show that d’ does not contains vertices which are descendants of X — Y.
Since X Nd’ C Y it follows that X —Y C X — (X Nd’). Thus it suffices to show that any
ancestor of any vertex in d’ that is in X is also in X Nd’. This is true by the definition
of X Nd’'. Having shown that d’ C X + Z we now will show that d’ C Z. Since Y C Z and
foralld e D, X Nd CY it follows that X Nd’ C Z. Therefore, by lemma 2,d C Z. O

This soundness theorem can be used to maintain culprit pointers while searching AND/OR-trees
in a fashion similar to their use in searching constraint satisfaction problems. Each choice-point is
supplemented with two additional fields, a field K containing the culprit pointer for that choice-point,
and a field C' containing the atomic constraint labeling the lone atomic daughter of the current alternative
chosen for the V-vertex represented by that choice-point. At each CHECK failure, the culprit pointer for
each choice-point j is updated to the maximum of its previous value and the smallest k£ such that the
set

{C[0].C,...,Clk].C,C[j].C,...,C[i].C}

is inconsistent. Each such inconsistent set of atomic constraints corresponds to some d € D. When the
choice-point j exhausts, the choice-point stack containing choices-points 0 through j corresponds to the
AND-subtree X. The collection of all inconsistent sets discovered underneath choice-point j, i.e. the
set D, spans X. Furthermore, the initial segment of the choice-point stack containing choice-points 0
through C[j].K corresponds to the AND-subtree Y. Forming X N d corresponds to removing from the
set

{C[0].C,...,Clk].C,C[j].C,...,C[i].C}

the constraints {C[j].C, . .., C[i].C'} leaving only the set {C[0].C, ..., C[k].C'} which can be characterized
by the single number k. Forming

v=|J&Xnad

deD

24 CHAPTER 3. APPLYING THE CULPRIT POINTER METHOD TO PROLOG

corresponds to taking the maximum of all such k found. Thus the culprit pointer for choice-point j
indicates an AND-subtree Y associated with the AND-subtree X corresponding the the choice-point j
itself. By the soundness theorem, since D spans X, D also spans Y. But since every element in D is
inconsistent, and CHECK is monotonic, Y can have no complete consistent extension and thus is it safe
to backtrack to the choice-point indicated by the culprit pointer for choice-point j5 when choice-point j
exhausts.

As when solving constraint satisfaction problems, the CULPRIT POINTER METHOD is sound only
when two conditions are enforced. First, it is safe to backtrack selectively when choice-point j exhausts
only when no solution has been found underneath that choice-point. The is necessary to enforce the
condition that every element of D be inconsistent. Second, it is safe to backtrack selectively when
choice-point j exhausts only when no selective backtrack was taken underneath that choice-point. This
is necessary to enforce the condition that D span X. Therefore, both when a solution is found, and
when a selective backtrack is taken, it is necessary to reset all of the culprit pointers to point to the
immediately preceding choice-point to prevent unsound selective backtracks.

There is one additional difference between the implementation of the CULPRIT POINTER METHOD
for searching constraint satisfaction problems and that for searching AND/OR-trees. When searching
constraint satisfaction problems, the culprit pointer for a choice-point is initialized to —1 when that
choice-point is created. When searching AND/OR-trees however, the culprit pointer for a choice-point
associate with an V-vertex v must be initialized to point to the choice-point associated with the grand-
parent V-vertex of u. If u does not have a grandparent then the culprit pointer is initialized to —1.
The reason for this difference is that all of the inconsistent constraint sets d examined by DEPTH-FIRST
SEARCH all contain descendants of the lone leaf V-vertex in X, the exhausting AND-subtree. Therefore,
the tree X N'd must contain this V-vertex u as well as the choice-point which selects the parent A-vertex
of u as the alternative for the V-vertex which is the grandparent of u.

Figure 3.2 gives the CULPRIT POINTER DEPTH-FIRST SEARCH algorithm, a modification of the
DEPTH-FIRST SEARCH algorithm from figure 3.1 which incorporates the CULPRIT POINTER METHOD.
The code modifications needed to add the CULPRIT POINTER METHOD into DEPTH-FIRST SEARCH
are summarized below. First of all, the F' field of a choice-point is modified to contain a set of pairs
rather than a set of vertices. Each pair comprises an V-vertex along with the index of its grandparent’s
choice-point. This index is used to initialize the culprit pointer for the choice-point which will be created
for that V-vertex. Lines 5 through 7, lines 39 through 40 and line 15 contain the necessary modifications
to maintain pairs rather than vertices in the F' field of choice-points. Lines 9 and 14 initialize the culprit
pointers to the index of their grandparent choice-point when a choice-point is created. Likewise, line 27
initializes the C field of a choice-point upon creation. Line 12 resets the culprit pointers when a solution
is found while line 20 resets the culprit pointers when a selective backtrack takes place. Line 21 actually
performs the selective backtrack. Finally, lines 29 through 37 are responsible for updating the culprit
pointers during CHECK failures. Note that, like DEPTH-FIRST SEARCH, the CULPRIT POINTER DEPTH-
FIRST SEARCH algorithm is underspecified. This demonstrates how the techniques of rearrangement
search[96] are orthogonal to, and can be combined with, the CULPRIT POINTER METHOD.

3.4 Complexity Analysis

The complexity of the CULPRIT POINTER METHOD for searching AND/OR-trees is the same as it is
for constraint satisfaction problems: O(n) space to store the additional fields on the choice-point stack,
and O(n?) time per CHECK failure to update the culprit pointers, where n is the depth of the choice-point
stack. Likewise, it is only necessary to check the consistency of the sets

{clo.c,...,Clk].C,C[j).C,...,C[i].C}

3.4. COMPLEXITY ANALYSIS

1 procedure CULPRIT POINTER DEPTH-FIRST SEARCH
2 1<—0;
3 C<«NewVector;
4 C[0].S+{};
5 C[0].F«+{};
6 for w € ORDAUGHTERSOFAND (RoOT())
7 do C[0].F«CI0].FU{(-1,w)} od,;
8 C[0].A«{};
9 C[0]. K+ —1;
loop :
10 if C[i|.F={}
11 then SoruTioN(C[i].S);
12 for j from 0 to i do C[j].K+j —1 od;
13 go to fail fi;
14 (Cli + 1]. K, u)<choose(C[i].F);
15 Cli|. F«C[i].F — {{Cli + 1].K,u)};
16 i+ 1;
17 Ci]. A<~ ANDDAUGHTERSOFOR (u);
fail :
18 if Cli].A={}
19 then if C[{].K #i—1
20 then for j from 0 to C[i].K do C[j].K+j — 1 od fi;
21 1+Cli]. K
22 if i < 0 then return else go to fail fi fi;
23 v4—choose(C[i]. A);
24 C[i].S+C[i — 1].5 U {AToMICCONSTRAINT(v) };
25 Cli|.F«C[i —1].F
26 C[i]. A«C[i].A - {v},
27 Ci].C<+~ATOMICCONSTRAINT(v);
28 if “CHECK(C]].S)
29 then S'«{};
30 for j from i to 1l by —1
31 do §'« S U{C[i].C}
32 S5,
33 for k from 1 to C[j].K
34 do S"+S5" U{CIk].C} od;
35 while CHECK(S")
36 do C[j]. K«CJj].K + 1,
37 S"«S" U{C|[C[j].K].C} od od;
38 go to fail fi;
39 for w € ORDAUGHTERSOFAND (v)
40 do C[i]. F+C[i].F U {{i,w)} od;
41 go to loop end

Figure 3.2: CULPRIT POINTER DEPTH-FIRST SEARCH, a modification of the DEPTH-FIRST SEARCH
algorithm from figure 3.1 which incorporates the CULPRIT POINTER METHOD.

25

26 CHAPTER 3. APPLYING THE CULPRIT POINTER METHOD TO PROLOG

for k > C[j].K. In the case of PROLOG, where CHECK is the unifier, this is not particularly helpful.
This is because checking the consistency of some set, entails calling the unifier on each element in that
set. This entails work which is equivalent to checking the consistency of each set

{clo.c,...,Clk].C,C[j).C,...,C[i].C}

for each k. This highlights an undesirable property of the CULPRIT POINTER METHOD when applied
to PROLOG: As culprit pointers increase, the effort required to maintain them increases although their
pruning ability decreases. Furthermore, there is a discontinuity: As soon as a culprit pointer is increased
to reach its limit, no further effort need be expended to maintain it. Accordingly, there is great need for
heuristics to determine when to punt and reset a culprit pointer.

Chapter 4

Implementation as an Extended
Warren Abstract Machine

The previous chapter showed how the CULPRIT POINTER METHOD can be used to perform selective
backtracking at failures which are not selectively-nested during PROLOG execution. One of the advan-
tages of this method over other methods for performing selective backtracking is that it lends itself
to efficient implementation. Most efficient implementations of PROLOG are based on the architecture
proposed by Warren[90], commonly known as the Warren Abstract Machine or WAM. This chapter
demonstrates how the WAM architecture can be modified, with relatively little overhead, to incorporate
the CULPRIT POINTER METHOD.

Ideally, this chapter should have presented the necessary modifications in terms of the actual Warren
Abstract Machine. As I did not have access to an existing WAM implementation to modify, and was
more fluent with Lisp, I chose instead to first create a simple compiler which translated PROLOG into
Lisp, and then instead, modify this compiler to incorporate the CULPRIT POINTER METHOD. Rather
than risk making errors while presenting the modifications in terms of the WAM, whose correctness has
not been verified by implementation, I will instead present the LispP implementation which I know has
run successfully.

The strategy for compiling PROLOG into LISP is similar to that used by LM-PRoOLOG[48]. In order
to more strongly support the claim that the CULPRIT POINTER METHOD can be incorporated into a
low overhead WAM implementation, the target LiSP code generated for PROLOG programs attempts
to capture most of the essential features of the WAM architecture. For this reason, the compilation
strategy discussed here will be called the LISPWAM and the associated compiler will be called the
LisPWAM compiler. In order to mimic the WAM architecture as much as possible in the underlying
architecture of the LisSP implementation, it was necessary to sacrifice portability, and make the compiler
generate some highly implementation specific code. The integration of the CULPRIT POINTER METHOD
into the LISPWAM depends not only on style of LisP code generated by the LISPWAM compiler for
PROLOG input, but on the architecture of the underlying LisP implementation as well. In this case, the
underlying LISP architecture is the Symbolics 3600 Genera 7.2 architecture which is henceforth simply
referred to as the Symbolics architecture. While, the details of the compiler discussed in this section are
both particular to the Symbolics architecture as well as somewhat involved and boring, I present them
in full as they typify the kinds of modifications which can be applied to other implementations including
the WAM architecture itself.

One implementation dependent detail is the stack organization. The LISPWAM tries to mimic the
WAM architecture by representing choice-points as frames on the underlying Lisp function call stack.
Lisp functions generated by the PROLOG compiler which produce choice-points (i.e. frames on the

27

28 CHAPTER 4. IMPLEMENTATION AS AN EXTENDED WARREN ABSTRACT MACHINE

function call stack) are called choice-point functions. Three types of choice-point functions are created.
First, a Clause function is generated for each non-fact clause in the PROLOG program, which when called,
produces the choice-point associated with the first goal in that clause. Inside each clause function, a
goal continuation is generated for each subsequent goal which when called, produces a choice-point for
that goal. Finally, the top level query generates a query function which when called, produces a choice-
point for the first goal in the query. Choice-points for subsequent goals in a query are produced by goal
continuations as they are for clause functions.

The implementation of the CULPRIT POINTER METHOD relies on the correspondence of stack frames
to choice-points. In particular, it assumes that every stack frame between the one created be the query
function, and the top of the stack, is a choice-point. No intermediate non-choice-point stack frames can
be introduced and no choice-point stack frames can be elided say by [S-substitution. Furthermore, the
implementation is sensitive to the organization of choice-point stack frames. Certain choice-point slots
are represented as parameters in the choice-point stack frame and must reside at fixed known offsets to be
accessible be routines which maintain the culprit pointers. Great care was taken in the implementation
to enforce these constraints to mimic the operation of the WAM as closely as possible.

For purposes of comparison, the first section of this chapter illustrates how PROLOG programs can
be compiled into Lisp using the LISPWAM architecture, without the additional encumbrances of the
CULPRIT POINTER METHOD. The second section then illuminates the changes to this compiler which
are necessary for supporting the CULPRIT POINTER METHOD.

4.1 Compiling Prolog into Lisp

As the PROLOG compiler is implemented on top of LisP, PROLOG programs will be represented as Lisp S-
expressions in the conventional manner. PROLOG constants will be represented as LiSP atoms. PROLOG
variables will be represented as LiSP symbols whose print-name begins with “?”. PROLOG terms will be
represented as LISP lists where the first element of the list is the functor and the subsequent elements
are the arguments. PROLOG clauses will be represented again as LISP lists where the first element of
the list is the clause head and the remaining elements are the goals which constitute the clause body.

Classifying Variables The WAM stores bindings for variables appearing in a clause in the stack frame
corresponding to the choice-point which invoked that clause. Analogously, the LISPWAM represents the
variables appearing in a clause as parameters to the choice-point function generated for that clause.
These parameters then create slots in the choice-point stack frame created when the clause function is
called. These slots can then store the bindings of the variables as produced via unification.

To mimic the WAM, unification is compiled away as much as possible into simple operations of
parameter passing, type checking, structuring, and destructuring. This requires classifying variables so
that different code can be generated for different types of variable and their use. For a given clause,
the set of all distinct variables appearing in that clause is called its set of clause variables. Variables
appearing in the head are called head variables while variables appearing in the body are called body
variables. Clause variables can be classified into one of three distinct types:

1. Clause variables that appear in the body but not in the head are called logic variables.
2. Clause variables that appear in the head but not in the body are called template variables.
3. Clause variables that appear both in the head and in the body are called argument variables.

Variables that appear in the body of a query are called query variables. The first occurrence in the head
(from left to right) of given head variable is called its primary occurrence. Any further occurrences are
termed secondary occurrences.

4.1. COMPILING PROLOG INTO LISP 29

Compiling Clauses Each non-fact clause in a PROLOG program is compiled into a separate Lisp
function called a clause function. Clauses which are facts do not generate clause functions. The following
is a template for such a clause function:

(defun CLAUSE-; (next-goal (argument variables) &aux (logic variables))
(declare (special *trailx))
(code for initializing logic variables to be unbound)
(let* ((next-goal
(lambda () (declare (sys:downward-function)) (code for last goal)))

(next-goal

(lambda () (declare (sys:downward-function)) (code for third goal)))

(next-goal

(lambda () (declare (sys:downward-function)) (code for second goal))))
(code for first goal)))

The clauses are numbered to given each clause a unique index. The function name, clause-i is generated
to include that index .

Calling a clause function creates a choice-point stack frame with slots for both the argument variables
and the logic variables in the clause. The bindings for the argument variables are passed to the clause
function by the code generated for the goal which selected this clause as an alternative for satisfying the
goal. Code generated for the goal, actually performs the unification of the goal with the clause head and
then passes the result of this unification to the clause function through the argument variables. In order
to correctly pass the results of the unification to the right argument variables in the clause function,
the argument variables must be listed in some canonical order. Note that the template variables, those
clause variables which appear only in the head, need not be allocated slots in the choice-point frame
created by the clause function, as they can never be accessed by its descendants. Furthermore, note that
the logic variables, those clause variables which appear only in the body, are not be passed as parameters
to the clause function, but rather are auxiliary variables initialized within that function, as they cannot
be bound by the unification of the parent goal with the clause head.

In the LiIsPWAM, goal failure and backtracking correspond to a return of a choice-point function
which pops its associated choice-point off the stack. On the other hand, when one goal of a clause or
query succeeds, and a subsequent goal must be pursued, the return mechanism cannot be used since the
choice-point corresponding to the first goal, along with its variable bindings, must be preserved while
executing all subsequent goals. This mechanism is handled by a convention whereby each choice-point
function is passed a continuation as its first argument. This, argument is always called next-goal.
While a choice-point function fails by returning, its succeeds by calling the continuation in next-goal.

The next-goal parameter to the clause-function is the continuation to call when the entire clause,
i.e. its last goal, succeeds. The code generated for the last goal in a clause sits in a lexical context where
that next-goal parameter is visible. The code generated for each goal except the last sits in a lexical
context where a local variable named next-goal is successively bound to a continuation containing the
code for pursuing the next goal (and thus all subsequent goals) of the clause. These continuations for
each goal in a clause other than the first, are called goal continuations. When the code for some goal
must call a clause function to pursue the body of a clause whose head matches the goal, it passes the the
current lexical value of next-goal as the first argument to the clause function so that when the clause
function succeeds, the goal subsequent to the current goal is pursued. When a goal matches a fact, no
clause function is called since there is no body to satisfy. In this situation the code for a goal simply
calls the continuation for the next goal in the clause. If the last goal in a clause matches a fact then
the code generated calls the continuation passed as the next-goal to the clause function. The top level

30 CHAPTER 4. IMPLEMENTATION AS AN EXTENDED WARREN ABSTRACT MACHINE

continuation passed as the next-goal to the query function is called the solution handler which will
typically print the bindings of top-level query variables and backtrack by returning if another solution
is desired.

At the beginning of the function, all of the logic variables are initialized to be unbound. An unbound
variable is represented as a locative which points to itself. Each logic variable is initialized by a copy of
the following code fragment:

(setf (logic variable) (lLoct (logic variable)))

Argument variables receive their value from the goal code generated as part of either a query function
or another clause function, which calls this clause function.

PrOLOG compilers for the Warren Abstract Machine typically perform a number of optimizations
which are not incorporated into the code fragment illustrated here. I mention these optimizations to
stress that they do not interfere with the CULPRIT POINTER METHOD. First, argument and logic vari-
ables are popped off the stack when there are no further alternatives which can reference them. A clever
Lisp compiler can accomplish the same optimization on the code generated by the LISPWAM compiler
by simply generating code which reclaimed space used by function parameters and local variables after
they can no longer be accessed. Second, most PROLOG compilers delay the allocation of storage for a
logic variable in a clause until it is needed by the first goal which references it. A somewhat different
compilation strategy could incorporate this optimization into the LiIsSPWAM. Finally, the WAM can
allocate several logic variables and make them unbound with a single instruction. This optimization
has no counterpart in the LISPWAM but would not interfere with the incorporation of the CULPRIT
POINTER METHOD to be discussed.

The Lisp code generated by the LISPWAM compiler makes use of a number of auxiliary functions.
In most cases, calls to these functions can be open-coded without affecting the correctness of the imple-
mentation. These cases are noted by a comment on the first line of such functions. Sometimes however,
the auxiliary function must access the choice-point stack and relies on the fact that it is called by a
choice-point function and therefore assumes that the most recent choice-point is the stack frame previ-
ous to the current stack frame. This assumption would no longer be true if the call to this auxiliary
function were open-coded. The two functions which exhibit this property are so indicated by a comment
on the their first line. They can however, be modified slightly to revise the assumption so that the most
recent choice-point is the current stack frame rather than the one previous to it, and thus be suitable
for open-coding.

Compiling Goals Each goal in a clause or query can potentially match the head of several clauses.
Each potentially matching head, which isn’t ruled out by a compile-time unification failure, is called an
alternative. For each goal in a clause or query, the following code template is generated and incorporated
into the clause or query function:

4.1. COMPILING PROLOG INTO LISP 31

(let ((trail *trailx))
(sys:with-data-stack
(code for first alternative)
(unwind trail))
(sys:with-data-stack
(code for second alternative)
(unwind trail))

(sys:with-data-stack
(code for next to last alternative)
(unwind trail)))
(code for last alternative)
(values) ;does note return any values

This code fragment tries in succession, each of the alternative clauses for satisfying a given goal. An
alternative fails by simply returning, so that the next alternative is tried in succession. Note that the
code fragment ends with the form (values). This is because goal continuations and clause function are
choice-point functions which return only on failure, when no value is needed.

One of the optimizations performed by the WAM architecture is that storage allocated during an
attempt to satisfy a goal is reclaimed without garbage collection when that goal fails. This is handled in
the LiIsPWAM by allocating all storage on the data stack. Each alternative, except the last, is wrapped
in a sys:with-data-stack. This sets up a data stack frame for allocating any storage created during
the unifications performed during that alternative. This storage allocated in this data stack frame is
automatically reclaimed, without any garbage collection, when the alternative fails and returns, exiting
the data stack frame created by sys:with-data-stack. One disadvantage of this scheme is that there
is no capability for doing garbage collection on the data stack to reclaim inaccessible space prior to
backtracking.

The Trail Before attempting the first alternative, the state of the global variable *trail* is recorded.
This variable maintains a list of all logic variables which have been bound until this point. As mentioned
previously, an unbound logic variable is a Lisp variable bound to a locative pointing to itself. (We will
see later that unification also can produce a cons cell whose slots are logic variables; locatives which also
point to themselves.) During unification, a logic variable is bound by the following code fragment which
records the fact that a variable has been bound on the trail:

(push (logic variable) *trailx)
(setf (location-contents (logic variable)) (value))

When an alternative fails, the trail is unwound to its previous state by unbinding all of the logic variables
bound during the execution of the alternative. This unwinding is accomplished by the following function:

(defun UNWIND (trail) sean be open-coded
(declare (special *trailx))
(loop until (eq *trail* trail)
for x = (pop *trailx)
do (setf (location-contents x) x))
(values)) ;does not return any values

Note that the trail need not be explicitly unwound after the last failure as when the code for the last
alternative returns, the entire fragment and thus the entire clause or query function returns, and the

32 CHAPTER 4. IMPLEMENTATION AS AN EXTENDED WARREN ABSTRACT MACHINE

trail will be unwound by the code for the parent alternative. Also note that the last alternative need not
be wrapped in a sys:with-data-stack for analogous reasons. Additionally, the lexical variable trail,
which stores the state of of the global variable *trail* can be discarded prior to the last alternative.
These three optimizations correspond to some of the tail recursion merging performed by the WAM
architecture on the choice-point stack.

Compiling Alternatives For each alternative clause j which can match a given goal in either a given
clause ¢ or in the query, one of the following two code fragments is generated and incorporated into
either the clause function for clause i or the query function. In the simple case, if the matching clause j
is a fact then the following code fragment is generated:

(tagbody
(code for unification)
(funcall next-goal)
fail)

This first performs the unification between the goal in clause ¢ (or the query) and the head of clause j.
Since clause j is a fact, the alternative proceeds by simply calling the continuation next-goal in the
context of that unification. If however, the matching clause j is not a fact, then the following code
fragment is generated:

(tagbody

(code for unification)

(clause-j next-goal (arguments))
fail)

Here, after the unification is performed, the clause function for clause j is called to pursue the goals
in its body. This clause function is passed the continuation next-goal to be called when all of the
direct and indirect goals in clause j are satisfied. In each case, the fragment commences with code
for performing the unification between the goal in clause i (or the query) and the head of the current
alternative, clause j. This unification code does two things. First, it checks whether the unification is
possible. If not, a branch is taken to the tag fail and the alternative returns. Then, if the alternative
is a non-fact clause, the requisite values of the argument variables of the target clause j are computed
from the values of the body variables of the source clause i. These values are passed onto the clause
function for clause j as arguments.

Code Generated for Unification The code generated for unification consists of a sequence of macro-
instructions. This code makes use of a set of auxiliary registers r1, ..., rn to avoid recomputing common
subexpressions. Each macro-instruction generates a binding environment for some registers. The re-
maining macro-instructions in the unification code for that alternative, as well as the call to either the
target clause function or the goal continuation, are done within this context.

Unifying a Goal Constant with a Head Variable When unifying a goal constant with a head
variable, the macro-instruction

(constant (register) (goal constant))
is generated. This macro-instruction expands into the following code:

(let ((register) ’{goal constant))
(remaining code for alternative))

The contents of (register) are then passed as an argument to the target clause function.

4.1. COMPILING PROLOG INTO LISP 33

Unifying a Goal Variable with a Head Variable When unifying a goal variable with a head
variable, the macro-instruction

(parameter (register) (goal variable))
is generated. This macro-instruction expands into the following code:

(let ((register) (dereference (goal variable)))
(remaining code for alternative))

This code dereferences the goal variable and leaves its value in a register. The contents of this register
are then passed as an argument to the target clause function.
Dereferencing is accomplished by the following function:

(defun DEREFERENCE (x) ;ean be open-coded
(loop for z = x then (location-contents z)
until (or (not (locativep z)) (eq z (location-contents z)))
finally (return z)))

Unifying a Goal Variable with a Head Variable When unifying a goal variable with a head
constant, the macro-instruction sequence

(parameter (register) (goal variable))
(insure-constant (register) (head constant))

is generated. The insure-constant macro-instruction expands into the following code:

(cond ((locativep (register))
(push (register) *trailx)
(setf (location-contents (register)) ’(head constant)))
((not (eql (register) ’{head constant))) (go fail)))

The insure-constant macro-instruction first checks to see whether the register is bound and has the
desired value. If it does then the unification succeeds. If the register is unbound then the register is
trailed and bound to the value and the unification succeeds. If the register is bound to an undesired
value the unification fails.

Unifying a Goal Constant or Cons with a Head Constant or Cons If a goal constant is
unified with a head constant the unification either trivially succeeds or fails. If it fails then that clause is
not considered as an alternative for the goal being compiled. This is a form of static compile time clause
indexing. If it succeeds then no code is generated for this unification. Additionally, the unification of a
goal cons with a head constant or of a goal constant with a head cons always fails at compile time as
well and the clause is not considered as an alternative for the goal being compiled.

When unifying a goal cons with a head cons, two subsequences of unification macro-instructions
are generated—one to unify the corresponding cars and and one to unify the corresponding cdrs. If
either one fails at compile time, the whole unification fails at compile time as well, and the alternative
is not considered. Otherwise, the two unification subsequences are concatenated to form the complete
sequence.

34 CHAPTER 4. IMPLEMENTATION AS AN EXTENDED WARREN ABSTRACT MACHINE

Structuring: Unifying a Goal Cons with a Head Variable When unifying a goal cons with
a head variable, two subsequences are first generated to get the dereferenced values of both the car of
the goal cons, and its cdr, into registers. If the car of the goal cons is a constant then macro-instruction

(constant (car register) (car constant))
is generated. If it is a variable then the macro-instruction
(parameter (car register) (car variable))

is generated. If it is itself is a cons then this procedure is applied recursively. The same procedure
is likewise applied to the cdr of the goal cons. The following macro-instruction is appended to the
concatenation of the two code subsequences thus generated:

(cons (cons register) (car register) (cdr register))
This macro-instruction expands into the following code:

(let ({cons register) (cons-stack (car register) (cdr register)))
(remaining code for alternative))

This conses the two values together inside the frame created by the enclosing sys:with-data-stack so
that the storage generated is reclaimed when the frame is exited upon backtracking.

Remember that PROLOG terms are represented in the LISPWAM as LisP S-expressions which are
in turn composed of LiSP cons cells. During the execution of PROLOG programs on the LISPWAM, the
PRrROLOG terms created by unification are constructed using an alternate representation for cons cells.
Execution time PROLOG cons cells are represented as two element vectors rather than directly as Lisp
cons cells. They are generated by the following function.

(defun CONS-STACK (car cdr) ;ean be open-coded
(let ((cons (sys:make-stack-array 2)))
(setf (aref cons 0) car)
(setf (aref comns 1) cdr)
cons))

This is done for two reasons. First, the Symbolics architecture does not have the ability to allocate
L1sP cons cells on the data stack and thus does not have a cons-stack instruction. It can only allocate
arrays on the data stack using the primitive sys:make-stack-array. Second, the implementation needs
to distinguish between PROLOG cons cells which represent structures and locatives which represent
(possibly unbound) variables. In the Symbolics architecture, the form (locf (cdr x)), unlike locf
of anything else, returns (cdr x) itself, rather than an object whose data type is locative. Although
this correctly behaves like a locative as far as the function location-contents is concerned, it is
indistinguishable from a LISP cons cell and does not behave like a locative as far as locativep is
concerned. In particular, the implementation may need to construct a PROLOG cons cell whose cdr
contained an unbound logic variable. If PROLOG cons cells were directly represented as LISP cons cells,
the code sequence

(setf (cdr x) (locf (cdr x)))

which attempts to make (cdr x) be unbound does not result in (cdr x) being bound to something of
data type locative. A subsequent call to (Locativep (cdr x)) will return nil which makes it impossible
to determine whether (cdr x) is a variable or a PROLOG cons cell. These problems do not arise when
representing PROLOG cons cells as two element vectors.

4.1. COMPILING PROLOG INTO LISP 35

Destructuring: Unifying a Goal Variable with a Head Cons When unifying a goal variable
with a head cons, destructuring must take place. This is accomplished by the following macro-instruction
sequence:

(parameter (cons register) (goal variable))
(insure-cons (cons register))

(car (car register) (cons register))

(cdr (cdr register) (cons register))

The insure-cons macro-instruction checks to see whether its argument is indeed a cons. If it is, then
it succeeds. If it is unbound, then it is trailed and bound to a new PROLOG cons cell, both of whose
slots are bound to unbound logic variables, and the unification succeeds. Otherwise, the unification fails.
This is accomplished by the following code:

(cond ((locativep (cons register))
(let ((z (fresh-cons-stack)))
(setf (location-contents (cons register)) z)
(push (cons register) *trail*)
(setf (cons register) z)))
((not (arrayp (cons register))) (go fail)))

The routine fresh-cons-stack allocates a new PROLOG cons cell on the data stack whose car and cdr
are set to unbound logic variables.

(defun FRESH-CONS-STACK () ;ean be open-coded
(let ((cons (sys:make-stack-array 2)))
(setf (aref cons 0) (locf (aref cons 0)))
(setf (aref cons 1) (locf (aref cons 1)))
cons))

The car macro-instruction places the dereferenced value of the car of the source register into the desti-
nation register by the following code:

(let ({car register) (dereference (car-array (cons register))))
(remaining code for alternative))

Since PROLOG cons cells are represented as two element vectors, the car of a PROLOG cons cell is accessed
via the following function:

(defun CAR-ARRAY (cons) sean be open-coded

(aref cons 0))

Analogous code is generated for the cdr macro-instruction. Note that if the results of either the car or
the cdr macro-instruction are not needed, as would be the case when unifying with a template variable,
then the macro-instruction is eliminated from the unification code sequence.

The General Unifier Finally, when a variable appears more then once in a head, each secondary
occurrence is renamed. At the end of the unification code sequence, the following macro-instruction is
generated for each pair of primary and secondary occurrences of variables:

(insure-equal (primary register) (secondary register))

This macro-instruction calls the unifier on the values in the two registers. If the unification fails, a
branch to the tag fail is taken. Otherwise, the values are unified and the logic variables which become
bound in the process are trailed. The code generated is as follows:

36 CHAPTER 4. IMPLEMENTATION AS AN EXTENDED WARREN ABSTRACT MACHINE

(if (unify (primary register) (secondary register)) (go fail))
where the unifier routine is:

(defun UNIFY (x y)
(declare (special *trailx))
(cond ((eql x y) nil)
((locativep x)
(cond ((locativep y)
(setf (location-contents x) y)
(push x *trailx))
(t (setf (location-contents x) y)
(push x *trailx)))
nil)
((locativep y)
(setf (location-contents y) x)
(push y *trailx)
nil)
((and (arrayp x) (arrayp y))
(or (unify-array (dereference (car-array x))
(dereference (car-array y)))
(unify-array (dereference (cdr-array x))
(dereference (cdr-array y)))))
(t)))

Note that just as in the WAM architecture, the general unifier is rarely called. Most unifications
correspond to simple structuring and destructuring operations which are open-coded. Also note that
other than trailing operations, the general unifier does not allocate any storage. During unification,
storage is allocated only by the cons and insure-cons macro-instructions which are open-coded.

The following example summarizes how unification code is compiled. If the goal term is:

(p (£ 7x a) 7u (g 7w) 72)
and the head term is:
(p (£ b7y) 2v ?2v (b ?v))

then the following macro-instruction sequence is generated:

COMPILING PROLOG INTO LISP

(parameter r1 7x)
(insure-constant r1 b)
(constant r2 a)
(parameter r3 7u)
(constant r4 g)
(parameter r5 7w)
(constant r6 nil)

(cons r7 r5 r6)

(cons r8 r4 r7)
(parameter r9 7z)
(insure-cons r9)

(car r10 r9)
(insure-constant r10 h)
(cdr ri11 r9)
(insure-cons ri1)

(car r12 ri11)

(cdr r13 ri1)
(insure-constant r13 nil)
(insure-equal r3 r8)
(insure-equal r3 ri12)

37

38 CHAPTER 4. IMPLEMENTATION AS AN EXTENDED WARREN ABSTRACT MACHINE

This then expands into the following Lisp code fragment:

(let ((r1 (dereference 7x)))
(cond ((locativep rl)
(push rl1 *trailx)
(setf (location-contents rl) ’b))
((not (eql r1l ’b)) (go fail)))
(let ((r2 ’a))
(let ((r3 (dereference 7u)))
(let ((r4 °g))
(let ((r5 (dereference 7w)))
(let ((r6 ’nil))
(let ((r7 (cons-stack r5 r6)))
(let ((r8 (cons-stack r4 r7)))
(let ((r9 (dereference 7z)))
(cond ((locativep r9)
(let ((z (fresh-cons-stack)))
(setf (location-contents r9) z)
(push r9 *trailx)
(setf r9 z)))
((not (arrayp r9)) (go fail)))
(let ((r10 (car-array r9)))
(cond ((locativep r10)
(push r10 *trailx)
(setf (location-contents r10) ’h))
((not (eql r10 ’h)) (go fail)))
(let ((r11l (cdr-array r9)))
(cond ((locativep ril)
(let ((z (fresh-cons-stack)))
(setf (location-contents ril) z)
(push ri1l *trailx)
(setf ril z)))
((not (arrayp ri1)) (go fail)))
(let ((r12 (car-array ril)))
(let ((r13 (cdr-array ril)))
(cond ((locativep ri3)
(push r13 *trailx)
(setf (location-contents r13) ’nil))
((not (eql r13 ’nil)) (go fail)))
(if (unify r3 r8) (go fail))
(if (unify r3 r12) (go fail))
(call target with r2 and r8))))))))))I)))

4.2. MODIFICATIONS TO SUPPORT THE CULPRIT POINTER METHOD 39

Compiling Queries To use the code thus generated, a query generates and executes the following
code fragment as part of a query function:

(catch :succeed
(let* ((*trail* nil)
(query variables)
(next-goal
(lambda () (declare (sys:downward-function)) (solution handler))))
(declare (special *trailx*))
(code for initializing query variables to be unbound)
(let* ((next-goal (lambda ()
(declare (sys:downward-function))
(code for last goal)))

(next-goal (lambda ()
(declare (sys:downward-function))
(code for third goal)))
(next-goal (lambda ()
(declare (sys:downward-function))
(code for second goal))))
(code for first goal))))

Query variables are initialized the same way as logic variables are in a clause function. Likewise, the
code for each goal is generated in the same way as for clause functions. This code fragment executes
the solution handler form in a context where the query variables are bound to values which satisfy the
query. If another solution is desired, the solution handler backtracks by simply returning. If no further
solution is needed, the solution handler can issue a (throw :succeed (values)).

4.2 Modifications to Support The Culprit Pointer Method

The previous section presented the LISPWAM architecture, a number of LISP code fragments into which
PrOLOG programs can be compiled. This section describes how the LISPWAM can be altered slightly
to incorporate the CULPRIT POINTER METHOD for performing selective backtracking at goal failures
which are not selectively-nested. Similar modifications can be made to the code generated by other
PrOLOG compilers including those based more directly on the Warren Abstract Machine.

Most of the modifications to the LISPWAM are additions which are needed to support the mainte-
nance of culprit pointers. Updating the culprit pointers upon unification failure requires determining the
consistency of various subsets of the unifications which led to that unification failure. (Remember, these
subsets are of the form {C[0].C, ..., C[k].C,C[j].C, ..., C]i].C}.) Each constraint C[l].C' is a unification
of some goal with the head of one of the alternative clauses for satisfying that goal. In the LiIsPWAM
the attempt to satisfy that goal involves calling a choice-point function which sets up a choice-point
on the stack. To support the CULPRIT POINTER METHOD, these choice-points need two additional
slots. These slots are provided by adding two new parameters to each choice-point function. The first
parameter, culprit, is the culprit pointer for that choice-point. It contains the address of the stack
frame corresponding to the choice-point to continue when that choice-point exhausts. The second new
parameter is called unifier. This slot will contain a function which performs the unification between
the goal and the head of the alternative clause currently chosen for that goal. The routine which updates
the culprit pointers will isolate the appropriate subsets of choice-points from the stack, access the uni-

40 CHAPTER 4. IMPLEMENTATION AS AN EXTENDED WARREN ABSTRACT MACHINE

fication routines via the unifier slots of those frames, and call these unification routines in succession
to determine the consistency of the associated unification constraints.

Compiling Unification When compiling code which implements the CULPRIT POINTER METHOD,
there need to be two copies of each code fragment which unifies a goal with a head. The first, or primary,
copy is used during the forward-going component of PROLOG execution as part of its parameter passing
mechanism. This copy is integrated directly into the code generated for different alternatives for goals
within clause functions. For example, in the following fragment:

p(x):-q(x). %clause A
q(y):-r(y). Y%clause B

the code which unifies q(x) with q(y) is built into the clause function for clause A as part of one
alternative for the goal q(x) and the way it calls the clause function for clause B. This code cannot be
used by the routine which updates the culprit pointers because it cannot be accessed independently
of the mechanism by which clause A calls clause B. Therefore, a second copy of this unification code is
made which is packaged up in a lambda expression and stored in the unifier slot of the choice-point
created for the goal q(x). This second unifier is called the auxiliary unifier function.

Why have two copies of the unification code for each goal-head pair? In addition to the added
efficiency of having one copy integrated inline into the clause function, the two copies differ somewhat
from one another. There are two reasons for this difference. First, the primary and auxiliary unifiers
must reference two different copies of the clause variables. The auxiliary unifier is always called in the
context of a failure encountered by the primary unifier. The clause variables used by the primary unifier
contain the current state of the search and cannot be disrupted by the auxiliary unifier which is only
being called to update the culprit pointers. Therefore, each clause function is provided with a duplicate
set of parameters called the auxiliary clause variables. These auxiliary clause variables are given distinct
names by associating with each clause variable 7x, an auxiliary clause variable named goal-?x. The
auxiliary unification code then operates on these auxiliary clause variables instead of the primary clause
variables.

The reason for the second difference is more complicated. In the general case, a unifier must unify two
terms, one a goal, the other a head. The variables in these two terms are disjoint. The goal references
clause variables for the clause which it is part of, while the head references clause variables for the clause
which it is part of. Unifying the goal with the head may create links between these two sets of clause
variables. The code for the primary unifier is designed to be used only as part of the ordinary PrRoLOG
function call process. In such circumstances, the clause variables of the clause which contains the head
term are known to be unbound prior to the unification. Accordingly, the primary unifier is optimized
to handle only this special case and is divided into two components. The first component performs a
one-way consistency check on the values of the variables in the goal term to see whether they can unify
with the head term under the assumption that all of its variables are unbound. The second component
then computes the values for the clause variables of the head clause which result from this unification
and passes on these values as arguments when the clause function for the head clause is called. Thus
the primary unification code only explicitly references the clause variables of the clause containing the
goal term.

The auxiliary unifier cannot allow this optimization as it is called in contexts when the clause variables
of both the goal term and the head term are bound. While the primary unifier explicitly references only
the clause variables of the goal clause, the auxiliary unifier must reference the auxiliary clause variables
of both the goal clause as well as the head clause. The auxiliary clause variables of the head clause are
referenced via names of the form head-7x. The auxiliary unifier corresponding to the unification of a
goal with a head is created in a lexical context where the head auxiliary variables are created and made
unbound. These variables are then passed on to become the goal auxiliary variables of the goal clause.

4.2. MODIFICATIONS TO SUPPORT THE CULPRIT POINTER METHOD 41

Because the auxiliary unifier is more symmetrical than the primary unifier, the sequence of macro
instructions generated for it is different. When unifying a goal variable with a head variable the following
macro-instruction sequence is generated:

(parameter (registerl) (goal variable))
(parameter (register2) (head variable))
(insure-equal (registerl) (register2))

When unifying a goal variable with a head constant, the following macro-instruction sequence is gener-
ated:

(parameter (register) (goal variable))
(insure-constant (register) (head constant))

Symmetrical code is generated when unifying a head constant with a goal variable. When unifying a
goal variable with a head cons, the goal variable is destructured and then code is appended to unify the
car and cdr components.

(parameter (cons register) (goal variable))

(insure-cons (cons register))

(car (car register) (cons register))

(cdr (cdr register) (cons register))

(macro-instructions to unify the car register with the car of the head cons)
(macro-instructions to unify the cdr register with the cdr of the head cons)

Symmetrical code is generated when unifying a goal cons with a head variable. The remaining cases
are the same as for the primary unifier. Note that only one parameter macro-instruction should be
generated for each variable which appears in either the goal term or head term.

The greater symmetry of the auxiliary unifier results in two important differences between the code
generated for the primary and auxiliary unifiers. First, the auxiliary unifier never contains cons and
constant macro-instructions. Unification fragments which would generate these macro-instructions
instead generate the corresponding insure-cons and insure-constant macro-instructions. Second,
there is no need to rename secondary occurrences and generate insure-equal macro-instructions for
them. Instead, many more insure-equal macro-instructions are generated for the case of unifying a
goal variable with a head variable which would not otherwise be generated.

The differences between the code generated for the primary unifier and the auxiliary unifier are
highlighted by the following example which is repeated from before. Unifying the goal term

(p (f 7x a) 7u (g 7w) 7z)
with the head term
(p (£ b7y) 2v ?2v (h ?v))

generates the macro-instruction sequence on the left for the primary unifier and the macro-instruction
sequence on the right for the auxiliary unifier:

42

(parameter r1 7x)

(insure-constant ri1 b)
(constant r2 a)
(parameter r3 7u)
(constant r4 g)
(parameter r5 7w)
(constant r6 nil)

(cons r7 r5 r6)

(cons r8 r4 r7)
(parameter r9 7z)
(insure-cons r9)

(car r10 r9)
(insure-constant r10 h)
(cdr ri11 r9)
(insure-cons ri1)

(car r12 ri1)

(cdr r13 ri1)
(insure-constant r13 nil)

CHAPTER 4. IMPLEMENTATION AS AN EXTENDED WARREN ABSTRACT MACHINE

(parameter r1 goal-7x)

(insure-constant rl b)
(parameter r2 head-7y)
(insure-constant r2 a)
(parameter r3 goal-7u)
(parameter r4 head-7v)
(insure-equal r3 r4)
(insure-cons r4)

(car r5 r4)
(insure-constant r5 g)
(cdr r6 r4)
(insure-cons r6)

(car r7 r6)

(parameter r8 goal-7w)
(insure-equal r8 r7)
(cdr r9 r6)
(insure-constant r9 nil)
(parameter r10 goal-7z)

(insure-cons r10)

(car r11 r10)
(insure-constant ri11 h)
(cdr r12 ri10)
(insure-cons ri12)

(car r13 ri12)
(insure-equal r10 ri3)
(cdr r14 ri12)
(insure-constant r14 nil)

(insure-equal r3 r8)
(insure-equal r3 ri2)

The auxiliary unifier code is more symmetric. Essentially it destructures each term, both in the goal and
the head, and unifies each corresponding subterm separately. The primary unifier on the other hand is
less symmetric. It only checks to see that the goal term conforms to the template required by the head
term. It then computes the values for the head term variables by structuring and destructuring the goal
term.

Keeping track of the *base-framex As the choice-point stack is represented via the underlying
Lisp function call stack which may contain frames other than choice points, several code fragments
which access the choice-point stack need to know its extent. This is done by creating a special vari-
able *base-frame* which is bound to the address of the stack frame corresponding to the query function.
The *base-framex itself is not a choice-point. Every frame subsequent to the *base-frame*, up to the
most recent frame are choice-points, however. Among the code fragments to be discussed, the func-
tions update-culprit-pointers and reset-culprit-pointers, as well as the code generated at the
end of each goal for checking whether the culprit pointer points to the previous choice-point, are
the only three places which rely on the fact that there is a one-to-one correspondence between stack
frames and choice-points. Furthermore, while all other non-choice-point functions discussed so far can
be safely open-coded, the two aforementioned functions assume that they are not open-coded so that
when they are called, the most recent choice-point is not the current stack frame but the one previous
to it. Accordingly, they must be modified to change that assumption before they can be open-coded.

4.2. MODIFICATIONS TO SUPPORT THE CULPRIT POINTER METHOD 43

Compiling Clauses The code generated for clause functions is modified in three ways. First, the
additional parameters culprit and unifier are added to both the clause function as well as to each
goal continuation. Second, additional auxiliary clause variables of the form goal-7x are added as
parameters to the clause function. Finally, a parameter parent is added to the clause function. This
parameter maintains a pointer to the choice-point corresponding to the grandparent V-vertex of each of
the V-vertices corresponding to the goals contained in this clause. As a choice-point is created for each
goal in this clause, the culprit pointer of that choice-point is initialized to the value of parent for that
clause. The resulting code fragment for clause functions is shown below.

(defun CLAUSE-: (next-goal culprit unifier parent
(goal auziliary clause variables) (argument variables)
&aux (logic variables))
(declare (special *trailx))
(code for initializing logic variables to be unbound)
(let* ((next-goal (lambda (culprit unifier)
(declare (sys:downward-function))
(code for last goal)))

(next-goal (lambda (culprit unifier)
(declare (sys:downward-function))
(code for third goal)))
(next-goal (lambda (culprit unifier)
(declare (sys:downward-function))
(code for second goal))))
(code for first goal)))

Compiling Goals The code generated for each goal must be modified in two ways. First, the culprit
pointer must be initialized to point to the parent choice-point before the first alternative for that goal
is considered. Second, code must be added to actually perform the selective backtrack after the last
alternative fails by returning. Without the CULPRIT POINTER METHOD, after the last alternative for
a goal fails by returning, the goal itself fails by returning. When the CULPRIT POINTER METHOD is
added, code must be provided to continue a more deeply nested choice-point which is pointed to by the
culprit pointer. This is done by setting up a catch frame around each alternative in a choice-point
whose tag is the address of that choice-point. The next-alternative of a nested choice-point is continued
by throwing to the catch tag which is the address of that choice-point. This is done by the following
code fragment:

44 CHAPTER 4. IMPLEMENTATION AS AN EXTENDED WARREN ABSTRACT MACHINE

(setf culprit parent)

(let ((trail *trailx))
(sys:with-data-stack
(code for first alternative)
(unwind trail))
(sys:with-data-stack
{code for second alternative)
(unwind trail))

(sys:with-data-stack
(code for next to last alternative)
(unwind trail)))
(code for last alternative)
(if (sys:%pointer-lessp culprit
(sys:frame-previous-frame (sys:%stack-frame-pointer)))
(let ((culprit culprit))
(reset-culprit-pointers)
(throw culprit (values))) ;does not return any values
(values)) ;does not return any values

Note that before issuing the throw to the choice-point pointed to by the culprit pointer, a check is
made to see whether that failure is actually a selective one, i.e. whether it continues a choice-point more
deeply nested than the previous one. If not, the goal continuation simply returns since in the Symbolics
architecture, a LISP return is more efficient than a throw. If it is selective, then the culprit pointers
for all nested choice-points must be reset to point to the next previous choice-point to prevent nested
selective backtracks. This is done by the function reset-culprit-pointers. As this function would
overwrite the culprit pointer for the current stack frame as well, a copy is made to preserve its value as
the target of the throw after reset-culprit-pointers returns. It should be noted that since a selective
backtrack can never happen upon the failure of the first goal in a clause or query, the final if statement
of the above fragment is not included as part of the code fragment generated for the first goal in a clause
or query. In its place a simple (values) form is generated.
The function which resets the culprit pointers is shown below:

(defun RESET-CULPRIT-POINTERS O;can NOT be open-coded
(declare (special *base-framex*))
(loop for frame = (sys:frame-previous-frame (sys:’stack-frame-pointer))
then previous-frame
for previous-frame = (sys:frame-previous-frame frame)
until (eq frame *base-framex)
do (setf (location-contents
(sys:%make-pointer-offset sys:dtp-locative frame 1))
previous-frame))
(values)) ;does not return any values

This function relies on the fact that the parameter culprit is at offset 1 in the stack frame for every
choice-point function. It also must be modified if it is to be open-coded as it assumes that the most
recent choice-point is the stack frame previous to the current stack frame.

Compiling Alternatives The code for generated for alternatives is modified in six ways. First, the
alternative is wrapped in a let to allocate the auxiliary clause variables for the head clause. Second,

4.2. MODIFICATIONS TO SUPPORT THE CULPRIT POINTER METHOD 45

the head auxiliary clause variables are initialized to be unbound. Third, the unifier slot of the current
choice-point is initialized to contain the auxiliary unifier for this choice-point. Fourth, the actual code
for the alternative is wrapped in a catch whose tag is the address of the current choice-point. Throwing
to this tag will continue the next alternative for this choice-point. Fifth, calls to choice-point functions
must be augmented to supply values for the new culprit and unifier parameters, as well as the
parent parameter in the case of calling a clause function. When calling a clause function, the parent
parameter is initialized to (sys:%stack-frame-pointer) which is the choice-point of the grandparent
V-vertex of this newly created choice-point. When calling both clause functions and goal continuations,
the culprit pointer and unifier slots are initialized to a dummy value of nil. The culprit pointer
will be initialized to the value of parent which is lexically visible for that choice-point function, before
the first alternative for that goal is considered. The unifier slot will be filled in later by the code
generated for each alternative of that goal. Finally, a call to the routine update-culprit-pointers
must be generated for the case when the primary unifier fails. The code generated for a fact alternative
is given below:

(let (head auziliary clause variables)
(setf unifier (lambda ()
(declare (sys:downward-function))
(block nil
(tagbody
(auziliary unifier code)
(return t)
fail
(return nil)))))
(code for initializing head auziliary clause variables to be unbound)
(catch (sys:%stack-frame-pointer)
(tagbody
(primary unifier code)
(funcall next-goal nil nil)
(go next)
fail
(update-culprit-pointers)
next)))

The code generated for a non-fact alternative has one additional change. The head auxiliary clause
variables must be passed on to the head clause function to become its goal auxiliary clause variables.
The resulting code fragment is shown below:

46 CHAPTER 4. IMPLEMENTATION AS AN EXTENDED WARREN ABSTRACT MACHINE

(let (head auziliary clause variables)
(setf unifier (lambda ()
(declare (sys:downward-function))
(block nil
(tagbody
(auziliary unifier code)
(return t)
fail
(return nil)))))
(code for initializing head auziliary clause variables to be unbound)
(catch (sys:%stack-frame-pointer)
(tagbody
(primary unifier code)
(clause-j
next-goal nil nil (sys:’stack-frame-pointer)
(head auziliary clause variables) (arguments))
(go next)
fail
(update-culprit-pointers)
next)))

The culprit pointers are updated by the following function:

4.2. MODIFICATIONS TO SUPPORT THE CULPRIT POINTER METHOD 47

(defun UPDATE-CULPRIT-POINTERS () ;can NOT be open-coded
(declare (special *trailx *base-framex))
(let ((trail *trailx))
(loop for j-frame = (sys:frame-previous-frame (sys:Jstack-frame-pointer))
then j-previous-frame
for j-previous-frame = (sys:frame-previous-frame j-frame)
while (funcall (location-contents (sys:’%make-pointer-offset
sys:dtp-locative j-frame 2)))
for trail = *trailx
for culprit-location =
(sys:’make-pointer-offset sys:dtp-locative j-frame 1)
for culprit = (location-contents culprit-location)
when (sys:%pointer-lessp culprit j-previous-frame)
do (loop for k-previous-frame = *base-frame* then k-frame
for k-frame =
(loop for 1-frame = (sys:%stack-frame-pointer)
then l-previous-frame
for l-previous-frame =
(sys:frame-previous-frame 1-frame)
until (eq l-previous-frame k-previous-frame)
finally (return l-frame))
while (funcall (location-contents
(sys:%make-pointer-offset
sys:dtp-locative k-frame 2)))
finally (if (sys:%pointer-lessp culprit k-frame)
(setf (location-contents culprit-location)
k-frame)))
(unwind trail))
(unwind trail))
(values)) ;does not return any values

This function implements lines 29 through 37 of figure 3.2. Checking the consistency of a set of unification
constraints corresponding to a set of choice-points is done by calling the unifiers of each choice-point,
in sequence, and seeing if one returns nil. Between each consistency check, the trail is unwound to undo
the bindings created by the unifications done during that check.

This function relies on the fact the the culprit pointer for each choice-point is located at offset 1
of the stack frame, and that the unifier for each choice-point is located at offset 2 of the stack frame.
Additionally, it assumes that the most recent choice-point is the stack frame previous to the current
stack frame; it must be modified to be open-coded.

Compiling Queries The code generated for queries must be modified as well. First, the special
variable *base-frame* must be initialized to the address of the stack frame of the query. This special
variable is used by the routines update-culprit-pointers and reset-culprit-pointers to determine
the extent of the underlying Lisp funcall call stack which constitutes the choice-point stack. Second,
like all frames which can be the target of some selective backtracking throw, a catch frame must be
set up for this base frame. Third, the additional parameters culprit, unifier and parent must be
added to the query function. Likewise, the parameters culprit and unifier must be added to its
embedded goal continuations as well. The parent parameter for the query function is initialized to
point to the *base-framex*. Its culprit pointer and unifier slot are initialize to a dummy value

48 CHAPTER 4. IMPLEMENTATION AS AN EXTENDED WARREN ABSTRACT MACHINE

of nil. The culprit pointer will be initialized to the parent value when the choice-point function is
called. The unifier slot will be filled in later by each alternative of the first goal. Note that although
the lambda expression corresponding to the query function is immediately funcalled, it is not possible
to [-reduce this expression because doing so would eliminate the stack frame for the query function.
Fourth, auxiliary query variables of the form goal-7x are allocated and initialized to be unbound in
addition to the normal query variables. Finally, a call to reset-culprit-pointers is inserted after the
solution handler to maintain soundness. The resulting code generated for query functions is illustrated
by the following code fragment:

(catch :succeed
(let ((*base-framex (sys:%stack-frame-pointer)))
(declare (special *base-framex))
(catch (sys:%stack-frame-pointer)
(funcall
(lambda (culprit unifier parent)
(declare (sys:downward-function))
(let ((xtrail* nil)
(query variables)
(auziliary query variables)
(next-goal (lambda (culprit unifier)
(declare (sys:downward-function))
(solution handler)
(reset-culprit-pointers))))
(declare (special *trailx))
(code for initializing query variables to be unbound)
(code for initializing auxiliary query variables to be unbound)
(let* ((next-goal (lambda (culprit unifier)
(declare (sys:downward-function))
(code for last goal)))

(next-goal (lambda (culprit unifier)
(declare (sys:downward-function))
(code for third goal)))
(next-goal (lambda (culprit unifier)
(declare (sys:downward-function))
(code for second goal))))
(code for first goal))))
nil
nil
*xbase-framex)))

4.3 Additional Details of the Compilation Process

4.3.1 Tail Recursion

The WAM normally includes an optimization which is akin to tail merging done for tail recursive
Lisp code. When the last alternative for some goal is called, that call is deterministic. The choice-
point for that goal is no longer needed and may be popped off the choice-point stack before the final
alternative is called. The code generated by the LISPWAM has the property that if the underlying Lisp

4.3. ADDITIONAL DETAILS OF THE COMPILATION PROCESS 49

compiler performs tail merging then the PROLOG code inherits this as tail merging of final alternatives
for choice-points. The ability to perform this tail merging disappears when the LiIsPWAM is extended
to incorporate the CULPRIT POINTER METHOD because the call to the final alternative is no longer the
last fragment executed for a goal. Code is inserted after the last alternative of every goal except the
first goal in each clause or query, to be called when it returns. This code is what actually performs the
selective backtrack if it is possible.

This limitation is not just a property of the LIsPWAM. No implementation of the CULPRIT POINTER
METHOD can incorporate tail merging on the choice-point stack. This is because even when the last
alternative for a goal is being pursued, the culprit pointer and unifier slots for the choice-point created
for that goal must be retained. Even if the culprit pointer already points to the previous choice-point on
the stack and thus rules out any selective backtracking, the unifier slot is still needed to allows updating
nested culprit pointers. In fact, the particular implementation of the CULPRIT POINTER METHOD
discussed in this chapter will fail if it is run on a LiSP implementation which supports tail merging. Such
a LI1SP implementation will try to perform tail merging on the last alternative of the first goal in a clause
or query, which has no subsequent code for performing selective backtracks. This tail merging will elide
the stack frame, and its associated unifier slot, wreaking havoc with subsequent attempts to update
the culprit pointers. Thus the CULPRIT POINTER METHOD is not suitable for applications where tail
merging is tantamount to successful execution.

4.3.2 Clause Indexing

Most PROLOG implementations perform clause indexing whereby unifications are not attempted for
alternatives which are known to fail given the current variable bindings. A straightforward combination
of clause indexing with the CULPRIT POINTER METHOD can result in unsound backtracking behavior
as illustrated by the following example:

7- gen(X) ,gen(Y) ,test(Y,X).
gen(a) .

gen(b) .

gen(c) .

gen(d) .

gen(e) .

test(a,b).

test(b,a).

When X and Y are both bound to a, clause indexing implies that only the first alternative, test(a,b),
is tried for the goal test(Y,X). When that alternative fails, the culprit pointer for test(Y,X) is set
to point to the goal gen(X) because the constraint set

{{gen(X), gen(a)), (test(Y,X), test(a, b))}

is inconsistent. The goal test(Y,X) now exhausts, since it has no further alternatives, and the search
backtracks selectively to gen(X) skipping over gen(Y). In doing so, the solution X=a,Y=b is missed.
This happens because clause indexing eliminated not only the consideration of the second alternative
for test (Y,X) but the updating of the culprit pointers that would have occurred upon that unification
failure as well. In this case without clause indexing, the second unification failure would have updated
the culprit pointer for test(Y,X) to point to gen(Y) and no solution would have been missed.

One might try to develop a mechanism to determine the choice-point which caused the pruning of
alternatives by clause indexing, and update the culprit pointer to point to this choice-point at the
earliest. For example, in the above example, the alternative test(b,a) was pruned by clause indexing,

50 CHAPTER 4. IMPLEMENTATION AS AN EXTENDED WARREN ABSTRACT MACHINE

because Y was bound to a. As this binding was created by the current alternative for the choice-point
corresponding to the goal gen(Y), the culprit pointer for the goal test(Y,X) should be updated to
point to this goal. Although this will probably always lead to sound backtracking behavior, it can reduce
the effectiveness of the CULPRIT POINTER METHOD. Consider the following example:

7- gen(X1) ,gen(X2) ,gen(X3),gen(X4) ,gen(Y) ,test(Y,X1,X2,X3,X4) .
gen(a) .
gen(b) .
gen(c) .
gen(d) .
gen(e) .
test(a,b,b,b,b). % alternative
test(b,b,_,_,_). % alternative
test(b,_,b,_,_). % alternative
test(b,_,_,b,_). % alternative
test(b,_,_,_,b). % alternative
test(b,_,_,_,_). % alternative

o O WN -

Here, when Y=a, alternatives two through six are pruned by clause indexing. The safe clause indexing
method discussed above would require updating the culprit pointer for test(Y,X1,X2,X3,X4) to point
to gen(Y). If alternative six was not present, the above method would still backtrack only to gen(Y),
even though it would be sound to backtrack to gen(X4). The full CULPRIT POINTER METHOD would
detect this. Furthermore, if alternatives five and six were not present, it would be sound to backtrack
to gen(X3). Likewise, deleting alternatives four through six, licenses backtracking to gen(X2) while
deleting alternatives three through six, licenses backtracking to gen(X1). Therefore, there seems to be
no way to perform as well as the full CULPRIT POINTER METHOD without doing the full updating of
culprit pointers on every unification failure.

To counterbalance the loss of clause indexing, the LiISPWAM incorporates a static compile-time
form of clause indexing, which although is not as powerful as full dynamic run-time clause indexing, is
nonetheless compatible with the CULPRIT POINTER METHOD. The conventional WAM groups together
clauses whose heads have the same functor and number of arguments, and compiles them into one
function. Any goal term with this same functor and number of arguments calls this function, even if it
contains alternatives which could not possibly unify with this particular goal. The LiISPWAM instead
compiles a separate function for each clause rather than groups of related clauses. A goal then compiles
into a non-deterministic call to only those clauses where the unification is not ruled out at compile time.
This is sound in the context of the CULPRIT POINTER METHOD because no culprit pointers would
ever be updated at a unification failure where that single unification was inconsistent independent of
context. This technique has the disadvantage that code generated to handle the non-determinism of
choosing alternative clauses has moved from the target of the call, to the source of the call, and results
in many more code variants being generated. On the other hand, this technique has an additional side
benefit that in some cases the amount of unifier code which needs to be generated can be reduced. For
example, when compiling the following code fragment:

Lp(LE(Y,Z)), L
p(U,E(V, W) :-. ..

in the conventional WAM architecture, the calling goal must create the structure f(Y,Z) which will
immediately be destructured by the target clause. Because in the LISPWAM, the unification code is
moved from the target to the source of a call, that code can be customized to generate code which is
particular to each unification which can eliminate needless structuring and destructuring.

4.3. ADDITIONAL DETAILS OF THE COMPILATION PROCESS 51

4.3.3 Is

The is builtin predicate poses special problems for the CULPRIT POINTER METHOD. To deal with
the is construct we assume that an is-goal creates its own choice-point which has only a single al-
ternative and whose unifier slot contains a new type of atomic constraint. In order to update the
culprit pointers, the CHECK function must be able to determine the consistency of sets containing
two types of atomic constraints: conventional unification constraints between two terms, and an is-
constraint between a variable and an expression which is evaluated relative to some variable bindings.
The following example demonstrates some of the problems with this approach:

7- gen(X) ,gen(Y),gen(Z),Z is X+Y.
gen(1).
gen(2).
gen(3).
gen(4).
gen(5) .

An is-constraint of the form x is e can fail for one of two reasons. Either x is bound to a value
which does not unify with the value produced by e, or some variable referenced by e is unbound which
prevents e from being evaluated. We will call the first failure type an unbound is-failure and the later
failure type a bound is-failure. In the above example, the goal Z is X+Y causes a bound is-failure.
When attempting to update the culprit pointer for this goal, the consistency of the following subsets
of atomic constraints must be checked in order:

{{(Z is X+ Y)}

{{gen(X),gen(1)),(Z is X+ 1Y)}

{(gen(X), gen(1)), (gen(Y), gen(1)),(Z is X+ 1Y)}

{{gen(X), gen(1)), (gen(Y), gen(1)), (gen(Z), gen(1)), (Z is X+ 1Y)}

The problem here is that although the original failure is a bound is-failure, the first two subsets above
are inconsistent due to unbound is-failures. If these inconsistencies were allowed to stop the process
of updating the culprit pointer for the goal Z is X+Y, that culprit pointer would be left at zero
causing the search to terminate unsoundly upon the exhaustion of the is-goal, thus missing the solu-
tion X=1,Y=1,Z=2.

The solution is to ignore unbound is-failures while updating the culprit pointers. As the following
example shows, this alone is not enough to alleviate the problem.

7- gen(X) ,gen(Y),gen(Z) ,gen(W) ,Z is X+Y.
gen(1).
gen(2).
gen(3).
gen(4).
gen(5) .

Updating the culprit pointers upon the failure of the is-goal will require checking the consistency of
various subsets of the following atomic constraint set:

{{gen(x), gen(1)), (gen(¥), gen(1)), (gen(2), gen(1)), (Z is X+ 1Y)}

This is normally done incrementally by starting with the empty set and adding in atomic constraints
one by one until the consistency of the entire set is checked. The code fragments given in section 4.2,
perform this consistency check by first adding in the constraint Z is X+Y and then adding in the atomic

52 CHAPTER 4. IMPLEMENTATION AS AN EXTENDED WARREN ABSTRACT MACHINE

constraints for X, Y, and Z in that order. In general, when checking the consistency of subsets of the
form

{clo.c,...,Clk].C,C[j).C,...,C[i].C}

the constraints are added in from ¢ down to j and then from 0 up to k. This is done so that the
work done to add in the atomic constraint C[4].C in order to update the culprit pointer for choice-
point j can be reused while updating culprit pointers for choice-points prior to j. The problem that
is illustrated by the above example is that when adding in the atomic constraint (Z is X+7Y), an
unbound is-failure results which is ignored. Then the remaining atomic constraints are added in after
ignoring this is-constraint and the atomic constraint set is determined to be consistent when it should
be inconsistent. This problem can be avoided by always adding in atomic constraints from least recent to
most recent when checking the consistency of an atomic constraint set. This however, is in conflict with
the aforementioned optimization and requires more work running the CHECK function while updating
the culprit pointers upon every unification failure.

One final note about is-constraints. The CULPRIT POINTER METHOD is sound only for bound
is-failures. When an unbound is-failure occurs, only a non-selective backtrack to the most recent
choice-point should occur. This is because is-constraints violate the monotonicity requirement for the
CHECK function. A given atomic constraint set may be inconsistent because of an unbound is-failure
and yet a superset of that set may be consistent. Even though the previous choice-point might be
for a goal which appears not to bind the variables which cause the unbound is-failure, they may be
linked, however indirectly, to other variables via remaining alternatives for the previous choice-point and
eventually become bound and lead to a solution.

It should be pointed out that the ideas in this subsection are preliminary and have not been tested
via implementation.

Chapter 5

Experimental Results

In order to assess the value of the CULPRIT POINTER METHOD, the implementation presented in the
previous chapter was tested on two standard benchmarks often used to test other intelligent backtracking
schemes presented in the literature. These two benchmarks are the N-Queens problem and the map
coloring problem given by Bruynooghe and Pereira[8].

A problem arises when attempting to do a more thorough comparison between the different published
schemes. A number of the published benchmarks, namely the circuit design program used by Kumar and
Lin[51], and the N-Queens program used by Bruynooghe and Pereira, are not written in pure PROLOG.
Because the implementation of PROLOG incorporating the CULPRIT POINTER METHOD discussed in
chapter 4 currently does not include cut, arithmetic, and other extra-logical primitives, benchmarks
such as these can not be run as written. As the circuit design program is heavily based on extra-logical
primitives, no attempt was made to modify and perform the benchmark. For the N-Queens program,
however, a modified version was written in pure PROLOG which uses Peano arithmetic to perform
consistency checks. The results of benchmarking this version are given in this chapter. These results
are misleading however, since performing Peano arithmetic entails a significant increase in the number
of unification failures with the associated increase in time spent updating the culprit pointers on each
such failure. Accordingly, the N-Queens problem was benchmarked a second time, being encoded as a
constraint satisfaction problem being solved by a dedicated program which incorporates the CULPRIT
POINTER METHOD. The remainder of this chapter discusses the three benchmarks performed: the
map coloring example, the PROLOG N-Queens example, and the N-Queens problem run as a dedicated
constraint satisfaction problem.

5.1 The Map Coloring Example

Bruynooghe and Pereira[8] present the problem of finding a 4-coloring of a particular graph which has
13 vertices and 31 edges. They give two PROLOG programs for the task which differ from each other
only in the order of the goals in one clause. Figure 5.1 gives the PROLOG code for both the “good” and
“bad” ordering.

Both the “good” ordering and the “bad” ordering were run twice; first to compute just a single
solution, and then to compute all 1176 solutions. Each of these four runs were performed both with con-
ventional chronological backtracking as well as with selective backtracking as performed by the CULPRIT
POINTER METHOD. The results of these runs are given in table 5.1. The upper half of this table gives
the data for chronological backtracking while the lower half gives the corresponding data for selective
backtracking. The statistics gathered during selective backtracking distinguish between unifications per-

593

CHAPTER 5. EXPERIMENTAL RESULTS

?-good_goal(R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13).
?-bad_goal(R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13) .
good_goal(R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13) : -
next (R1,R13) ,next (R1,R2) ,next (R2,R13) ,next (R2,R4),
next (R4,R10) ,next (R6,R10) ,next (R8,R13) ,next (R6,R13),
next (R2,R3) ,next (R3,R4) ,next (R3,R13) ,next (R3,R5),

next (R5,R6) ,next (R5,R13) ,next (R4,R5) ,next (R5,R10),
next (R1,R7) ,next (R7,R13) ,next (R2,R7) ,next (R4,R7),

next (R7,R8) ,next (R4,R9) ,next (R9,R10) ,next (R8,R9),

next (R9,R13) ,next (R6,R11) ,next(R10,R11) ,next(R11,R13),
next (R9,R12) ,next (R11,R12) ,next (R12,R13).
bad_goal(R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13) : -
next (R1,R2) ,next (R2,R3) ,next (R3,R4) ,next (R4,R5),

next (R5,R6) ,next (R6,R11) ,next (R11,R12) ,next (R12,R13),
next (R9,R13) ,next (R9,R10) ,next (R4,R10) ,next (R4,R7),
next (R7,R8) ,next (R2,R7) ,next (R6,R10) ,next (R2,R13),
next (R6,R13) ,next (R2,R4) ,next (R8,R13) ,next (R4,R9),
next (R3,R5) ,next (R8,R9) ,next (R1,R13) ,next (R3,R13),
next (R5,R13) ,next (R7,R13) ,next(R11,R13) ,next(R9,R12),
next (R5,R10) ,next (R10,R11) ,next (R1,R7).

next (blue,yellow) .

next (blue,red).

next (blue,green).

next (yellow,blue) .

next(yellow,red).

next (yellow,green) .

next (red,blue).

next(red,yellow).

next (red,green) .

next (green,blue).

next (green,yellow) .

next (green,red) .

Figure 5.1: PROLOG code for the map coloring benchmark.

5.2. THE N-QUEENS EXAMPLE 95

good ordering bad ordering

first solution | all 1176 solutions | first solution | all 1176 solutions
goal failures 12 48,746 89,218 7,282,310
unifications 320 584,941 1,070765 87,387,709
time (seconds) 0.2 51.5 93.5 7419.0
goal failures 9 37,610 10 76,556
selective goal failures 3 7,704 9 36,454
unifications 300 520,837 638 2,564,738
auxiliary unifications 2,831 4,374,103 10,552 38,361,881
time (seconds) 3.4 2,283.0 9.7 21,774.9
selective goals failures 33% 20% 90% 48%
decrease in # goal failures 25% 23% 99% 99%
decrease in # unifications -878% -737% 99% 53%
decrease in time -1,600% -4,333% 90% -194%

Table 5.1: Statistics gathered when running the map coloring benchmark. The upper portion of the
table is for chronological backtracking while the lower portion is for selective backtracking using the
CULPRIT POINTER METHOD.

formed as part of normal execution (“# unifications”) and unifications performed in order to update the
culprit pointers (“# auxiliary unifications”). While the CULPRIT POINTER METHOD offers a consistent
reduction in both the number of goal failures as well as the number of primary unifications, only for the
bad ordering is there a decrease in the total number of unifications performed. Even then, there is a
reduction in running time only when computing the first solution for the bad ordering. For the remainder
of the benchmarks, the CULPRIT POINTER METHOD performs worse than chronological backtracking.

5.2 The N-Queens Example

Because the PROLOG implementation discussed in chapter 4 does not support cut, arithmetic, and other
extra-logical primitives, the standard N-Queens program which is often used to benchmark intelligent
backtracking implementations was rewritten in pure PROLOG. The code for this benchmark is given in
figure 5.2.

This code was run to find all solutions for N =1, ..., 6 both with and without the CULPRIT POINTER
METHOD. The results of these runs are given in table 5.2. Like before, the upper half of the table gives
the results for chronological backtracking, while the lower half gives the results for selective backtracking.
Again, while the CULPRIT POINTER METHOD affords a consistent decrease in the number of goal failures,
the cost of updating the culprit pointers on unification failure is prohibitive, both in terms of the number
of auxiliary unifications as well as running time.

5.3 The N-Queens Example as a Constraint Satisfaction Prob-
lem

The running times for the CULPRIT POINTER METHOD on the PROLOG N-Queens example are skewed
because using Peano arithmetic, instead of some builtin form of arithmetic, causes a significant increase
in the number of unification failures. These unification failures require additional calls to the unifier to
update the culprit pointers even though such updating can not contribute to any selective backtracking.

CHAPTER 5. EXPERIMENTAL RESULTS

listBelow(0, []).

listBelow(s(N),[s(N)|L]):-1listBelow(N,L).

append([],Y,Y).

append ([A|X],Y, [A]|Z]):-append(X,Y,Z).

permute([1, [1).

permute ([A|X],Y) :-permute(X,Z) ,append(U,V,Z) ,append (U, [A|V],Y).
sum(X,0,X) .

sum(X,s(Y),s(Z)) :-sum(X,Y,Z).

diff(X,Y,Z) :-sum(Y,Z,X).

check2(R1,C1,R2,C2):-diff (R1,R2,D),diff(C1,C2,E),diff(D,E,s(F)).
check2(R1,C1,R2,C2):-diff (R1,R2,D),diff(C1,C2,E),diff (E,D,s(F)).
check2(R1,C1,R2,C2):-diff(R1,R2,D),diff(C2,C1,E),diff(D,E,s(F)).
check2(R1,C1,R2,C2):-diff(R1,R2,D),diff(C2,C1,E),diff (E,D,s(F)).
check1(R1,C1,0,[1).
check1(R1,C1,s(R2),[C2|Cs]):-check2(R1,C1,s(R2),C2),checkl(R1,C1,R2,Cs).
check (0, [1).

check(s(N), [C1|Cs]) :—checkl(s(N),C1,N,Cs),check(N,Cs).
nQueens(N,S) :-1listBelow(N,L) ,permute(L,S),check(N,S).

Figure 5.2: PROLOG code for the N-Queens benchmark.

N 1 2 3 4 5 6
goal failures 10 92 480 3,268 23,978 195,178
unifications 19 167 879 6,039 44,675 366,275
time (seconds) 0.779 | 0.422 0.912 3.830 26.931 235.711
goal failures 10 68 341 2,281 16,471 132,126
selective goal failures 0 8 36 208 1,340 9,746
unifications 19 143 733 5,017 36,769 298,833
4 auxiliary unifications 34 | 1,364 | 14,044 | 168,936 | 1,846,561 | 20,368,068
time (seconds) 0.512 | 2.401 | 22.991 | 288.219 | 3,372.749 | 39,919.563
selective goals failures 0% | 12% 11% 9% 8% ™%
decrease in # goal failures 0% | 26% 29% 30% 31% 32%

Table 5.2: Statistics gathered when running the PROLOG version of the N-Queens benchmark. The
upper portion is for chronological backtracking while the lower portion is for selective backtracking
using the CULPRIT POINTER METHOD.

5.3. THE N-QUEENS EXAMPLE AS A CONSTRAINT SATISFACTION PROBLEM o7

N 7 8 9 10 11 12 13
Z solutions 10 92 | 352 724 2,680 14,200 73,712
4 exhaustions 512 | 1,965 | 8,042 | 34,815 | 164,246 | 841,989 | 4,601,178
4 calls to check 3,584 | 15,720 | 72,378 | 348,150 | 1,806,706 | 10,103,868 | 59,815,314
time (seconds) 0.426 1.620 7.857 | 41.881 237.750 1,430.163 | 9,127.861
 exhaustions 410 | 1557 | 6.379 | 26,107 | 119,503 | 601,138 | 3,238,681
selective exhaustions 63 249 1,044 5,110 24,392 124,458 676,754
4 calls to check 3,129 | 13,593 | 62,957 | 293,459 | 1,482,732 | 8,162,135 | 47,762,689
time (seconds) 0.696 3.012 | 15.885 80.363 455.313 2,737.494 | 17,549.289
selective exhaustions 15% 16% 16% 20% 20% 20% 21%
decr. in # exhaustions 20% 21% 21% 25% 27% 29% 30%
decr. in # calls to check | 13% 14% 13% 16% 18% 19% 20%

Table 5.3: Statistics gathered when running the CSP version of the N-Queens benchmark. The
upper portion of the table is for chronological backtracking while the lower portion of the table is
for selective backtracking using the CULPRIT POINTER METHOD.

Running a version of the N-Queens benchmark on an implementation of PROLOG which supported builtin
arithmetic should afford less catastrophic results when the CULPRIT POINTER METHOD is added. In an
attempt to quantify how such a hypothetical system would perform, the N-Queens problem was encoded
as a constraint satisfaction problem and solved using both DEPTH-FIRST SEARCH and the CULPRIT
POINTER METHOD as given in chapter 2. The results for finding all solutions for N =7, ..., 13 are given
in table 5.3. The upper half of the table gives the results for DEPTH-FIRST SEARCH while the lower half
gives the results for selective backtracking. Here, the CULPRIT POINTER METHOD fairs somewhat better
than the previous example. It offers a consistent reduction in both the number of exhaustion failures as
well as the number of calls to CHECK but still require roughly twice the time as DEPTH-FIRST SEARCH.
Much of the reduction in the number of calls to CHECK stems from the fact that since N-Queens is a
binary CSP, no auxiliary calls to CHECK are needed to update the culprit pointers after each CHECK
failure.

Chapter 6

Conclusion

Your heart’s pride has deceived you; VIU-MAND "7 0 20 TIIT
you who dwell in the clefts of the rock, PINITTIT M 1290 NN 1T O
whose habitation is high, 197 0w O'A00 7A-0ON1 13130 NP AAT-0ON
you say in your heart: D70 TTTIR OVIN
“Who shall bring me down to the ground?”

Though you fly as high as an eagle, AW

and make your nest among the stars,
from thence | will bring you down,
saith the Lord.

Ovadia

This thesis has taken over three and a half years to complete. During that time, at least three fairly
complex PROLOG implementations have been constructed which all have shared a common goal: to
incorporate different search pruning techniques which would afford them better problem solving per-
formance than the simple chronological backtracking associated with typical PROLOG implementations.
Despite that long effort, no positive results have been obtained. Disappointingly, no provable negative
results have been obtained either. Each of the three implementations has worked. Furthermore, it has
been informally shown that no technique dominates any other one. For any given pair of techniques,
whether they be chronological backtracking, one of the previously published techniques, or one of the
techniques which I have developed, examples can be created where irrespective of the overhead involved,
one technique performs arbitrarily better than the other. Unfortunately, these examples are contrived
ones. The overhead required by each of these systems makes them completely impractical for any real
use.

It seems that this thesis, as well as most of the related research into search-pruning techniques, is
ill-motivated. Much effort has been expended into finding ever more sophisticated techniques which
can prune the search space in certain rare cases. In most cases however, it is the simpler less powerful
techniques—and even the brute force ones—which outperform the more sophisticated techniques in all
but contrived examples. It is difficult to make a formal case for this. Examples can usually be created
that allow any one given technique to outperform any other given technique by an arbitrary amount.
And yet the painful experience gained by the repeated effort expended during this thesis is that it is
nearly impossible to make any of the search pruning techniques, both well-known and novel, competitive
with brute force approaches. A simple review of the benchmarks given in chapter 5 is evidence of that
fact. This sounds inelegant but unfortunately appears to be the truth.

Much of the work I have done during this thesis project has not made it into this document. The

o8

6.1. HISTORY 59

algorithms underlying the implementations constructed prior to the one discussed here, as well as the in-
depth comparison between the different search pruning techniques which have been studied will probably
never be published. The effort needed to flesh out these ideas and understandings into a coherent and
complete document is not worth the benefits. In its place, the next section gives a brief overview of
some of the implementations I have built and the rationale that was used at the time to justify their
construction. After discussing that history, I will conclude with a few open problems that this thesis has
not succeeded in solving.

6.1 History

The original research objective for this thesis was to construct an implementation of PROLOG which
incorporated dependency-directed backtracking[83]. Dependency-directed backtracking, however, is not
a well-defined term. Many authors have used the term dependency-directed backtracking to describe
different collections of search pruning techniques. Realizing this discrepancy, efforts were then directed
to merging a particular set of search pruning techniques into PROLOG, namely those found in truth-
maintenance systems[39, 38] such as Rup[61, 62, 63, 64] and CAKE[80, 41]. Simply stated, these systems
incorporate three primary search pruning techniques. Each of these techniques are orthogonal and at-
tempt to solve a different search anomaly as discussed by de Kleer[29]. First, they attempt to avoid futile
backtracking by analyzing the cause of failures and backtracking only to a choice which has contributed
to the current failure. This choice may not be the most recent one made. This capability has been
called selective backtracking. Second, they attempt to avoid rediscovering the same contradiction by
saving inconsistent sets of choices. As each future choice is made, it is checked against that saved set and
abandoned it if it can be shown to lead to failure. This capability has been called lateral pruning in the
literature. Finally, truth-maintenance systems such as RUP attempt to avoid the problem of incorrect
ordering by doing a limited form of dynamic variable reordering in the form of constraint propagation.
Constraint propagation reduces to a simple variable reordering rule whereby choices with no remain-
ing alternatives are pursued with highest priority and choices with only one remaining alternative are
pursued with next highest priority. The combination of these three techniques namely, selective back-
tracking, lateral pruning, and constraint propagation constitute one definition of dependency-directed
backtracking.

When truth-maintenance systems (TMSs) such as RUP are applied to search problems, they can be
viewed as solving propositional satisfiability problems (SAT)[61]. This observation motivated the design
of the first system constructed as part of this thesis project. This system operated by incrementally un-
raveling the PROLOG program into an AND/OR-tree and converting this AND/OR-tree into conjunctive
normal form in linear time via the addition of new propositional variables. This set of clauses was given
to the TMS along with additional clauses created to represent the unification constraints annotating
the atomic vertices of the AND/OR-tree. This system can be viewed as two coroutining processes. One
process unraveled the PROLOG program into larger and larger SAT problems, and the other attempted
to solve these SAT problems using the dependency-directed backtracking techniques inherent in the
TMS.

Although this implementation worked, it proved completely unusable. Even the smallest PROLOG
programs unraveled into vary large SAT problems. Conceptually, the inefficiencies inherent in this
approach are apparent. First, while DEPTH-FIRST SEARCH need only represent the current AND-
subtree at any point during the search, the TMS approach represents the entire AND/OR-tree, or
at least some initial subtree of it. The difference in space requirements between the two approaches
can be exponential. Second, the constructed SAT problem contains two kinds of clauses; those which
represent the AND/OR-tree, and those which encode the unification constraints. Computing the clauses
which encode the unification constraints is tantamount to computing all possible unification failures and

60 CHAPTER 6. CONCLUSION

finding the minimal sets of choices which entail those failures. As any actual search path generated
by DEPTH-FIRST SEARCH will encounter only some of these failures, the TMS approach is doing the
maximal amount of work possible, and far more work than DEPTH-FIRST SEARCH. Thus while the TMS
component of the system was indeed using dependency-directed backtracking and supported a PROLOG
implementation which exhibited all three search pruning characteristics namely, selective backtracking,
lateral pruning, and constraint propagation, the cost of unraveling the AND/OR-tree into the SAT
representation far outweighed the savings of search pruning.

Most of the overhead in the previous system was involved with constructing the SAT clauses that
enforce the unification constraints. A second implementation was begun which utilized an equational
reasoning system similar to that found in RUP as a basis for enforcing the unification constraints in-
stead of the SAT representation of that information. Before that implementation was completed, a
shortcoming was discovered in the dependency analysis performed by Rup. When RUP discovers an
equational contradiction it produces a single nogood which in fact might not be minimal. Using a single
non-minimal nogood can lead to less effective selective backtracking behavior than is possible if all (or
at least the “right”) minimal nogoods were computed and used.

This realization allowed an understanding of a major difference between two distinct approaches to
search pruning, namely the dependency-directed backtracking/TMS approach and the variety of intel-
ligent backtracking schemes proposed for PROLOG. One one hand, dependency-directed backtracking
incorporates all three search pruning techniques: selective backtracking as well as lateral pruning and
constraint propagation. The intelligent backtracking schemes proposed for PROLOG typically attempt
only selective backtracking and do not attempt lateral pruning and constraint propagation. On the other
hand, some of the intelligent backtracking schemes do more sophisticated and complete dependency
analysis of unification failures than is done by the equational reasoning component of truth-maintenance
systems. In the limit, all minimal nogoods are computed—mnot just one non-minimal one. In addition,
some intelligent backtracking schemes such as the MULTIPLE NOGOOD algorithm produce new nogoods
from previous ones by hyperresolution on exhaustion failures. This is not normally done by truth-
maintenance systems and dependency-directed backtracking. While dependency-directed backtracking
and intelligent backtracking schemes share much in common, each incorporates some sophistication
which the other lacks thus making them incomparable.

It is possible to conceive of a system which combined all of the sophistication of both dependency-
directed backtracking and intelligent backtracking. No attempt was made to construct such a system
as it was felt that it would perform even more poorly than the previous system described. In fact, a
result due to Wolfram[93] shows that there can be an exponential number of minimal nogoods produced
at a unification failure so a straightforward implementation could be extremely inefficient. This raised
an open question. If search pruning is limited to selective backtracking, does an algorithm exist which
makes the same backtracking decisions as the MULTIPLE NOGOOD algorithm but which can make each
such decision in polynomial time.

At first it was thought that such an algorithm was found. Although Wolfram shows that there can
be an exponential number of nogoods produced at a unification failure, it might be possible to represent
that set with a polynomial sized data structure. An implementation was constructed which built such a
representation by analyzing paths in the unification graph. Unfortunately, it was later discovered that
this representation was indeed polynomial sized only for unification problems without function symbols.
Secondly, it was also discovered that although this representation could be constructed, manipulated,
and queried in polynomial time for function-symbol-free PROLOG, an exponential number of unification
failures could still lead to a single goal failure. The data structure representing the nogoods computed
for that goal failure could be exponential in size.

This implementation, while correct, proved unusable as well. In addition, it failed at its goal of
determining whether there exists a polynomial time equivalent to the MULTIPLE NOGOOD algorithm.
It did show, however, that if such an algorithm does not exist, then something stronger than Wolfram’s

6.2. FUTURE WORK 61

results will be needed to demonstrate this fact. Significant effort was expended without success in trying
to prove that such an algorithm does not exist.

During this effort, the CULPRIT POINTER METHOD was developed. When the method was first
developed and implemented, we did not realize that it was unsound when applied to selectively-nested
exhaustions. Accordingly, as we were applying the method to all exhaustion failures, we thought that
the CULPRIT POINTER METHOD was a polynomial equivalent to the MULTIPLE NOGOOD algorithm.
Only four months later was the unsoundness discovered by a fortuitous accident. The unsoundness did
not show up in the N-Queens problem until N = 11. Even then there is only a slight discrepancy in
the number of solutions found. Only because of a competition to see who could compute all solution
to N-Queens faster, was the CULPRIT POINTER METHOD applied to larger problems and the unsound-
ness discovered. The disappointment upon discovering that the CULPRIT POINTER METHOD was not
equivalent to the MULTIPLE NOGOOD algorithm is indicative of the whole history of this project. There
have been many false hopes and subsequent setbacks. We even had a soundness proof for the CULPRIT
POINTER METHOD only to discover that the proof was indeed valid; it was the algorithm that did not
meet the preconditions required by the theorem.

6.2 Future Work

This thesis leaves a number of questions unanswered. The most prominent of these is whether there exists
a polynomial time algorithm which is equivalent to the MULTIPLE NOGOOD algorithm. This seems like a
difficult question to answer. A second question is whether the CULPRIT POINTER METHOD is equivalent
to the MULTIPLE NOGOOD algorithm for non-selectively-nested exhaustion failures. I conjecture that
the answer to this question is yes but have not been able to prove this conjecture. The third question
is how the CULPRIT POINTER METHOD compares formally with other techniques for solving constraint
satisfaction problems. The comparison of two techniques can be formalized via the following definitions.
A technique « does not dominate a technique S if an infinite class of problems can be demonstrated for
which g requires time polynomial in the size of the problem but for which « requires time exponential in
the size of the problem. Two techniques are incomparable if neither dominates the other. I believe that
the CULPRIT POINTER METHOD is incomparable to most other search pruning techniques for solving
CSPs, including k-consistency and rearrangement search, but do not have complete proofs of this fact.

On one hand the above open questions are intriguing. On the other hand, they probably do not
warrant significant effort to find their solution. When uninformed search can not be avoided, brute-force
techniques, or the simplest search pruning techniques, seem to outperform more sophisticated ones. And
in general, it is always better to avoid search whenever possible.

Bibliography

[1]

Maurice Bruynooghe. Intelligent backtracking for an interpreter of horn clause logic programs.
Report CW-16, Afdeling Toegepaste Wiskunde en Programmatie Katholieke Universiteit Leuven,
Belgium, 1978.

Maurice Bruynooghe. Intelligent backtracking for an interpreter of horn clause logic programs.
In Mathematical Logic in Computer Science, Salotarjan, Hungary, 1978. Colloquia Mathematica
Societatis Janos Bolyai.

Maurice Bruynooghe. Naar een betere beheersing van de wuitvoering van programma’s in the logika
der Horn-uitdrukkingen. PhD thesis, Afdeling Toegepaste Wiskunde en Programmatie Katholieke
Universiteit Leuven, Belgium, 1979.

Maurice Bruynooghe. Analysis of dependencies to improve the behaviour of logic programs. In
W. Bibel and R. Kowalski, editors, Proceedings of the Fifth International Conference on Automated
Deduction, pages 293-305, Les Arcs, France, 1980. Springer-Verlag. Also available as Lecture Notes
in Computer Science #387.

Maurice Bruynooghe. Intelligent backtracking for an interpreter of horn clause logic programs. In
B. Domdélki and T. Gergely, editors, Mathematical Logic in Computer Science, pages 215-258. North-
Holland, 1981. From Colloquium on Mathematical Logic in Programming, Salgotarjan, Hungary
1978.

Maurice Bruynooghe. Solving combinatorial search problems by intelligent backtracking. Informa-
tion Processing Letters, 12(1):36-39, February 1981.

Maurice Bruynooghe and Luis Moniz Pereira. Revision of top-down logical reasoning through
intelligent backtracking. CIUNL 8/81, Dept. de Informética, Universidade Nova de Lisboa, Portugal,
1981.

Maurice Bruynooghe and Luis Moniz Pereira. Deduction revision by intelligent backtracking. In
J. A. Campbell, editor, Implementations of PROLOG, chapter 3, pages 196-215. Ellis Horwood,
Chichester, 1984.

Jung-Herng Chang and Alvin M. Despain. Semi-intelligent backtracking of PROLOG based on static
data dependency analysis. In Proceedings of the Second IEEE Symposium on Logic Programming,
pages 10-21, July 1985.

Jung-Herng Chang, Alvin M. Despain, and Doug DeGroot. AND-parallelism of logic programs
based on a static data dependency analysis. In Proceedings of the 30th IEEE Computer Society
International Conference, pages 218-226, February 1985.

62

BIBLIOGRAPHY 63

[11] David Chapman. Dependency-Directed Lisp. Unpublished manuscript received directly from au-
thor.

[12] T. Y. Chen, J-L. Lassez, and Graeme S. Port. Minimal non-unifiable subsets. Technical Report
84/16, Department of Computer Science, The University of Melborne, Austrailia, May 1985.

[13] T.Y. Chen, J-L. Lassez, and Graeme S. Port. Maximal unifiable subsets and minimal nonunifiable
subsets. Journal of New Generation Computing, 4:133-152, 1986.

[14] C. Codognet and P. Codognet. Formalizing and Implementing Intelligent Backtracking in Logic
Programming. PhD thesis, Mathématiques et Informatique, Univ. de Bordeaux I, 1988. forthcom-
ming.

[15] C. Codognet, P. Codognet, and G. Filé. A very intelligent backtracking method for logic programs.
Technical Report 8527, Mathématiques et Informatique, Univ. de Bordeaux I, 1985.

[16] C. Codognet, P. Codognet, and G. Filé. A very intelligent backtracking method for logic programs.
In Proceedings ESOP 1986, pages 315-326, Berlin, Heidelberg, New York, London, Paris, Tokyo,
1986. Springer-Verlag. Also available as Lecture Notes in Computer Science #213.

[17] C. Codognet, P. Codognet, and G. Filé. Depth-first intelligent backtracking. Technical report,
Mathématiques et Informatique, Univ. de Bordeaux I, 1987.

[18] C. Codognet, P. Codognet, and G. Filé. Yet another intelligent backtracking method. In Proceed-
ings of the Fifth International Conference and Symposium on Logic Programming, pages 447-465,
Cambridge, Massachusetts and London, England, August 1988. The M. I. T. Press.

[19] Philip T. Cox. Deduction Plans: A Graphical Proof Procedure for the First-Order Predicate Calculus.
PhD thesis, Universty of Waterloo, Ontario, Cannda, 1977. Also available as Research Report CS-
77-28.

[20] Philip T. Cox. Locating the source of unification failure. In Proceedings of the Second National
Conference of Canadian Society for Computational Studies of Intelligence, pages 20-29, Toronto,
Ontario, 1978.

[21] Philip T. Cox. Representational economy in a mechanical theorem prover. In Proceedings of the
Fourth Workshop on Automated Deduction, pages 122-128, Austin, Texas, 1979.

[22] Philip T. Cox. On determining the causes of nonunifiability. Report 23, Department of Computer
Science, University of Auckland, New Zealand, 1981.

[23] Philip. T. Cox. Finding backtrack points for intelligent bactracking. In J. A. Campbell, editor,
Implementations of PROLOG, chapter 3, pages 216-233. Ellis Horwood, Chichester, 1984.

[24] Philip T. Cox. On determining the causes of nonunifiability. Technical Report 8601, Technical
University of Nova Scotia, Halifax, 1986.

[25] Philip T. Cox. On determining the causes of nonunifiability. Journal of Logic Programming, 4:33-58,
1987.

[26] Philip T. Cox and Tomasz Pietrzykowski. Deduction plans: A basis for intelligent backtracking.
Research Report CS-79-41, Universty of Waterloo, Ontario, Canada, December 1979.

[27] Philip T. Cox and Tomasz Pietrzykowski. Deduction plans: A basis for intelligent backtracking.
IEEE Transactions on Patern Analysis and Machine Intelligence, 3(1):52-65, January 1981.

64 BIBLIOGRAPHY

[28] Philip T. Cox and Tomasz Pietrzykowski. Surface deduction: A uniform mechanism for logic
programming. In Proceedings of the Second IEEE Symposium on Logic Programming, pages 220
227. IEEE Computer Society Technical Committee on Computer Languages, The Computer Society
Press, July 1985. ISBN 0-8186-0636-3.

[29] Johan de Kleer. An assumption-based TMS. Artificial Intelligence, 28(2):127-162, March 1986.
[30] Johan de Kleer. Extending the ATMS. Artificial Intelligence, 28(2):163-196, March 1986.

[31] Johan de Kleer. Problem solving with the ATMS. Artificial Intelligence, 28(2):197-224, March
1986.

[32] Johan de Kleer, Jon Doyle, Charles Rich, Guy Lewis Steele Jr., and Gerald Jay Sussman. AMORD:
A deductive procedure system. A. 1. Memo 435, M. I. T. Artificial Intelligence Laboratory, January
1978.

[33] Johan de Kleer, Jon Doyle, Guy Lewis Steele Jr., and Gerald Jay Sussman. Explicit control of
reasoning. A. I. Memo 427, M. I. T. Artificial Intelligence Laboratory, June 1977.

[34] P. Dembinski and J. Maluszynski. AND-parallelism with intelligent backtracking for annotated logic
programs. In Proceedings of the Second IEEE Symposium on Logic Programming, pages 29-38, July
1985.

[35] W. Dilger and A. Janson. Unifikationsgraphen fiir intelligentes backtracking in deduktionssystemen.
In Proceedings of GWAI-83, Dassel, Federal Republic of Germany, 1983.

[36] W. Dilger and A. Janson. Intelligent backtracking in deduction systems by means of extended
unification graphs. Journal of Automated Reasoning, 2:43-62, 1986.

[37] W. Dilger and H. A. Schneider. ASSIP-T a theorem proving machine. In Proceedings of the Ninth
International Joint Conference on Artificial Intelligence, pages 1194-1200, Los Angeles, 1985.

[38] Jon Doyle. A truth maintenaince system. Artificial Intelligence, 12:231-272, 1979.

[39] Jon Doyle. A truth maintenance system. A. I. Memo 521, M. I. T. Artificial Intelligence Laboratory,
June 1979.

[40] Bernd-Jiirgen Falkowski and Lothar Schmitz. A note on the queens’ problem. Information Process-
ing Letters, 23:39-46, July 1986.

[41] Yishai A. Feldman and Charles Rich. The interaction between truth maintenance, equality, and
pattern-directed invocation: Issues of completeness and efficiency. Unpublished manuscript received
directly from author, 1987.

[42] Nicholas S. Flann, Thomas G. Dietterich, and Dan R. Corpron. Forward chaining logic programming
with the ATMS. In Proceedings of AAAI-87, pages 24-29, 95 First Street Los Altos, California
94022, July 1987. American Association for Artificial Intelligence, Morgan Kaufmann Publishers,
Inc.

[43] D. R. Forster. GTP: A graph based theorem prover. Master’s thesis, Universty of Waterloo,
Ontario, Canada, 1982.

[44] K. Forsythe and S. Matwin. Implementation strategies for plan-based deduction. In R. E. Shostack,
editor, Proceedings of the Seventh International Conference on Automated Deduction, Napa, Cali-
fornia, 1984. Springer-Verlag. Also available as Lecture Notes in Computer Science #170.

BIBLIOGRAPHY 65

[45]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Nevin Heintze, Spiro Michaylov, and Peter Stuckey. CLP(R) and some electrical engineering
problems. In Jean-Louis Lassez, editor, Logic Programming: Proceedings of the Fourth Interna-
tional Conference, pages 675-703, Cambridge, Massachusetts and London, England, May 1987.
The M. I. T. Press.

Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In Unknown, pages 111-119,
1987.

Joxan Jaffar and Spiro Michaylov. Methodology and implementation of a CLP system. In Jean-
Louis Lassez, editor, Logic Programming: Proceedings of the Fourth International Conference, pages
196-218, Cambridge, Massachusetts and London, England, May 1987. The M. I. T. Press.

Kenneth M. Kahn and M. Carlsson. How to implement PROLOG on a LISP machine. In J. A.
Campbell, editor, Implementations of PROLOG, chapter 2, pages 117-134. Ellis Horwood, Chich-
ester, 1984.

Donald E. Knuth. Estimating the efficiency of backtrack programs. Mathematics of Computation,
29(129):121-136, January 1975.

Vipin Kumar and Yow-Jian Lin. An intelligent backtracking scheme for PROLOG. In Proceedings
of the Fourth IEEE Symposium on Logic Programming, pages 406-414, September 1987.

Vipin Kumar and Yow-Jian Lin. A data-dependency-based intelligent backtracking scheme for
ProvroG. Journal of Logic Programming, 5:165-181, 1988.

C. Lasserre and H. Gallaire. Controlling backtracking in horn clauses programming. In Proceedings
of the Logic Programming Workshop, pages 286292, 1980.

C. Lasserre and H. Gallaire. Controlling backtracking in horn clauses programming. In K. L. Clark
and S. A. Téarnlund, editors, Logic Programming, pages 107-114. Academic Press, 1982.

Peyyun Peggy Li and Alain J. Martin. The sync model: A parallel execution method for logic
programming. In Unknown, pages 223-234, August 1986.

Yow-Jian Lin and Vipin Kumar Clement Leung. An intelligent backtracking algorithm for parallel
execution of logic programs. In Ehud Shapiro, editor, Proceedings of the Third International Con-
ference on Logic Programming, pages 55-68, Berlin, Heidelberg, New York, London, Paris, Tokyo,
July 1986. Springer-Verlag. Also available as Lecture Notes in Computer Science #225.

Heikki Mannila and Esko Ukkonen. The set union problem with backtracking. In Proceedings of the
Thirteenth International Colloguium on Automata, Languages, and Programming, Rennes, France,

July 1986.

Heikki Mannila and Esko Ukkonen. Timestamped term representation for implementing PROLOG.
In Unknown, pages 159-165, August 1986.

S. Matwin and Tomasz Pietrzykowski. Exponential improvement of exhaustive backtracking: Data
structure and implementation. In Proceedings of the Sixzth International Conference on Automated
Deduction, pages 240-259. Springer-Verlag, 1982. Also available as Lecture Notes in Computer
Science #138.

S. Matwin and Tomasz Pietrzykowski. Intelligent backtracking for automating deduction. In Pro-
ceedings of the Logic Programming Workshop, pages 186-191, 1983.

66 BIBLIOGRAPHY

[60] S. Matwin and Tomasz Pietrzykowski. Intelligent backtracking in plan-based deduction. IEEFE
Transactions on Patern Analysis and Machine Intelligence, 7(6):682-692, November 1985.

[61] David Allen McAllester. Solving SAT problems via dependency directed backtracking. Unpublished
manuscript received directly from author.

[62] David Allen McAllester. A three valued truth maintenance system. A. I. Memo 473, M. I. T.
Artificial Intelligence Laboratory, May 1978.

[63] David Allen McAllester. An outlook on truth maintenance. A. I. Memo 551, M. 1. T. Artificial
Intelligence Laboratory, August 1980.

[64] David Allen McAllester. Reasoning utility package user’s manual version one. A. I. Memo 667,
M. I. T. Artificial Intelligence Laboratory, April 1982.

[65] Luis Moniz Pereira. Backtracking intelligently in AND/OR trees. Technical report, Dept. de
Informética, Universidade Nova de Lisboa, Portugal, 1979.

[66] Luis Moniz Pereira and Antonio Porto. Intelligent backtracking and sidetracking in horn clause
programs—the implementation. CIUNL 13/79, Dept. de Informética, Universidade Nova de Lisboa,
Portugal, 1979.

[67] Luis Moniz Pereira and Antonio Porto. Intelligent backtracking and sidetracking in horn clause
programs—the theory. CIUNL 2/79, Dept. de Informética, Universidade Nova de Lisboa, Portugal,
1979.

[68] Luis Moniz Pereira and Antonio Porto. An interpreter of logic programs using selective backtracking.
CIUNL 3/80, Dept. de Informética, Universidade Nova de Lisboa, Portugal, July 1980.

[69] Luis Moniz Pereira and Antonio Porto. An interpreter of logic programs using selective backtracking.
In Proceedings of the Logic Programming Workshop, Debrecen, Hungary, 1980.

[70] Luis Moniz Pereira and Antonio Porto. Selective backtracking at work. Technical report, Dept. de
Informética, Universidade Nova de Lisboa, Portugal, 1980.

[71] Luis Moniz Pereira and Antonio Porto. Selective backtracking for logic programs. In W. Bibel and
R. Kowalski, editors, Proceedings of the Fifth International Conference on Automated Deduction,
pages 306-317, Les Arcs, France, 1980. Springer-Verlag. Also available as Lecture Notes in Computer
Science #387.

[72] Luis Moniz Pereira and Antonio Porto. Selective backtracking for logic programs. CIUNL 1/80,
Dept. de Informatica, Universidade Nova de Lisboa, Portugal, 1980.

[73] Luis Moniz Pereira and Antonio Porto. Selective backtracking. UNL/FCT 11/80, Dept. de In-
formatica, Universidade Nova de Lisboa, Portugal, 1981.

[74] Luis Moniz Pereira and Antonio Porto. Selective backtracking. In K. L. Clark and S. A. Tarnlund,
editors, Logic Programming, pages 107-114. Academic Press, 1982.

[75] Tomasz Pietrzykowski and S. Matwin. Exponential improvement of efficient backtracking: A strat-
egy for plan-based deduction. In Proceedings of the Sixth International Conference on Automated
Deduction, pages 223-239. Springer-Verlag, 1982. Also available as Lecture Notes in Computer
Science #138.

BIBLIOGRAPHY 67

[76]

[77]

78]

[87]

[88]

[89]

[90]

Graeme S. Port. Efficiently computing source information. Technical Report 88/3, Department of
Computer Science, University of Melbourne, Australia, 1988. forthcomming.

Graeme S. Port. Parallel Logic Programming Using Source Information. PhD thesis, Department
of Computer Science, University of Melbourne, Australia, 1988. forthcomming.

Graeme S. Port. A simple approach to finding the cause of non-unifiability. In Proceedings of the
Fifth International Conference and Symposium on Logic Programming, pages 651-665, Cambridge,
Massachusetts and London, England, August 1988. The M. I. T. Press.

Matthias Reichling. A simplified solution of the N queens’ problem. Information Processing Letters,
25:253-255, June 1987.

Charles Rich. The layered architecture of a system for reasoning about programs. In Proceedings
of the Ninth International Joint Conference on Artificial Intelligence, pages 540-546, Los Angeles,
1985.

Willem Rosiers and Maurice Bruynooghe. Empirical study of some constraint satisfaction algo-
rithms. Report CW 50, Department of Computer Science, Katholieke Universiteit Leuven, July
1986.

T. Sato. An algorithm for intelligent backtracking. In S. Goto et al., editors, Proceedings of the
RIMS Symposia of Software Science and Engineering, pages 88-98. Springer-Verlag, 1983. Also
available as Lecture Notes in Computer Science #147.

Richard M. Stallman and Gerald Jay Sussman. Forward reasoning and dependency-directed back-
tracking in a system for computer-aided circuit analysis. Artificial Intelligence, 9:135-196, 1977.
Also available as M. I. T. Artificial Intillegence Laboratory Memo 380.

Guy Lewis Steele Jr. The Definition and Implementation of a Computer Programming Language
Based on Constraints. PhD thesis, Massachusetts Institute of Technology, August 1980. Also
avilable as M. I. T. VLSI Memo 80-32 and as M. I. T. Artificial Inteligence Laboratory Technical
Report 595.

Harold S. Stone and Janice M. Stone. Efficient search techniques—an empirical study of the n-
queens problem. RC 12057, IBM Thomas J. Watson Research Center, Yorktown Heights, NY
10598, August 1986. Also available as technical report 54343.

Gerald Jay Sussman and Guy Lewis Steele Jr. CONSTRAINTS—a language for expressing almost-
hierarchical descriptions. Artificial Intelligence, 14(1):1-39, 1980. Also available as M. I. T. Artificial
Intelligence Laboratory Memo 502A.

J. Toh and K. Ramamohanrao. Failure directed backtracking. Technical Report 86/9, Department
of Computer Science, University of Melbourne, Australia, 1986.

P. Van Hentenryck and M. Dincbas. Forward checking in logic programming. In Jean-Louis Lassez,
editor, Logic Programming: Proceedings of the Fourth International Conference, pages 229-256,
Cambridge, Massachusetts and London, England, May 1987. The M. I. T. Press.

P. E. Vasey. A logic-in-logic interpreter. Master’s thesis, Imperial College of Science and Technology,
University of London, 1980.

David H. D. Warren. An abstract PROLOG instruction set. Technical Note 309, SRI International,
333 Ravenswood Ave., Menlo Park CA 94025, October 1983.

68

[91]

[92]

[93]

BIBLIOGRAPHY

H. S. Wilf. An O(1) expected time algorithm for the graph coloring problem. Information Processing
Letters, 18:119-121, 1984.

W. Winsborough. Semantically transparent selective reset for AND parallel interpreters based on
the origin of failures. In Proceedings of the Fourth IEEE Symposium on Logic Programming, pages
134-152, September 1987.

David A. Wolfram. Intractable unifiability problems and backtracking. In Ehud Shapiro, editor,
Proceedings of the Third International Conference on Logic Programming, pages 107-121, Berlin,
Heidelberg, New York, London, Paris, Tokyo, July 1986. Springer-Verlag. Also available as Lecture
Notes in Computer Science #225.

Nam Sung Woo and Kwang-Moo Choe. Selecting the backtrack literal in the AND/OR, process
model. In Proceedings of the Third IEEE Symposium on Logic Programming, pages 200-210, August
1986.

Ramin D. Zabih. Dependency-directed backtracking in non-deterministic SCHEME. Master’s thesis,
Massachusetts Institute of Technology, January 1987.

Ramin D. Zabih and David Allen McAllester. A rearrangement search strategy for determining
propositional satisfiability. In Proceedings of the Seventh National Conference on Artifical Intelli-
gence, pages 155-160, August 1988.

Ramin D. Zabih, David Allen McAllester, and David Chapman. Non-deterministic LisP with
dependency-directed backtracking. In Proceedings of AAAI-87, pages 59-64, 95 First Street Los Al-
tos, California 94022, July 1987. American Association for Artificial Intelligence, Morgan Kaufmann
Publishers, Inc.

Ramin D. Zabih, David Allen McAllester, and David Chapman. Dependency-directed backtracking
in non-deterministic Lisp. Artificial Intelligence, 1988. Submitted for publication.

