
Nondeterministic Lisp as a Substrate for Constraint

Logic Programming

Je�rey Mark Siskind

�

University of Pennsylvania IRCS

3401 Walnut Street Room 407C

Philadelphia PA 19104

215/898{0367

internet: Qobi@CIS.UPenn.EDU

David Allen McAllester

y

M. I. T. Arti�cial Intelligence Laboratory

545 Technology Square Room NE43{412

Cambridge MA 02139

617/253{6599

internet: dam@AI.MIT.EDU

Abstract

We have implemented a comprehensive constraint-

based programming language as an extension to

Common Lisp. This constraint package provides

a uni�ed framework for solving both numeric and

non-numeric systems of constraints using a com-

bination of local propagation techniques including

binding propagation, Boolean constraint propaga-

tion, generalized forward checking, propagation of

bounds, and uni�cation. The backtracking facility

of the nondeterministic dialect of Common Lisp

used to implement this constraint package acts as

a general fallback constraint solving method mit-

igating the incompleteness of local propagation.

Introduction

Recent years have seen signi�cant interest in constraint

logic programming languages. Numerous implementa-

tions of such languages have been described in the lit-

erature, notably clp(<) (Ja�ar and Lassez 1987) and

CHiP (Van Hentenryck 1989). The point of departure

leading to these systems is the observation that the

uni�cation operation at the core of logic programming

can be viewed as a method for solving equational con-

straints between logic variables which range over the

universe of Herbrand terms. A natural extension of

such a view is to allow variables to range over other

domains and augment the programming language to

support the formulation and solution of systems of

constraints appropriate to these new domains. The

�

Supported in part by a Presidential Young Investiga-

tor Award to Professor Robert C. Berwick under National

Science Foundation Grant DCR{85552543, by a grant from

the Siemens Corporation, by the Kapor Family Foundation,

by ARO grant DAAL 03{89{C{0031, by DARPA grant

N00014{90{J{1863, by NSF grant IRI 90{16592, and by

Ben Franklin grant 91S.3078C{1

y

Supported in part by the Advanced Research Projects

Agency of the Department of Defense under O�ce of Naval

Research contract N00014-91-J-4038.

notion of extending a programming language to sup-

port constraint-based programmingneed not be unique

to logic programming. In this paper we present the

constraint package included with Screamer, a non-

deterministic dialect of Common Lisp described by

Siskind and McAllester (1993). This package pro-

vides functionality analogous to clp(<) and CHiP in

a Common Lisp framework instead of a Prolog one.

Screamer augments Common Lisp with the ca-

pacity for writing nondeterministic functions and ex-

pressions. Nondeterministic functions and expressions

can return multiple values upon backtracking initiated

by failure. Screamer also provides the ability to per-

form local side e�ects, ones which are undone upon

backtracking. Nondeterminism and local side e�ects

form the substrate on top of which the Screamer con-

straint package is constructed.

Variables and Constraints

Screamer includes the function make-variable

which returns a data structure called a variable.

Screamer variables are a generalization of Prolog

logic variables. Initially, new variables are unbound

and unconstrained. Variables may be bound to values

by the process of solving constraints asserted between

sets of variables. Both the assertion of constraints and

the ensuing binding of variables is done with local side

e�ects. Thus constraints are removed and variables

become unbound again upon backtracking.

Screamer provides a variety of primitives for con-

straining variables. Each constraint primitive is a

\constraint version" of a corresponding Common Lisp

primitive. For example, the constraint primitive +v

is a constraint version of +. An expression of the

form (+v x y) returns a new variable z, which it con-

strains to be the sum of x and y by adding the con-

straint z = (+ x y). By convention, a Screamer

primitive ending in the letter v is a constraint version

of a corresponding Common Lisp primitive. Table 1

lists the constraint primitives provided by Screamer.

All of these primitives have the property that they

accept variables as arguments|in addition to ground

Type Restrictions: numberpv realpv integerpv

booleanpv memberv

Boolean: andv orv notv

Numeric: <v <=v >v >=v =v /=v

+v -v *v /v minv maxv

Expression: equalv

Functions: funcallv applyv

Table 1: The constraint primitives provided by

Screamer.

values|and return a variable as their result. The con-

straint primitive installs a constraint between the ar-

guments and the returned variable stating that, un-

der any interpretation of the variables involved, the

value of the result variable must equal the corre-

sponding Common Lisp primitive applied to the val-

ues of the arguments. As another example, the ex-

pression (<v x y) returns a variable z and adds the

constraint z = (< x y). This constraint is satis�ed

when z is either t or nil depending on whether x is less

than y. For the most part, each constraint primitive

obeys the same calling convention as the correspond-

ing Common Lisp primitive. Screamer performs a

variety of optimizations to improve run time e�ciency.

In particular, if the value of a variable returned by a

constraint primitive can be determined at the time the

function is called then that value is returned directly

without creating a new variable.

In Screamer, most constraints are of the form z =

(f x

1

: : : x

n

) where f is the Common Lisp primi-

tive corresponding to some constraint primitive. Con-

straints of this form can imply type restrictions on

the variables involved. For example, a constraint of

the form z = (< x y) implies that z is \Boolean",

i.e., either t or nil. Furthermore, this constraint im-

plies that x and y are numeric. In practice, a variable

usually has a well de�ned type, e.g., it is known to

be Boolean, known be real, known to be a cons cell,

etc. Knowledge about the type of a variable has sig-

ni�cant rami�cations for the e�ciency of Screamer's

constraint satisfaction algorithms. Screamer has spe-

cial procedures for inferring the types of variables. Be-

cause knowledge of the types of variables is impor-

tant for e�ciency, in contrast to the Common Lisp

primitives and, or, and not which accept any argu-

ments of any type, the Screamer constraint primi-

tives andv, orv, and notv require their arguments to

be Boolean. This allows the use of Boolean constraint

satisfaction techniques for any constraints introduced

by these primitives. Similarly, constraint \predicates"

return Boolean variables. For example, in contrast to

the Common Lisp primitive member which can return

the sub-list of the second argument whose head satis�es

the equality check, the result of the memberv primitive

is constrained to be Boolean.

Screamer includes the primitive assert! which

can be used to add constraints other than those added

by the constraint primitives. Evaluating the expres-

sion (assert! x) constrains x to equal t. This

can be used in conjunction with other constraint

primitives to install a wide variety of constraints.

For example, (assert! (<v x y)) e�ectively installs

the constraint that x must be less than y.

1

Cer-

tain constraint primitives in table 1, in conjunc-

tion with assert!, can be used to directly constrain

the type of a variable. For example, evaluating

(assert! (numberpv x)) e�ectively installs the con-

straint that x must be a number. Likewise evaluat-

ing (assert! (booleanpv x)) installs the constraint

that x must be Boolean. This is e�ectively the same

as evaluating (assert! (memberv x '(t nil))).

All constraints in Screamer are installed either by

assert! or by one of the constraint primitives in ta-

ble 1. A constraint installed by assert! states that

a certain variable must have the value t. A con-

straint installed by a constraint primitive always has

the form z = (f x

1

: : : x

n

) where f is either a

Common Lisp primitive or a slight variation on a

Common Lisp primitive. The variations arise for con-

straint primitives such as orv and memberv where the

semantics of the constraint version di�ers slightly from

the semantics of the corresponding Common Lisp

primitive as discussed above.

An attempt to add a constraint fails if Screamer

determines that the resulting set of constraints

would be unsatis�able. For example, after evaluat-

ing (assert! (<v x 0)) a subsequent evaluation of

(assert! (>v x 0)) will fail. A call to a constraint

primitive can fail when it would generate a constraint

inconsistent with known type information. For exam-

ple, if x is known to be Boolean then an evaluation

of (+v x y) will fail.

Constraint Propagation

In this section we discuss the �ve kinds of con-

straint propagation inference processes performed by

Screamer. First, Screamer implements binding

propagation, an incomplete inference technique some-

times called value propagation. Second, Screamer

implements Boolean constraint propagation (BCP).

This is an incomplete form of Boolean inference that

can be viewed as a form of unit resolution. Third,

Screamer implements generalized forward checking

(GFC). This is a constraint propagation technique

for discrete constraints used in the CHiP system.

Fourth, Screamer implements bounds propagation

on numeric variables. Such bounds propagation|

when combined with the divide-and-conquer technique

1

To mitigate the apparent ine�ciency of this conceptu-

ally clean language design, the implementation optimizes

most calls to assert!, such as the calls (assert! (notv

(realpv x))) and (assert! (<=v x y)), to eliminate the

creation of the intermediate Boolean variable(s) and the re-

sulting local propagation.

discussed later in this paper|implements a general-

ization of the interval method of solving systems of

nonlinear equations proposed by Hansen (1968). Fi-

nally, Screamer implements uni�cation. Uni�cation

is viewed as a constraint propagation inference tech-

nique which can be applied to equational constraints

involving variables that range over S-expressions. The

constraint propagation techniques are incrementally

run to completion whenever a new constraint is in-

stalled by assert! or one of the constraint primitives.

The �ve forms of constraint propagation are described

in more detail below.

Each form of constraint propagation can be viewed

as an inference process which locally derives infor-

mation about variables. All forms of propagation

are capable of inferring values for variables. For

example, after evaluating (assert! (orv x y)) and

(assert! (notv x)) BCP will infer that y must have

the value t. If some constraint propagation inference

process has determined a value for some variable x then

we say that x is bound and the inferred value of x is

called the binding of x.

Binding Propagation: As noted above, most

constraints in Screamer are of the form z =

(f x

1

: : : x

n

) where f is a Common Lisp primitive,

z is a variable, and each x

i

is either a variable or a

speci�c value. For any such constraint Screamer im-

plements a certain value propagation process. More

speci�cally, if bindings have been determined for all

but one of the variables in the constraint, and a binding

for the remaining variable follows from the constraint

and the existing bindings, then this additional bind-

ing is inferred. This general principle is called binding

propagation. Binding propagation will always bind the

output variable of a constraint primitive whenever the

input variables become bound. For example, given the

constraint z = (+ x y), if x is bound to 2 and y is

bound to 3, then binding propagation will bind z to 5.

Often, however, binding propagation will derive a bind-

ing for an input from a binding for the output. For ex-

ample, given the constraint z = (+ x y), if z is bound

to 5 and x is bound to 2, then binding propagation will

bind y to 3.

Boolean Constraint Propagation: BCP is sim-

ply arc consistency (cf. Mackworth 1992) relative to

the Boolean constraint primitives andv, orv, and notv.

BCP, like arc consistency, is semantically incomplete.

For example, after evaluating (assert! (orv z w))

and (assert! (orv (notv z) w)), any variable in-

terpretation satisfying the installed constraints must

assign w the value t. However, BCP will not make

this inference. Semantic incompleteness is necessary

in order to ensure that the constraint propagation pro-

cess terminates quickly. Later in the paper we dis-

cuss how we interleave backtracking search with con-

straint propagation to mitigate the incompleteness of

local propagation.

Generalized Forward Checking: GFC applies

to variables for which a �nite set of possible val-

ues has been established. Such a set is called an

enumerated domain. Variables with enumerated do-

mains are called discrete. For example, after evalu-

ating (assert! (memberv x '(a b c d))) the vari-

able x is discrete because its value is known to be either

a, b, c, or d. Boolean variables are a special case of

discrete variables where the enumerated domain con-

tains only t and nil. Similarly, bounded integer vari-

ables are considered to be discrete. For each discrete

variable Screamer maintains a list representing its

enumerated domain. The enumerated domain for a

given variable can be updated by the GFC inference

process. The GFC inference process operates on con-

straints of the form z = (funcall f x

1

: : : x

n

). These

constraints are generated by the constraint primi-

tive funcallv. Unlike most constraint primitives, the

primitive funcallv will signal an error|rather than

fail| if its �rst argument is bound to anything but

a deterministic procedure. Now consider the con-

straint z = (funcall f x

1

: : : x

n

). GFC will only

operate on this constraint when f is bound and all but

one of the remaining variables in the constraint have

been bound. If the unbound variable is the output

variable z, then GFC simply derives a binding for z

by applying f . If the unbound variable is one of the

arguments x

i

then GFC tests each element v of the

enumerated domain of the discrete variable x

i

for con-

sistency relative to this constraint. Elements of the

enumerated domain of x

i

that are inconsistent with the

constraint are removed. For example, suppose that we

have evaluated (assert! (memberv x '(1 5 9))),

(assert! (memberv y '(3 7 12))) and (assert!

(funcallv #'< x y)). In this case the output vari-

able of the funcallv constraint is bound to t. Now

suppose that some constraint propagation inference

process infers that y is 3. In this case GFC will run

on the funcallv constraint and remove 5 and 9 from

the enumerated domain of x. Whenever the enumer-

ated domain of a discrete variable is reduced to a single

value, GFC binds the variable to that value. An exam-

ple of GFC running on the N -Queens problem is given

later in the paper.

Bounds Propagation: Bounds propagation ap-

plies to numeric variables. For each numeric value the

system maintains an upper and lower bound on the

possible values of that variable. These bounds prop-

agate through constraints generated by numeric con-

straint primitives such as +v, *v and <v. For example,

after evaluating (assert! (=v z (+v x y))), if z is

known to be no larger than 5:7, and x is known to be

no smaller than 2:2, then bounds propagation will infer

that y is no larger than 3:5. Bounds propagation can

also derive values for the Boolean output variables of

numeric constraint predicates such as <v and =v. For

example, if we have the constraint z = (< x y)) and

the system has determined that x is at least 2:0 but y

is no larger than 1:0, then the system will infer that z

is nil.

Bounds propagation will not infer a new bound

unless the new bound reduces the known interval

of the variable involved by at least a certain mini-

mum percentage. This ensures that the bounds prop-

agation process terminates fairly quickly. For ex-

ample, Screamer avoids the very large number of

bounds updates that would result from the constraints

(assert! (>v x 0)), (assert! (<v x 1000)) and

(assert! (<v x (-v x 0.001))).

Uni�cation: Uni�cation operates on constraints

of the form w = (equal u v) which are gen-

erated by the constraint primitive equalv. At

any given time there is a system of equations de-

�ned by the set of equalv constraints whose out-

put variable has been bound to t. Screamer in-

crementally maintains a most general uni�er � for

this system of equations. For example, evaluating

(assert! (equalv (cons x x) (cons y w))) will

result in a uni�er � that equates x, y, and w, i.e.,

a uni�er � such that �[x], �[y], and �[w] are all

equal. Screamer also implements disuni�cation as

in Prolog-II (Colmerauer 1984). Thus, after evalu-

ating (assert! (notv (equalv x y))), any attempt

to bind x or y to be equal will fail.

The di�erent forms of constraint propagation can in-

teract with each other. For example, a given variable

can be both discrete and numeric. The system removes

non-numeric elements from the enumerated domains of

discrete numeric variables. Furthermore, if a bound is

known for a discrete numeric variable then elements

violating that bound are eliminated from its enumer-

ated domain. Screamer also derives bounds informa-

tion from the enumerated domains of discrete numeric

variables. Uni�cation also interacts with Screamer

bindings. For example, if � is the most general uni-

�er maintained by Screamer, and x and y are two

variables such that �[x] equals �[y], then any bind-

ing for x becomes a binding for y and vice versa. If

�[x] equals �[y], and x and y have incompatible bind-

ings, then a failure is generated.

Solving Systems of Constraints

By design, all of the constraint primitives described so

far use only fast local propagation techniques. Such

techniques are necessarily incomplete; they cannot al-

ways solve systems of constraints or determine that

they are unsolvable. Screamer provides a number

of primitives for augmenting local propagation with

backtracking search to provide a general mechanism

for solving systems of constraints. One such primi-

tive, linear-force, can be applied to a variable to

cause it to nondeterministically take on one of the val-

ues in its domain. Linear-force can be applied only

to discrete variables or integer variables. Constrain-

ing a variable to take on a value using linear-force

may cause local propagation. Thus a single call to

linear-force may cause a number of variables to be

bound, or alternatively may fail if the variable cannot

consistently take on any value. A second primitive,

divide-and-conquer-force, can be applied to a vari-

able to nondeterministically reduce the set of possible

values it may take on. Divide-and-conquer-force

can be applied only to discrete variables or real vari-

ables with �nite upper and lower bounds. When ap-

plied to discrete variables, the enumerated domain is

split into two subsets and the variable nondetermin-

istically constrained to take on values from either the

�rst or second subset. When applied to bounded real

variables, the interval is split in half and the variable

nondeterministically constrained to take on values in

either of the two subintervals.

The above two functions operate on single variables.

More generally, one must �nd the values of several vari-

ables which satisfy the given constraints. Screamer

provides two primitives to accomplish this. Both

are higher-order functions which take a single vari-

able force function as an argument (e.g. linear-force

or divide-and-conquer-force) and produce a func-

tion capable of forcing a list of variables using that

force function. Each incorporates a di�erent strategy

for choosing which variable to force next. The �rst,

static-ordering, simply forces the variables in the

order given. The single variable force function is re-

peatedly applied to each variable, until that variable

takes on a ground value, before proceeding with the

next variable. All variables are bound upon termina-

tion. The second, reorder, selects the variable with

the smallest domain, applies the single variable force

function to this variable, and repeats this process un-

til all variables are bound. Since the choice of single

variable force function is orthogonal to the choice of

variable ordering strategy, Screamer thus provides

four distinct constraint solving strategies. More can

easily be added.

Examples

We will illustrate the power of the Screamer con-

straint language with two small examples. The �rst,

shown in �gure 1, solves the N -Queens problem. The

function n-queensv creates a variable for each row and

constrains each row variable to take on an integer be-

tween 1 and n indicating the column occupied by a

queen in that row. The function (a-member-ofv s) is

simply syntactic sugar for the following.

(let ((v (make-variable)))

(assert! (memberv v s))

v)

The Screamer primitive (solution x f) gathers all

of the variables nested inside the structure x, applies

the multiple variable forcing function f to this list of

variables, and returns a copy of x where the variables

have been replaced by their bound values.

In the above example, Screamer applies GFC as

the technique for solving the underlying constraint sat-

(defun attacks? (qi qj distance) (or (= qi qj) (= (abs (- qi qj)) distance)))

(defun n-queensv (n)

(solution (let ((q (make-array n)))

(dotimes (i n) (setf (aref q i) (an-integer-betweenv 1 n)))

(dotimes (i n)

(dotimes (j n)

(if (> j i) (assert! (notv (funcallv #'attacks? (aref q i) (aref q j) (- j i)))))))

(coerce q 'list))

(reorder #'domain-size #'(lambda (x) (declare (ignore x)) nil) #'< #'linear-force)))

(defun nonlinear ()

(let ((x (a-real-betweenv -1e40 1e40))

(y (a-real-betweenv -1e40 1e40))

(z (a-real-betweenv -1e40 1e40)))

(assert! (andv (=v (+v (*v 4 x x y) (*v 7 y z z) (*v 6 x x z z)) 1356.14)

(=v (+v (*v 3 x y) (*v 2 y y) (*v 5 x y z)) -141.375)

(=v (*v (+v x y) (+v y z)) -7.7625)))

(solution (list x y z)

(reorder #'range-size #'(lambda (x) (< x 1e-6)) #'> #'divide-and-conquer-force))))

Figure 1: Two constraint-based Screamer programs, one for solving the N -Queens problem and one for solving a

system of nonlinear equations using numeric bounds propagation.

isfaction problem. Screamer chooses this technique

since all of the variables involved are discrete.

The second example, shown in �gure 1, illustrates

how bounds propagation can be used to solve sys-

tems of nonlinear equations expressed as constraints

between numeric variables. The function nonlinear

�nds a solution to the following system of nonlinear

equations.

4x

2

y + 7yz

2

+ 6x

2

z

2

= 1356:14

3xy + 2y

2

+ 5xyz = �141:375

(x+ y)(y + z) = �7:7625

The expression (a-real-betweenv -1e40 1e40) cre-

ates a variable constrained to be a real number be-

tween the given upper and lower bounds. After the

constraints have been asserted between the variables,

divide and conquer search|interleaved with bounds

propagation|is used to �nd a solution to the equa-

tions. One such solution is x � �7:311; y �

6:113; z � 0:367. Note that unlike the simplex method

used in clp(<)|which is limited to solving linear sys-

tems of equations|the combination of divide and con-

quer search interleaved with bounds propagation al-

lows Screamer to solve complex nonlinear systems of

equations. These techniques also enable Screamer to

solve numeric constraint systems with both inequal-

ities and equational constraints. Furthermore, since

all of the constraint satisfaction techniques are inte-

grated, Screamer can solve disjunctive systems of

equations as well as systems which mix together nu-

meric, Boolean, and other forms of constraints.

We wish to point out the intentional similarity in the

names of the Screamer primitives a-member-of and

a-member-ofv.

2

Both describe a choice between a set

of possible alternatives. The former enumerates that

set nondeterministically by backtracking. The latter

instead, creates a variable whose value is constrained

to be a member of the given set. The former lends

itself to a generate-and-test style of programming.

(let ((x

1

(a-member-of s

1

))

.

.

.

(x

n

(a-member-of s

n

)))

(unless �[x

1

: : : x

n

] (fail))

(list x

1

: : : x

n

))

The latter lends itself to constraint-based program-

ming.

(let ((x

1

(a-member-ofv s

1

))

.

.

.

(x

n

(a-member-ofv s

n

)))

(assert! (funcallv

#'(lambda (x

1

: : : x

n

) �[x

1

: : : x

n

])

x

1

: : : x

n

))

(solution (list x

1

: : : x

n

)

(static-ordering #'linear-force)))

Though these two program fragments are structurally

very similar, and specify the same problem, they en-

tail drastically di�erent search strategies. The lat-

ter constitutes a lifted variant of the former. A fu-

ture paper will we discuss the possibilities of perform-

ing such lifting transformations automatically. Such

2

We adopt the (unenforced) convention that the names

of all nondeterministic generator functions begin with the

pre�x a- or an- and that functions beginning with the pre-

�x a- or an-, and also ending with v, denote lifted gen-

erators, functions which deterministically return a variable

ranging over the stated domain instead of nondeterministi-

cally returning a value in that domain.

lifting is not limited to the a-member-of primitive.

Screamer includes the following syntactic sugar for

(an-integer-betweenv l h).

(let ((v (make-variable)))

(assert!

(andv (integerpv v) (<=v v h) (>=v v l)))

v)

The function an-integer-betweenv is a lifted analog

to the Screamer primitive an-integer-between. All

Screamer generators have lifted analogs.

Related Work

Most of the individual techniques described in this pa-

per are not new. What is novel is their particular com-

bination. Programming languages which allow stating

numeric constraints date back to Sketchpad (Suther-

land 1963). Local propagation for solving systems of

constraints was used by Borning (1979) in Thinglab.

Steele (1980) constructs constraint primitives very sim-

ilar to ours and implements local propagation by pro-

cedural attachment. These techniques were expanded

on by the Magritte system (Gosling 1983). The

above systems di�er from Screamer in two ways.

First, they handled only numeric constraints, lacking

the GFC capacity of Screamer embodied in memberv

and funcallv, as well as uni�cation and disuni�ca-

tion embodied in equalv. More importantly, the con-

straint solving techniques incorporated in all of these

systems were incomplete, particularly those based on

local propagation. None of these systems could re-

sort to interleaving backtracking search with local

propagation|as Screamer can|to provide a slow

but complete fallback to faster but incomplete local

propagation techniques when applied alone.

More recently, numerous systems such as clp(<)

and CHiP have been constructed in the logic program-

ming framework which add some form of constraint

satisfaction|sometimes based on local propagation|

to the backtracking search mechanism already present

in logic programming languages. Screamer di�ers

from such systems in a number of ways, some mi-

nor and some major. First, Screamer uses only

fast local propagation techniques as part of its con-

straint mechanism. The numeric constraint mecha-

nism of clp(<) instead uses more costly techniques

based on the simplex method for linear program-

ming. These techniques are incomplete for nonlin-

ear constraints. clp(<) and CHiP do not pro-

vide mechanisms for dealing with this incomplete-

ness. Screamer, on the other hand, can solve non-

linear constraints using divide-and-conquer-force

combined with local propagation. The second di�er-

ence lies in using Common Lisp instead of Prolog

as a substrate for constructing constraint-based pro-

gramming languages. Given the substrate of nonde-

terministic Common Lisp|especially its capacity for

local side e�ects|the Screamer constraint package

can be written totally in Common Lisp. This gives

Screamer three advantages over clp(<) and CHiP.

First, Screamer is portable to anyCommon Lisp im-

plementation. Second, Screamer can be easily modi-

�ed and extended, to experiment with alternative con-

straint types and constraint satisfaction methods. Fi-

nally, Screamer can coexist and inter-operate with

other current or future extensions to Common Lisp

such as clos and clim.

The current version of Screamer, including the full

constraint package, is available by anonymous FTP

from the �le /com/ftp/pub/screamer.tar.Z on the

host ftp.ai.mit.edu. We encourage you to obtain a

copy of Screamer and give us feedback on your ex-

periences using it.

References

Alan Hamilton Borning. Thinglab|A Constraint-

Oriented Simulation Laboratory. PhD thesis, Stan-

ford University, July 1979. Also available as Stanford

Computer Science Department report STAN-CS-79-

746 and as XEROX Palo Alto Research Center report

SSL-79-3.

A. Colmerauer. Equations and inequations on �nite

and in�nite trees. In 2d International Conference

on Fifth Generation Computer Systems, pages 85{99,

1984.

James Gosling. Algebraic Constraints. PhD thesis,

Carnegie-Mellon University, 1983.

E. R. Hansen. On the solution of linear algebraic

equations using interval arithmetic. Mathematical

Computation, 22:153{165, 1968.

Joxan Ja�ar and Jean-Louis Lassez. Constraint logic

programming. In Proceedings of the 14

th

ACM Sym-

posium on the Principles of Programming Languages,

pages 111{119, 1987.

Alan K. Mackworth. Constraint satisfaction. In Stu-

art C. Shapiro, editor, Encyclopedia of Arti�cial In-

telligence, pages 285{293. John Wiley & Sons, Inc.,

New York, 1992.

Je�rey Mark Siskind and David Allen McAllester.

Screamer: a portable e�cient implementation of

nondeterministic Common Lisp. Technical Report

IRCS{93{03, University of Pennsylvania Institute for

Research in Cognitive Science, 1993.

Ivan E. Southerland. Sketchpad: A Man-Machine

Graphical Communication System. PhD thesis, Mas-

sachusetts Institute of Technology, January 1963.

Guy Lewis Steele Jr. The De�nition and Implemen-

tation of a Computer Programming Language Based

on Constraints. PhD thesis, Massachusetts Insti-

tute of Technology, August 1980. Also avilable as

M. I. T. VLSI Memo 80{32 and as M. I. T. Arti�cial

Inteligence Laboratory Technical Report 595.

Pascal Van Hentenryck. Constraint Satisfaction in

Logic Programming. M. I. T. Press, Cambridge, MA,

1989.

