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Abstract

Data center-scale clusters are evolving towards heterogeneous

hardware for power, cost, differentiated price-performance, and

other reasons. MapReduce is a well-known programming model to

process large amount of data on data center-scale clusters. Most

MapReduce implementations have been designed and optimized

for homogeneous clusters. Unfortunately, these implementations

perform poorly on heterogeneous clusters (e.g., on a 90-node clus-

ter that contains 10 Xeon-based servers and 80 Atom-based serv-

ers, Hadoop performs worse than on 10-node Xeon-only or 80-

node Atom-only homogeneous sub-clusters for many of our bench-

marks). This poor performance remains despite previously pro-

posed optimizations related to management of straggler tasks.

In this paper, we address MapReduce’s poor performance on

heterogeneous clusters. Our first contribution is that the poor per-

formance is due to two key factors: (1) the non-intuitive effect that

MapReduce's built-in load balancing results in excessive and

bursty network communication during the Map phase, and (2) the

intuitive effect that the heterogeneity amplifies load imbalance in

the Reduce computation. Our second contribution is Tarazu, a suite

of optimizations to improve MapReduce performance on heteroge-

neous clusters. Tarazu consists of (1) Communication-Aware Load

Balancing of Map computation (CALB) across the nodes, (2) Com-

munication-Aware Scheduling of Map computation (CAS) to avoid

bursty network traffic and (3) Predictive Load Balancing of Reduce

computation (PLB) across the nodes. Using the above 90-node

cluster, we show that Tarazu significantly improves performance

over a baseline of Hadoop with straightforward tuning for hard-

ware heterogeneity.

Categories and Subject Descriptors: D.1.3 [Software]: Program-

ming Techniques - Concurrent Programming

General Terms: Design; Measurement; Performance

Keywords: Heterogeneous clusters, MapReduce, Shuffle, Load

imbalance, Cluster Scheduling.

1  Introduction

Data centers are the compute platforms of choice for the emerging

era of cloud computing. Data center-scale clusters are evolving

toward heterogeneous hardware — a mix of high-performance and

low-power nodes of disparate hardware architectures. Such hetero-

geneity stems from the diversity in the performance needs faced by

the clusters, ranging from the most stringent of service-level

requirements (e.g., on-line search and real-time computations) to

more lenient requirements (e.g., data analysis, email or batch jobs).

Exploiting this diversity to provide differentiated price-perfor-

mance (e.g., EC2 [2]) and to optimize power [9], real-estate foot

print, and cost often leads to a mix of nodes designed for different

power-performance points (e.g., Xeons and Atoms). Even when

heterogeneity is not introduced by design, the common practice of

phased addition of nodes to the cluster over time implies that the

nodes are often some hardware generations apart resulting in per-

formance variation (e.g, adding nodes over 5-7 years implies 2-3

generations apart). While heterogeneity could also be due to other

factors such as background load variation [37], or to the use of

GPUs and other accelerators, we focus on heterogeneous, general-

purpose CPU architectures.

MapReduce [10], a programming model for data-intensive

applications, greatly improves programmability by providing auto-

matic data management and transparent fault detection and recov-

ery. MapReduce’s programmability has led to quick adoption (e.g.,

Google [10], Yahoo [14], Microsoft [18,35] and Facebook [11]).

To date, however, most MapReduce implementations have been

designed and optimized for homogeneous clusters (e.g., Hadoop

[14]). Unfortunately, these implementations perform poorly on het-

erogeneous clusters. For example, on a heterogeneous cluster of 10

Xeon-based servers and 80 Atom-based servers, Hadoop performs

20-75% worse than 10-node Xeon-only or 80-node Atom-only

homogeneous sub-clusters for six out of our eleven benchmarks.

This poor performance occurs despite Hadoop’s built-in load-bal-

ancing scheduler and straightforward tuning for hardware hetero-

geneity (e.g., customizing the number of processes per node for

each type of node and optimizing the memory buffer sizes).

LATE [37] is a significant effort to optimize MapReduce on

heterogeneous clusters, and focuses specifically on straggler man-

agement. For fault tolerance, MapReduce identifies stragglers (i.e.,

tasks that are slow due to a presumed problem with their nodes)

and speculatively runs backup copies for faster completion. LATE

points out that straggler management results in excessive specula-

tion in the presence of heterogeneity, and proposes techniques to

improve straggler management. Unfortunately, LATE (or, in gen-

eral, straggler management) alone is not sufficient to address hard-

ware heterogeneity which raises other important issues, as

described in this paper. As such, LATE is unable to improve

MapReduce performance on our heterogeneous cluster.

In this paper, we explain the reasons behind MapReduce’s poor

performance on heterogeneous clusters and propose Tarazu1, a

1.  An Urdu word that means balance.
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suite of optimizations to exploit the full performance potential of

such clusters.

Our first contribution is the key finding that the poor perfor-

mance is due to two key factors: (1) the non-intuitive effect that

MapReduce's built-in load balancing of Map computation results

in excessive network communication and (2) the intuitive effect

that the heterogeneity amplifies the load imbalance in Reduce

computation. These factors extend beyond the issues of stragglers

and speculative execution.

The Map-side effect has three components: First, the built-in

load balancing of Map computation leads to faster high-perfor-

mance nodes stealing2 work from slower low-power nodes. The

pronounced difference in the nodes’ compute capabilities implies

that a considerable amount of Map work is stolen. Unfortunately,

input data for the stolen work remains at low-power nodes, result-

ing in numerous remote Map tasks at high-performance nodes and

greatly increased network load. Note that the stolen tasks are sim-

ply the tasks that have not begun execution — not stragglers,

which are slow-running tasks. Skewing the input data distribution

towards high-performance nodes to convert remote tasks into local

tasks incurs many problems, as explained in Section 2. This remote

task problem does not exist in homogeneous clusters which are

naturally load balanced, and hence, run only a few remote tasks.

Second, the remote Map tasks compete with the Shuffle — the all-

to-all communication from Map tasks to Reduce tasks — for the

network bandwidth, severely worsening the bandwidth pressure.

Finally, to reduce inter-node communication while load balancing

in current MapReduce implementations, each node exhausts its

local Map tasks (i.e., tasks whose input data is on local disk)

before stealing tasks from another node (remote tasks). This strat-

egy leads to execution of remote tasks only when necessary.

Unfortunately, in heterogeneous clusters, this strategy temporally

concentrates all remote Map tasks at the end of the Map phase, cre-

ating bursty network load.

The Reduce-side load imbalance stems from the fact that

MapReduce implementations distribute the keys equally among

Reduce tasks assuming homogeneous nodes. However, this equal

distribution creates load imbalance among the heterogeneous

nodes which have disparate compute capability. We crystallize the

above insights using a simple analytical model.

Our second contribution is Tarazu, which consists of a set of

three schemes to address the performance problems. First, we pro-

pose Communication-Aware Load Balancing of Map computation

(CALB) based on the key observation that MapReduce implemen-

tations overlap Map computation and Shuffle, and either Shuffle or

Map computation is in the critical path of execution depending

upon MapReduction’s Shuffle load and cluster hardware character-

istics. When Shuffle is critical, CALB prevents all task stealing and

increases the chances of tasks being performed locally, thereby

eliminating remote Map task traffic and aggravation of the Shuffle

— the first and second Map-side components above. While this

prevention increases computation at low-power nodes, CALB

hides extra work under the critical Shuffle. When Map computa-

tion is critical, CALB allows controlled task stealing to load-bal-

ance Map computation and hides resulting remote task traffic

under low-power nodes’ computation. Thus, CALB shortens the

critical path in both cases — by not aggravating the Shuffle in the

former case and by load-balancing Map computation in the latter.

Second, to avoid bursty remote task communication in Map-criti-

cal MapReductions — the third Map-side component above, we

propose Communication-Aware Scheduling of Map computation

(CAS) which spreads out remote tasks throughout the Map phase.

We propose heuristics based on online measurements to estimate

the information needed by CALB and CAS for making applica-

tion- and cluster-aware decisions. Third, we propose Predictive

Load Balancing of Reduce computation (PLB) by skewing the key

distribution among Reduce tasks based on the compute capabilities

of nodes. To address the challenge that PLB’s skew factors need to

be known before the Reduce phase begins, we use measurements

from the Map phase to predict the Reduce phase’s skew factor.

In summary, the key contributions of this paper are:

• identifying the key reasons for MapReduce’s poor performance

on heterogeneous clusters;

• Communication-Aware Load Balancing of Map computation

(CALB) across nodes;

• Communication-Aware Scheduling of Map computation (CAS)

for spreading out remote Map task traffic over time;

• Predictive Load Balancing of Reduce computation (PLB)

across nodes; and

• on-line measurement-based heuristics to estimate information

needed for making application- and cluster-aware decisions.

We evaluate Tarazu using Hadoop running a suite of eleven typ-

ical MapReduce applications. Using a heterogeneous cluster of 10

Xeon-based servers and 80 Atom-based servers, we show that on

average Tarazu achieves 40% speedup over a baseline of Hadoop

that includes straightforward tuning for hardware heterogeneity.

The rest of the paper is organized as follows. We discuss

MapReduce’s issues with heterogeneity in Section 2 and describe

Tarazu in Section 3. We present our experimental methodology in

Section 4, and our results in Section 5. We discuss some related

work in Section 6 and conclude in Section 7.

2  Issues with heterogeneity

We start with a brief background on MapReduce and then discuss

the issues with MapReduce on heterogeneous clusters.

2.1 Background: MapReduce

In MapReduce’s programming model [10], programmers specify a

Map function that processes input data to generate intermediate

data in the form of <key, value> tuples, and a Reduce function that

merges the values associated with a key.

MapReduce’s execution model has four phases [10]. In the first

execution phase, Map computation produces <key,value> tuples.

This phase is completely parallel and can be distributed easily over

a cluster. The second phase performs an all-Map-to-all-Reduce

personalized communication, called Shuffle, in which all tuples for

a particular key are sent to a single Reduce task. Because there are

usually many more keys than Reduce tasks, each Reduce task may

process more than one key. The third phase sorts the tuples on the

key field, essentially grouping all the tuples for the same key. This

grouping does not occur naturally because the tuples for the differ-

2.  While task stealing generally implies one thread running the tasks

already assigned to another thread, we use the term to indicate a node pro-

cessing data that is resident on the disk of another node to which the pro-

cessing is likely to be assigned due to locality reasons.
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ent keys meant for a Reduce task may be jumbled. Finally, the

fourth phase of Reduce computation processes all the tuples for a

key and produces the final output. Like Map tasks, Reduce tasks

run in parallel.

A run-time system automatically partitions the input data,

schedules the Map tasks across the nodes, orchestrates the Shuffle,

and schedules the Reduce tasks. The run-time system also provides

fault tolerance by re-executing computations when machines fail

or become abnormally slow.

The growing interest in heterogeneous clusters comprising

nodes designed for different performance-power points raises the

question of how MapReduce implementations would perform on

such clusters. Before we address this issue, we briefly describe the

aspects of the MapReduce run-time framework that are most rele-

vant to our context.

First, MapReduce frameworks employ a dynamic load-balanc-

ing scheduler, which tracks the execution status of nodes and

assigns new tasks to free nodes. In doing so, the scheduler also

considers locality. For example, the scheduler prefers tasks that

process data resident on a node's local disk over tasks that require

data from other nodes in the cluster (remote tasks). Second, in

order to utilize maximum parallelism in both the Map and Reduce

phases, Map and Reduce tasks occupy the entire cluster instead of

space-sharing the cluster. Consequently, the all-Map-to-all-Reduce

Shuffle amounts to all-nodes-to-all-nodes communication which

stresses the scarce network bisection bandwidth [10, 32, 31, 36,

13]. While network switch bandwidth does scale with hardware

technology, bisection bandwidth is a global resource which is hard

to scale up with the number of nodes (e.g., around 50 Mbps per

node for current clusters with thousands of nodes [10, 32, 31]). To

alleviate this problem, the Shuffle is overlapped with Map compu-

tation where Reduce tasks “pull” intermediate data from earlier

Map tasks while later Map tasks execute. To achieve this overlap,

the scheduler creates and assigns Reduce tasks to nodes early dur-

ing the Map phase (Map and Reduce tasks time-share the nodes,

although Reduce computation does not start until Map and Shuffle

phases have finished). Finally, in addition to these basic optimiza-

tions, MapReduce frameworks also have mechanisms for dealing

with straggler tasks (tasks that take an unusually long time to exe-

cute and delay the completion of a phase [10]), by speculatively

creating backup copies of tasks and terminating all outstanding

copies when one copy finishes.

2.2 Reasons for poor performance on heterogeneous clusters

At first glance, it might appear that the dynamic load-balancing

approach makes MapReduce frameworks inherently well-suited to

heterogeneous clusters: slower (low-power) nodes would be

assigned fewer tasks, while faster (high-performance) nodes would

be assigned more tasks, leading to good load balance subject to the

limits imposed by task granularity [10]. To test this hypothesis, we

ran a suite of eleven MapReduce benchmarks on a 90-node, heter-

ogeneous cluster comprising 10 Xeon-based nodes and 80 Atom-

based nodes, using Hadoop [14] extended with suitable straggler

optimizations [3,37]. We also tuned Hadoop for hardware hetero-

geneity by customizing the number of worker threads per node for

each node type to account for nodes’ differing core counts and

optimizing memory buffer sizes to match nodes’ memory capaci-

ties. We observed that the 90-node heterogeneous cluster was 20-

75% slower than 10-node Xeon-only or 80-node Atom-only homo-

geneous sub-clusters for six out of eleven of our benchmarks. In

other words, adding heterogeneous hardware resources actually

degrades performance. This poor performance underscores the fact

that MapReduce frameworks designed and optimized for homoge-

neous clusters do not directly scale to heterogeneous clusters.

The poor performance of MapReduce is due to two key factors,

one non-intuitive and the other intuitive.

2.2.1 Factor 1 (non-intuitive): Interaction between load

balancing and network traffic in Map

The MapReduce scheduler schedules remote Map tasks when a

node no longer has any local data to process. In the context of a

cluster with high-performance and low-power nodes, high-perfor-

mance nodes finish their local Map tasks before low-power nodes,

leading to the scheduling of many remote Map tasks that read input

data from low-power nodes and incur greatly increased network

load. Table 1 shows the break down of Map tasks into local and

remote tasks for our above 90-node cluster. We see that because

the homogeneous sub-clusters (Xeon-only and Atom-only) are

well-balanced naturally, there are only a few remote Map tasks. In

contrast, in the heterogeneous cluster, almost half of the Xeon-

based nodes’ Map tasks are remote (stolen from the Atom-based

nodes). Because the Atom-based nodes are slower, they execute

only a few remote tasks. We clarify that (1) the input data traffic for

these Map tasks is distinct from the Shuffle which is the Map-to-

Reduce communication, and (2) the remote tasks correspond to

low-power nodes’ tasks that have not begun execution — not strag-

glers which are slow-running tasks.

This network traffic problem is exacerbated in MapReductions

with heavy Shuffle, where remote Map traffic must compete with

the Shuffle for network bandwidth (recall that the Shuffle is over-

lapped with the Map phase). Figure 1 depicts the activities of high-

performance and low-power nodes (Y axis) over time (X axis) dur-

ing Map and Reduce phases. In the Map phase, the Shuffle is over-

lapped with Map tasks in the nodes. The high-performance nodes’

remote Map traffic competes with the Shuffle. The local tasks at

low-power nodes are slowed down due to the I/O processing

required to service the high-performance nodes’ remote tasks.

Furthermore, remote Map traffic is concentrated at the end of

the Map phase because remote tasks are scheduled only after a

node has finished processing its local data, as shown in Figure 1

for high-performance nodes. Figure 2 plots the remote Map traffic

(Y axis) over Map phase execution time (X axis) showing the traf-

fic burst at the Map phase end. Thus, despite being locality-aware

(which in general reduces communication), the scheduler greatly

increases network traffic in heterogeneous clusters.

Table 1: Map task distribution in homogeneous vs.

heterogeneous clusters

Homogeneous Heterogeneous

Xeon-only Atom-only Xeons Atoms

local ~100% 98% 45% 95%

remote ~0% 2% 55% 5%
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2.2.2 Factor 2 (intuitive): Reduce phase imbalance amplified by

heterogeneity

The run-time system attempts to load balance the Reduce phase by

assigning keys uniformly to each of the Reduce tasks, and schedul-

ing tasks to the nodes in the cluster. The ability to dynamically

load balance Reduce tasks is drastically limited by the fact that the

number of Reduce tasks is typically only a small multiple of the

number of nodes in the cluster in order to limit output fragmenta-

tion [10]. In the context of heterogeneous clusters, Reduce phase

load imbalance is amplified due to the different processing speeds

of different node types. Although the keys are distributed uni-

formly, low-power nodes take longer. The Reduce phase depicted

in Figure 1 illustrates this issue. It is difficult for the scheduler to

rectify this imbalance given the small number of Reduce tasks at

each node. Treating Reduce tasks on low-power nodes as strag-

glers and running backup copies on high-performance nodes

would effectively amount to not utilizing low power nodes in the

Reduce phase. Furthermore, different Reduce tasks could process

different amounts of data in both homogeneous and heterogeneous

clusters, depending on the distribution of the values per key. How-

ever, addressing the value-per-key variability is harder than the

variability due to heterogeneity, as discussed in Section 3.3.

2.3 A simple analytical model

To crystallize the above insights, we propose a simple performance

model for MapReduce execution on a heterogeneous cluster. For

ease of illustration, we describe our model for two types of nodes:

high performance nodes (hp) and low-power nodes (lp). Our model

assumes information such as the average execution times of Map

and Reduce tasks on different types of nodes and total volume of

Shuffle data (e.g., collected through profiling). The model

expresses a MapReduction’s execution time as a function of vari-

ous known parameters and key unknowns — the ratio in which

Map tasks and Reduce tasks are partitioned among different node

types. The inputs to the model are as follows:

• Nhp (Nlp) — number of high-performance (low-power) cores

(not nodes) in the cluster;

• ChunkSize — size of one input data chunk in bytes;

• Dhp (Dlp) — number of input data chunks stored on high-per-

formance (low-power) nodes, without counting replicas;

• Tmapl,hp (Tmapr,hp) — average execution time of local

(remote) Map task on a high-performance node;

• Tmapl,lp (Tmapr,lp) — average execution time of local (remote)

Map task on a low-power node;

• Nkeys — total number of keys processed by Reduce;

• Tredhp — average time taken to perform Reduce (including

Sort) on a single key on a high performance node;

• Tredlp — average time taken to perform Reduce (including

Sort) on a single key on a low power node;

• BWbisection — bisection bandwidth of the cluster in bytes/sec;

and

• ShuffleData — total Shuffle traffic in bytes.

The unknowns (to be determined) are:

• Nmapl,hp (Nmapr,hp) — number of local (remote) Map tasks

executed on high-performance nodes;

• Nmapl,lp (Nmapr,lp) — number of local (remote) Map tasks

executed on low-power nodes; and

• Nkeyshp (Nkeyslp) — number of keys processed by Reduce on

high-performance (low-power) nodes.

Our model is described by the following linear equations for

each of the Map, Shuffle and Reduce phases:

Map phase: Due to symmetry, we assume perfect load balance

of Map tasks within high-performance and low-power nodes (but

not across the two types of nodes). We intentionally ignore strag-

glers because it is not our intent to address them (previously pro-

posed straggler management techniques may be used).

Consequently, data chunks that reside on a high-performance node

must be processed either by local Map tasks or by remote Map

tasks on low-power nodes, and vice-versa for data chunks on a

low-power node. Further, we assume that a chunk is located on a

high-performance node if a single replica is available on a high-

performance node. Hence,

Nmapl,hp + Nmapr,lp = Dhp

Nmapl,lp + Nmapr,hp = Dlp

time

 remote Map tasks

exposed Shufflehigh-performance
node

low-power
node

local
Map tasks

slowed local Map tasks

Shuffle

Shuffle

Reduce tasks

Job completeBarrier

uniform key
distribution

FIGURE 1: MapReduce performance issues on heterogeneous clusters
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Map Finish Time (MFT) can be computed as:

MFThp = (Nmapl,hp*Tmapl,hp+Nmapr,hp*Tmapr,hp)/ Nhp

MFTlp = (Nmapl,lp * Tmapl,lp + Nmapr,lp * Tmapr,lp) / Nlp

MFT = max(MFThp, MFTlp) (EQ 1)

Shuffle phase: For simplicity, we assume that all of the remote

Map reads and Shuffle data cross the cluster bisection, as given by:

Dbisection = (Nmapr,lp + Nmapr,hp)* ChunkSize + ShuffleData (EQ 2)

To compute Shuffle Finish Time (SFT), we make simplifying

assumptions that (1) the remote Map reads are spread out evenly

throughout the Map phase while, in practice, the reads are concen-

trated at the Map phase end as discussed in Section 2.2.1 and (2)

the Shuffle starts at the beginning of the Map phase (though in real

implementations, the Shuffle starts a little later in the phase).

Because the Map computation overlaps with the Shuffle and

remote Map reads, SFT can be computed as:

SFT = max(Dbisection/BWbisection, MFT) (EQ 3)

Because the remote Map reads are bursty, their overlap with the

Map is imperfect causing SFT to be longer in practice. If the Shuf-

fle is hidden completely under Map then SFT = MFT; otherwise,

there is some exposed Shuffle and SFT > MFT.

Reduce phase: Reduce Finish Time (RFT) is given by:

RFT = SFT + max (Nkeyslp*Tredlp/Nlp, Nkeyshp* Tredhp/Nhp)(EQ 4)

We note that the model consists of linear equalities and inequal-

ities in the unknown variables (max can be expressed as multiple

linear inequalities). Therefore, the model can be solved exactly to

minimize the total execution time (Reduce finish time, RFT), sub-

ject to the above constraints. Intuitively, this model captures the

following trade-offs engendered by MapReduce execution on het-

erogeneous clusters:

• The ratio of input data stored on high-performance nodes to

that on low-power nodes may be different from the ratio of the

nodes’ processing rates (Tmapl,lp/Tmapl,hp).

• The Map phase could be load balanced by executing remote

Map tasks (Nmapr,lp > 0 or Nmapr,hp > 0), as is typical in cur-

rent MapReduce frameworks, but doing do may increase the

data crossing the cluster bisection due to remote Map reads

(Dbisection), possibly delaying the Shuffle finish time (SFT).

• For Shuffle-light MapReductions, ShuffleData is small, and the

Shuffle is hidden under the Map phase. For Shuffle-heavy

MapReductions with large ShuffleData, the Shuffle is exposed.

• The Reduce phase can be load-balanced by assigning different

number of keys to each type of nodes (Nkeyshp, Nkeyslp).

While the above model is useful to understand the trade-offs

involved in MapReduce execution on heterogeneous clusters, the

extensive information required (application and cluster characteris-

tics, and task execution times) make it infeasible to use in practice.

Requiring a priori application profiling on the target cluster greatly

diminishes the agility and ease of use that is inherent to MapRe-

duce. Therefore, we propose to use some heuristics based on

online measurements to achieve the same goal in Tarazu.

2.4 Alternative approaches

One may argue that the aforementioned issues could be addressed

using alternative approaches, including skewed data distribution,

backup tasks, re-organization of the cluster hardware, and employ-

ing fine-grained Reduce tasks. We consider each of these in turn

and argue their merits and de-merits in order to justify our

approach.

Because node disk capacities are not directly correlated to com-

pute capabilities (low-power nodes are available with similar disk

capacities as high-performance nodes), it is natural to distribute

data uniformly across the disks. However, one could skew Map

input data distribution such that the amount of input data stored on

each node is proportional to the node's processing capability.

Doing so would imply that a high-performance node has more

local Map data than a low-power node so that high-performance

nodes do not exhaust local data much earlier than low-power

nodes, resulting in far fewer remote Map tasks and far less network

traffic. However, determining a good skew factor is hard in practice

because the relative processing speeds of different types of nodes,

and hence the skew factor, vary significantly from application to

application. For example, in our suite of 11 MapReduce bench-

marks, the ratio of Map task processing times on Atom-based to

Xeon-based nodes vary from 1.5:1 to 4.5:1. Thus, despite skewing

the data distribution, a significant number of remote tasks will

remain, leading to the performance issue outlined above (see

Section 5.5). Furthermore, skewing the data distribution incurs

other significant problems: (i) Skewing would cause under-utiliza-

tion of the cluster storage capacity because commodity disk capac-

ities are unlikely to match our skew factors. In fact, Hadoop uses a

“disk re-balancer” to prevent any unintentional skew to achieve

good storage utilization [38]. (ii) Skewing would compromise fault

tolerance achieved by data replication (nodes that store more data

will have a much higher impact when they fail). Based on a Monte-

Carlo simulation of node failures in a 1000-node cluster (100 high-

performance nodes and 900 low-power nodes) with 3-way data

replication of 640 GB, we determined that the probability of data

becoming unavailable when 1% of the nodes fail is 0.0022 for uni-

form data distribution, and 0.0182 (an increase of 8.3X) when the

distribution is skewed in the ratio of 1:4 between low-power and

high-performance nodes. In Figure 3, we show the probability of

data becoming unavailable (Y axis) when 0-2% of the nodes fail

FIGURE 3: Probability of data unavailability with
skewed distribution
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(X axis) for the two data distribution schemes (higher node failure

rates are unlikely). To avoid these reliability problems, we explore

a solution that addresses the more realistic scenario where a signif-

icant number of remote tasks need to be executed, with or without

skewed data distribution.

Backup tasks could be used to improve the load balancing

capability of the scheduler in the presence of heterogeneity: upon

completing all their local tasks, high-performance nodes can spec-

ulatively execute backup copies of tasks running on low-power

nodes, reducing the chance of imbalance. Doing so, however,

would imply that low-power nodes are under-utilized. In addition,

the backup tasks may even hurt performance by creating additional

load on the network.

Increasing the replication factor for data would increase the

probability that data is local to a node and would reduce the num-

ber of remote tasks. This option, however, imposes a significant

penalty on the cluster storage capacity.

Increasing the number of Reduce tasks (finer-grained Reduce

tasks executed in multiple batches) could improve the Reduce

phase’s load balance because high-performance nodes would auto-

matically execute more Reduce tasks. However, typical MapRe-

duce jobs use a single batch of coarse-grained Reduce tasks due to

two reasons. (1) With multiple batches, the Shuffle cannot hide

under Map computation in later batches (Map completes before the

first Reduce batch) and Reduce computation is usually too short to

fully hide the Shuffle. The exposed Shuffle often makes multiple

Reduce batches slower than one batch. (2) Unlike a MapReduc-

tion’s input and final output, the intermediate Map output is not

replicated for fault tolerance. To reduce the probability of loss of

the intermediate data and subsequent re-run of Map tasks, the

Reduce phase follows soon after Map in the single-batch case,

whereas multiple batches often delay the Reduce phase.

In summary, MapReduce application developers expect their

applications’ performance to scale in proportion to the cluster’s

compute resources, irrespective of whether the hardware is homo-

geneous or heterogeneous. Based on the above insights, we pro-

pose a suite of optimizations called Tarazu.

3  Tarazu

Recall from above that (1) the Map-side built-in load balancing

results in numerous remote Map tasks which increase the network

load (i.e., Dbisection in EQ 2 and EQ 3), compete with the Shuffle,

and create bursty network load by being concentrated at the end of

the Map phase, and (2) hardware heterogeneity amplifies the

Reduce-side load imbalance across the nodes (i.e., increases the

max term for RFT in EQ 4). To address these issues, we propose

Tarazu, a suite of optimizations to improve MapReduce perfor-

mance on heterogeneous clusters. As illustrated in Figure 4, Tarazu

consists of three components:

• Communication-Aware Load Balancing of Map computation

(CALB), which regulates the use of remote Map tasks based on

whether Map or Shuffle is likely to be in the critical path

(Section )

• Communication-Aware Scheduling of Map computation (CAS)

to spread out remote Map tasks throughout the Map phase

(Section 3.2), and

• Predictive Load Balancing of Reduce computation (PLB)

across the heterogeneous nodes (Section 3.3).

3.1 Communication-Aware Load Balancing of Map (CALB)

CALB is based on the key observation that due to the overlap

between Map computation and Shuffle, either the Shuffle or the

Map computation is in the critical path, depending upon the

MapReduction’s Shuffle load and the cluster hardware characteris-

tics. As shown in Figure 4, CALB uses on-line measurements dur-

ing the initial part of the Map phase to choose one of two operating

modes, depending on whether Shuffle or Map is critical. In the ini-

tial part, all MapReductions start in the task-steal mode which

allows controlled task stealing to load-balance the Map computa-

tion (i.e., lower MFT in EQ 1).

For MapReductions where the Shuffle is critical, CALB

switches to no-steal mode where CALB prevents task stealing for

most of the Map phase, preventing further aggravation of the Shuf-

fle traffic (i.e., lower Dbisection in EQ 2 and EQ 3) and increasing

the chances of tasks being executed locally. When the Shuffle traf-

fic falls below a threshold, called shuffleEndThreshold, (i.e.,

towards the end of the Map phase), CALB allows task stealing to

load-balance any remaining tasks (naturally, faster nodes steal

work from slower nodes). Figure 5 shows how the no-steal mode

operates for the example of Figure 1. Like Figure 1, Figure 5

depicts the activities of high-performance and low-power nodes (Y

axis) over time (X axis) during Map and Reduce phases. The Shuf-

fle is critical in this example. For most of the Map phase, high-per-

formance nodes do not steal tasks, allowing the low-power nodes

to run the tasks locally. At the end of the Map phase when the

Shuffle ends, high-performance nodes pick up a few remote tasks.

The no-steal mode has three benefits: (i) There are no remote

Map tasks to compete with the Shuffle (Figure 5), (ii) Avoiding

remote tasks also reduces the I/O processing overhead at senders

and receivers. (iii) Because of no task stealing, slower nodes per-

form more work compared to the case with task stealing. Despite

being slower, nodes’ extra work is hidden under the critical Shuffle

which exists irrespective of whether task-stealing occurs or not

(Figure 5). By avoiding the contention due to remote tasks and

their traffic, CALB enables the critical Shuffle to proceed faster,

resulting in faster overall execution.

One may think that the residual task stealing at the end of the

Map phase in the no-steal mode could create a burst of remote task

traffic. However, this problem does not arise because (1) the num-

ber of remote tasks at this point is usually small (e.g., 1-2% of Map

FIGURE 4: Overview of Tarazu

CALB

Compute ShuffleLag during

initial part of Map phase

Shuffle or

Map critical?

Task-Steal
Mode

No-Steal
Mode

CAS

Compute processing rates
for different node types

Interleave local and remote

tasks based on compute ratios

PLB

Compute Reduce skew factors
using CAS’s processing rates

Create Reduce tasks with
skewed key distribution(trigger CAS)

(used by CAS & PLB)

Shuffle-
critical

Map-
critical
66



tasks) and (2) most of the Shuffle has finished by that time, so the

remote traffic does not interfere with the Shuffle.

For MapReductions where the Map computation is critical,

CALB continues in the task-steal mode. Note that the number of

remote tasks needed and when to schedule them are the concern of

CAS, which is discussed in the next sub-section. Figure 6 shows

the task-steal mode for an example where Map computation is crit-

ical. As before, the Y axis shows the nodes’ activities and the X

axis shows time. In the Map phase, high-performance nodes steal

tasks from low-power nodes. CALB hides the resultant high-per-

formance nodes’ remote task traffic under the low-power nodes’

computation (Figure 6). By load-balancing Map computation,

CALB shortens the critical path in this case.

The remaining issue is the detail of determining CALB’s mode

for a given application-cluster combination based on whether the

Shuffle or the Map computation is critical. To this end, we observe

that the Shuffle is critical when Map tasks complete their computa-

tion at a faster rate than their communication to Reduce tasks. For-

tunately, MapReduce implementations already monitor, for fault

tolerance purposes, the number of Map tasks that have completed

their computation (numComputedi) and the number that have com-

pleted their communication (numCommunicatedi) for each node i

(these are sent at each heartbeat by worker nodes to the master

node). We aggregate these numbers for the entire cluster and

denote the aggregate values as numComputedall and numCommu-

nicatedall. The difference between the two numbers, which we call

shuffleLag, indicates the extent to which the Shuffle lags the Map

computation. If shuffleLag increases over time, it implies that the

Shuffle is likely to be critical.

We monitor the trend in shuffleLag over a time window

between two points during the Map phase, denoted by measureBe-

gin and measureEnd. Recall that the Shuffle communication starts

only after Reduce tasks have been created, which occurs after

some Map tasks are underway (Section 2). Consequently, we set

measureBegin as the point where at least some Map tasks have

completed their communication so that we obtain reliable readings

for numCommunicatedi. measureEnd is constrained by the fact that

the earlier the window ends, the fewer the samples whereas the

later the window ends, the less time there is for taking the neces-

sary action. We set measureEnd to achieve a good compromise

between these opposing requirements. If the slope of the time

series of shuffleLag measurements over the monitoring interval is

positive, CALB enters no-steal mode; otherwise, it enters task-

steal mode. CALB uses this simple approach to decide whether the

Shuffle or the Map computation is critical for an application-clus-

ter combination.

In no-steal mode, CALB detects the end of the Shuffle by con-

tinuing to monitor shuffleLag beyond measureEnd. The end is

detected when shuffleLag as a fraction of numComputedall falls

below shuffleEndThreshold.

It may seem that CALB may sub-optimally choose the task-

steal mode for straddler MapReductions where the Map computa-

tion is only slightly more critical than the Shuffle. However,

because all MapReductions start with task-steal mode in which

they stay till measureEnd, our measurements (numCommuni-

catedi) include the effect of remote tasks due to task stealing on the

network traffic in the measurement time window. CALB chooses

task-steal mode only if the Map computation lags the Shuffle in the

presence of the remote tasks. Therefore, CALB’s choice of task-

steal mode is not likely to be sub-optimal. Moreover, because

Shuffle or Map criticality does not change within a MapReduction,

deciding the source of criticality once is enough without the need

for repeated, dynamic checks.

Although we have used two types of nodes — high-perfor-

mance and low-power nodes — to illustrate our ideas, our descrip-

tion of CALB does not assume any specific number of types of

nodes. As such, CALB is applicable to a heterogeneous cluster

with any number of node types.

3.2 Communication-Aware Scheduling of Map (CAS)

While CALB decides whether or not allowing remote tasks would

be beneficial for a given MapReduction, CAS determines how

many remote tasks are needed and when to execute them in the

task-steal mode (Figure 4). Recall from Section 2 that in current

MapReduce implementations, task stealing occurs at the end of the

Map phase, creating a surge of traffic. Also, as discussed in

Section 2.3, this bursty traffic increases SFT (EQ 3). To avoid this

problem, CAS spreads out the remote tasks (during initial part of

the Map phase, and in CALB’s task-steal mode) by interleaving

them with local tasks. Figure 6 shows that high-performance nodes

uniformly interleave their local and remote tasks. In addition to

avoiding the bursty traffic, CAS has other benefits: (1) By inter-

leaving remote tasks with local tasks in the Map phase, CAS

achieves better overlap between remote task communication and

local task computation on both sender and receiver sides (low-

power and high-performance nodes, respectively, in Figure 6). (2)

The remote tasks read input data faster by avoiding bursts. These

time

remote
Map tasks

low-
power

local
Map tasks

Shuffle

Shuffle

Reduce
tasks

Job
complete

Barrier

high-
perfor-
mance

FIGURE 5: Communication-aware load
balancing of Map (CALB) no-steal mode

Map phase Reduce phase

time

remote
Map tasks

low-
power

local
Map tasks

Shuffle (low volume)

Shuffle (low volume)

Reduce
tasks

Job
complete

high-
perfor-
mance

FIGURE 6: Communication-aware scheduling of Map
(CAS) and Predictive Load Balancing of Reduce (PLB)

Barrier

Map phase Reduce phase

skewed key
distribution
67



benefits shorten Map computation, which is the critical path rele-

vant for CAS.

In current MapReduce implementations, remote tasks are exe-

cuted by a node only after it runs out of local tasks, and hence it is

known for sure that remote tasks are required. In contrast, CAS

requires task stealing to occur throughout the Map phase when the

number of remote tasks is not known. To address this issue, we

measure the average Map task execution times for each node type

in the cluster and compute the ratios of the execution times for

each pair of types (mapComputeRatioi,j defined as execution time

of type j / execution time of type i). Because we need only one of

mapComputeRatioi,j and mapComputeRatioj,i, we choose numera-

tor node type j to be the slower one. (In the simple case where there

are only two node types, mapComputeRatio is a single number.)

CAS uses these ratios to determine the number of remote tasks to

be moved from one node to another. Because current MapReduce

implementations already track the identity of the pair of source and

destination nodes involved in task stealing, CAS can apply the spe-

cific pair’s mapComputeRatio.

We continually monitor the execution times of local Map tasks

that have completed their execution and calculate mapComputeRa-

tioi,j for all i and j. As CAS triggers task stealing throughout the

Map phase, each task stealing instance uses the ratio available at

the time of the instance.

Unlike CALB which is naturally independent of the number of

node types in the cluster, CAS needs per-pair ratios. However,

because this number is likely to be small in real-world clusters,

computing the ratios poses insignificant overhead.

Finally, CAS applies some more optimizations. First, to avoid

overwhelming a node and causing thrashing, CAS limits the maxi-

mum number of remote tasks that can concurrently read input data

from a node to remoteServeThreshold. Second, CAS prevents

slower nodes from running local tasks whose input data is repli-

cated at a faster node by using the replica locations of data (which

is tracked by current MapReduce implementations for locality pur-

poses). Third, CAS prevents task stealing from a node if the node

has fewer remaining tasks than localRemainingThreshold. The

rationale is that the node will likely execute the tasks faster than

communicating the data for remote execution.

3.3 Predictive load balancing of Reduce (PLB)

While CALB and CAS optimize the Map phase, PLB achieves bet-

ter load balance in the Reduce phase by skewing the intermediate

key distribution among the Reduce tasks based on the type of the

node on which a Reduce task runs (Figure 4). Such load balancing

reduces the max term for RFT in EQ 4. While current implementa-

tions create as many bins per Map task as there are Reduce tasks,

PLB creates more hash bins (by a factor of binMultiplier) as the

number of Reduce tasks to achieve the skew (e.g., binMultiplier =

4). PLB uniformly distributes keys to the bins and then assigns as

many bins to each Reduce task on node i as is dictated by the skew

factor, reduceSkewFactori. For example, if a fast node is three

times as fast as a slow node, then reduceSkewFactori for the fast

node is 3 and that for the slow node is 1. Therefore, a Reduce task

on a fast node gets three times as many bins as a Reduce task on a

slow node, as shown in the Reduce phase in Figure 6. To imple-

ment assigning multiple bins per Reduce task, we modify the

MapReduce implementation to allow multiple sends from a Map

task to a Reduce task (the baseline implementation assigns and

sends only one bin from a Map task to a Reduce task). Note that

although we create more hash bins per Map task than the baseline,

we have the same number of Reduce tasks as the baseline and

therefore do not incur any extra output fragmentation

(Section 2.2.2).

Ideally, reduceSkewFactori should be the ratio of the processing

speeds of Reduce computation on the types of nodes in the cluster.

However, because Reduce tasks are launched early in the Map

phase to avoid delaying the Shuffle, the processing speeds are not

available at the beginning of the Reduce phase. Moreover, starting

with a default skew factor and changing it during the Reduce phase

would incur the prohibitive cost of re-shuffling of data. Conse-

quently, we use CAS’s mapComputeRatioi,j for each pair of node

types to compute reduceSkewFactori and normalize this factor with

respect to that of the slowest node. Thus, we use measurements

from the Map phase to predict the Reduce phase’s skew factor (we

could use generic performance ratios of the node types but doing

so would likely be no better than using the Map phase ratios).

While PLB skews the key distribution, the imbalance in the

Reduce tasks may also come from the variability in the actual

number of values per key. However, the requirement that the num-

ber of values per key has to be learnt early in the Map phase could

make any estimates inaccurate. Therefore, we do not pursue this

option.

Finally, PLB’s skewed key distribution results in the Reduce

output being skewed across nodes. However, the Reduce output is

not uniform even in homogeneous clusters due to the variability in

the number of values per key. In fact, MapReduce implementations

provide a disk re-balancer to address this issue (Section 2).

3.4 Other issues

We discuss a few remaining issues related to Tarazu.

Because our schemes merely affect the creation and scheduling

of the tasks, MapReduce’s fault tolerance schemes and speculative

execution of stragglers remain intact.

Although our implementation is based on Hadoop, our schemes

are general and apply to other implementations [11,18,27]. Further,

our schemes would default to Hadoop for homogeneous clusters.

CALB’s no-steal mode would amount to a few remote tasks at the

end of the Map phase, similar to Hadoop. In CALB’s task-steal

mode, CAS would not kick in because a homogeneous cluster has

only one type of nodes. Consequently, CALB’s task-steal mode

would also default to current Hadoop. PLB would not kick in due

to the same reasons as CAS.

Our schemes are applicable to heterogeneous clusters with any

number of types of nodes, and may be useful under different forms

of hardware heterogeneity. For example, clusters where some

nodes are GPU accelerated while others are not will also be subject

to the issues that we address.

Despite the disadvantages of doing so, Map input data distribu-

tion may be skewed such that more data is placed on faster nodes

to reduce remote Map tasks (Section 2). If the skewing is only

moderate where faster nodes still finish before slower nodes,

CALB would work as described. However, CAS’s execution time

ratios would have to be adjusted by the data skew factor (e.g., if

CAS’s mapComputeRatio ratio is 3:1 and faster nodes have twice

as much data as slow nodes, then the new ratio would be 1.5:1). On
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the other hand, if faster nodes have so much data that they finish

after slower nodes, then CALB’s no-steal mode would proceed as

before with a few remote tasks migrating from fast nodes to slow

nodes at the end of the Map phase. In CALB’s task-steal mode,

CAS’s adjusted ratios would flip directions and force the slower

nodes to steal tasks from the faster nodes. Because skewing is only

for the Map input data, PLB is not affected.

4  Experimental Methodology

We evaluate Tarazu by modifying Hadoop’s public-domain

MapReduce implementation (version 0.20.2) [14]. We use a heter-

ogeneous cluster of 90 servers comprising 10 Xeon-based and 80

Atom-based server nodes.

4.1 MapReduce Implementations

Hadoop implements MapReduce as a run-time system linked with

user-supplied Java classes for Map, Combiner (optional), and

Reduce functionality. Hadoop uses a single master (JobTracker)

for the whole cluster to create and schedule Map and Reduce tasks,

monitor node health, and trigger backup tasks if needed.

We compare Tarazu against Hadoop as well as LATE [37]. For

a fair comparison, we tune Hadoop for hardware heterogeneity by

customizing the number of processes per node for each node type

to account for the differences in core counts across node types and

optimizing memory buffer sizes to match the memory sizes (e.g,

our Xeon-based and Atom-based nodes have 8 cores with 48 GB

DRAM per node and 2 cores with 4 GB DRAM per node, respec-

tively, and Atom-based nodes thrash or run out of memory with

default Hadoop settings). We list these and other parameters in

Table 2. Further, for better performance, we replace Hadoop’s syn-

chronous write of the final Reduce output, which is replicated for

fault tolerance, with asynchronous write in all cases (Hadoop,

LATE, and Tarazu). We ensure that our measurements include the

time for asynchronous writes in the background to finish.

We implement LATE and use the above tuned parameters. Fur-

ther, we use the same values for SpeculativeCap and SlowTask-

Threshold, as recommended in the paper. We tune

SlowNodeThreshold so that LATE can correctly detect Xeon-based

and Atom-based nodes as fast and slow nodes, respectively. We use

the same heuristics to estimate the tasks’ progress rates and finish

times as in [37]. We ensure that LATE always schedules backup

tasks on a Xeon-based node.

We run Tarazu with the parameters listed in Table 3. The master

node samples numComputedi and numCommunicatedi at every

heartbeat for each node type in the time interval between mea-

sureBegin and measureEnd (Section ), computes mapComputeRa-

tioi,j for each pair of node types to determine the number of remote

Map tasks (Section 3.2) and reduceSkewFactori for each node type

to skew the key distribution to Reduce tasks across the node types

(Section 3.3). In PLB, we use the same heuristic as Hadoop to

launch the Reduce tasks, with the additional requirement that at

least one Map task on each node type is complete. This require-

ment ensures that we have valid reduceSkewFactori for assigning

hash bins to Reduce tasks.

4.2 Platform

We use a 90-node cluster comprising 10 Xeon-based and 80 Atom-

based nodes. Each Xeon-based node is a dual-socket machine,

where each socket has a quad-core Xeon E5620. Overall, each

node has 8 cores running at 2.4 GHz, 12 MB L2, 48 GB of DDR3

RAM, and a 1-TB SATA hard disk. Each Atom-based node has an

Intel Dual Core Atom D510 processor with each core at 1.66GHz,

2MB L2, 4 GB of DDR3 RAM, and a 500-GB SATA hard disk. All

the systems run Ubuntu 10.04. Because of real system artifacts

such as differences in disk seek times and OS scheduling varia-

tions, the execution time for the same job can vary across runs.

However, we did not see any significant variations in our runs.

Our cluster uses two levels of non-blocking Gigabit Ethernet

switches to connect the 90 nodes, which results in a per-node

bisection bandwidth (around 1 Gbps) that is much higher than that

available in typical large-scale clusters (around 50 Mbps [10, 32,

31], as discussed in Section 2.1). While the Shuffle stresses the

network bisection in typical large clusters [36, 13] especially in the

case of Shuffle-heavy MapReductions, our cluster’s high band-

width unrealistically eliminates the impact of the Shuffle. For

example, our Shuffle-heavy MapReductions running on a homoge-

neous Amazon EC2 cluster of 128 Xeon-based nodes spend about

20% of their total execution times in exposed Shuffle as compared

to less than 5% on our homogeneous Xeon-node sub-cluster (the

clusters use similar nodes and therefore the Map computation

should hide the Shuffle to the same extent in the two clusters). To

address this issue, we simulate realistic bisection bandwidth by

dividing our cluster into nine sub-clusters of 10 nodes each (in

some experiments, we use Xeon-only (10 nodes) and Atom-only

(80 nodes) clusters where we divide the Xeon-only cluster into two

five-node sub-clusters and the Atom-only cluster into eight 10-

node sub-clusters). We use the network-utility tools tc and iptables

to limit per-node bandwidths from one sub-cluster to another to 50

Mbps without limiting the bandwidths within each sub-cluster.

Table 2: Hadoop parameters

mapred.tasktracker.map.tasks.maximum 8 for Xeons,

2 for Atoms

mapred.tasktracker.reduce.tasks.maximum 2

io.sort.factor 5

mapred.inmem.merge.threshold 100

mapred.job.shuffle.merge.percent 0.50

DFS block size 64 MB

DFS replication factor 3

Maps to be completed before reduce creation 5%

Speculative execution enabled Yes

Heartbeat interval 6 sec

Table 3: Tarazu parameters

CALB measureBegin 0.4

CALB measureEnd 0.5

CALB shuffleEndThreshold 0.02

CAS remoteServeThreshold 1

CAS localRemainingThreshold 2

PLB binMultiplier 4
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4.3 Benchmarks

Because there are only three interesting MapReductions — tera-

sort, word-count, and grep — in the Hadoop release, we add eight

more MapReductions covering Shuffle-heavy and Shuffle-light

categories.

4.3.1 Shuffle-heavy MapReductions

Our Shuffle-heavy MapReductions include self-join, tera-sort,

ranked-inverted-index, k-means, term-vector, inverted-index,

word-count, and multi-word-count. Self-join is similar to the candi-

date generation part of the a priori data mining algorithm to gener-

ate association among k+1 fields given the set of k-field

associations [1]. Tera-sort is based on NOWsort [6] for sorting

100-byte tuples with first 10 bytes of each record as the key and the

remaining 90 bytes as the value. Ranked-inverted-index takes lists

of words and their frequencies in a file, and generates lists of files

containing the given words in decreasing order of frequency. k-

means is a popular data-mining algorithm used to cluster input data

into k clusters. k-means iterates to successively improve clustering

[21]. Inverted-index takes a list of documents as input and gener-

ates word-to-document indexing. Term-vector determines the most

frequent words in a host (above some cut-off) to aid analyses of the

host’s relevance to a search. Word-count, a well-known applica-

tion, counts all unique words in a set of documents. Multi-word-

count generates a count of all unique sets of three consecutive

words in the set of documents.

We summarize input data sizes, dataset descriptions, run times

of baseline Hadoop, and the Shuffle volume in Table 4. The Shuffle

volume is high despite using Combiners. The table also shows

mapComputeRatio, the ratio of local Map execution time on the

Atom-based nodes to that on the Xeon-based nodes (Section 3.2).

These ratios show the extent of our cluster’s heterogeneity as seen

by the MapReductions.

Although all MapReductions have large Shuffle volume, the

critical path is not the same for all the MapReductions running on

the baseline Hadoop. In self-join, tera-sort, and ranked-inverted-

index, the Shuffle is exposed well past the Map computation in the

Xeon-based nodes. Though the Shuffle is exposed less in the

slower Atom-based nodes, the Shuffle remains the critical path in

these MapReductions. On the other hand, the Map computation in

both Xeon-based and Atom-based nodes completely hides the

Shuffle for k-means, inverted-index, term-vector, word-count, and

multi-word-count. Consequently, the Map computation is the criti-

cal path in these five MapReductions. The last column of Table 4

lists the critical path for each MapReduction (i.e., whether Map

computation or Shuffle is critical).

4.3.2 Shuffle-light MapReductions

Our Shuffle-light MapReductions include histogram-movies, histo-

gram-ratings, and grep. We classified movies based on their rat-

ings using Netflix’s data [26]. While Histogram-movies generates a

histogram of movies based on their average ratings (Netflix data),

Histogram-ratings generates a histogram of the ratings. grep, a

well-known application, searches for an input string in a set of doc-

uments. These MapReductions are also summarized in Table 4, In

all these MapReductions, the Map computation in both Xeon-

based and Atom-based nodes completely hides the Shuffle. Conse-

quently, the Map computation is the critical path in all of the Shuf-

fle-light MapReductions.

5  Experimental Results

We start by comparing Tarazu against Hadoop and LATE, followed

by isolating the impact of CALB, CAS and PLB. We then show the

impact of Tarazu’s sensitivity to the extent of hardware heteroge-

neity by varying the mix of Xeons and Atoms in our cluster. The

above experiments use uniform Map input data distribution on the

cluster which is default for Hadoop DFS. Finally, we show the

impact of skewed input data distribution on Tarazu’s speedups.

5.1 Performance

We compare Tarazu with Hadoop and LATE both of which include

straight-forward tuning for hardware heterogeneity (Section 4.1).

We also present results for Hadoop on each of the homogeneous

sub-clusters of 10 Xeon-based nodes (Xeon-only) and of 80 Atom-

based nodes (Atom-only).

Table 4: Benchmark Characteristics

Benchmark Input

size

(GB)

Input data #Maps &

#Reduces

 Run time

on Hadoop

Shuffle

volume

(GB)

mapCompute

Ratio

Critical

path

self-join 250 synthetic 3720 & 180 1929 246 1.76 Shuffle

tera-sort 300 synthetic, random 4500 & 180 2353 300 2.02 Shuffle

ranked-inverted-index 205 multi-wordcount output 3204 & 180 2322 219 2.50 Shuffle

kmeans 100 Netflix data, k = 6 1602 & 6 4608 106 4.43 compute

inverted-index 250 wikipedia 3764 & 180 1714 57 3.40 compute

term-vector 250 wikipedia 3764 & 180 1874 59 3.36 compute

word-count 250 wikipedia 3764 & 180 1035 49 3.17 compute

multi-word-count 250 wikipedia 3764 & 180 2703 248 4.40 compute

histogram-movies 215 Netflix data 3223 & 180 416 2 x 10-3 1.44 compute

histogram-ratings 215 Netflix data 3223 & 180 685 1.2 x 10-3 2.50 compute

grep 250 wikipedia 3764 & 180 459 1.3 x 10-3 1.71 compute
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In Figure 7, the Y-axis shows the speedups of Xeon-only,

Atom-only, LATE, and Tarazu over Hadoop. The X-axis shows our

benchmarks, of which the first three from the left are Shuffle-criti-

cal and the rest are Map-critical. The numbers above the bars show

the speedups for an ideal case which (1) achieves perfect Map-

Shuffle overlap for Shuffle-critical MapReductions and perfect

load balance of the Map computation across Xeon-based and

Atom-based nodes for Map-critical MapReductions and (2)

achieves perfect load balance across Xeon-based and Atom-based

nodes for the Reduce computation. We create the ideal case by

post-processing Hadoop’s execution logs. The ideal speedups

range from 1.25 to 2.32, illustrating that there is significant scope

for improvement over Hadoop. The high ideal speedups for Shuf-

fle-critical MapReductions highlight the severity of the network

bottleneck.

From the figure, we see that Hadoop on either of the homoge-

neous Xeon-only and Atom-only sub-clusters performs better than

the baseline Hadoop on the heterogeneous cluster for the leftmost

six out of eleven MapReductions. This result, one of the key moti-

vations for this paper, shows that current MapReduce implementa-

tions do not perform well on heterogeneous clusters. LATE

performs only slightly better than Hadoop by scheduling backup

tasks on faster Xeon-based nodes for the stragglers running on

slower Atom-based nodes. However, because remote Map task

traffic and Reduce-side load imbalance are significant problems in

heterogeneous clusters, regulating stragglers alone is insufficient to

address hardware heterogeneity. On other hand, by addressing

these problems, Tarazu achieves significant improvement with a

mean speedup of 1.4, which includes high speedups for Shuffle-

critical MapReductions (mean of 1.72, not shown) and good

speedups for Map-critical MapReductions (mean of 1.3, not

shown).

We also implemented and ran Mantri [3] which improves upon

LATE’s straggler identification. Though not intended for heteroge-

neous clusters, Mantri’s accurate straggler identification may

improve performance. However, for our cluster, we found that

Mantri does not fare better than LATE for the same reasons stated

above.

Finally, although Tarazu performs well, it still lags behind the

ideal case due to two main reasons: (1) For Shuffle-critical MapRe-

ductions, CALB’s on-line measurements for deciding the mode are

performed only after some of the Map tasks have executed, by

which time some unnecessary remote Map tasks may have been

executed. (2) For Map-critical MapReductions, CAS’s scheduling

is not perfect and incurs some network contention among the

remote tasks on different nodes.

In the following sections, we isolate the effects of CALB, CAS,

and PLB, and show other data to explain Tarazu’s speedups.

5.2 Effect of CALB and CAS

Figure 8 isolates the impact of CALB, CAS, and PLB. Because

CAS is triggered only in CALB’s task-steal mode (Section ), we

show the impact of CALB and CAS together. In Figure 8, the Y-

axis shows Tarazu’s execution times normalized to that of Hadoop.

The execution times are broken up into two components, one for

the Map phase including the Shuffle and the other for the Reduce

phase. CALB and CAS target the Map phase and PLB targets the

Reduce phase. Recall that on the Map side, the issues are remote

Map traffic which competes with the Shuffle and is bursty, and on

the Reduce side, the issue is load imbalance.

CALB predictions of whether each benchmark is Map- or

Shuffle-critical agree perfectly with the characterization listed in

Table 4. CALB’s no-steal mode targets Shuffle-critical MapReduc-

tions (CAS is not triggered in this case). From the figure, we see

that CALB significantly shortens the Map phase for these MapRe-

ductions, contributing to a large fraction of Tarazu’s speedups. To

FIGURE 7: Performance comparison
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Table 5: Impact of CALB on remote tasks

Benchmark Fraction of remote

tasks on Xeons

Reduction in

bisection traffic

for XeonsHadoop Tarazu

self-join 0.20 0.06 57%

rank-inv-idx 0.29 0.03 52%

tera-sort 0.24 0.08 50%

FIGURE 8: Impact of CALB, CAS, and PLB
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explain these improvements, Table 5 shows the fraction of remote

tasks over all Map tasks on Xeon-based nodes in Hadoop and

Tarazu, and Tarazu’s reduction over Hadoop in the Xeon-based

nodes’ bisection traffic (Atom-based nodes run only a few remote

tasks even in Hadoop).

We see that CALB significantly reduces the number of remote

Map tasks and their traffic. By preventing remote tasks on the

Xeon-based nodes, CALB allows Atom-based nodes to execute

tasks locally hidden under the Shuffle. By avoiding the aggravation

of the critical Shuffle due to remote traffic, CALB improves these

MapReductions.

CALB’s task-steal mode triggers CAS for Map-critical MapRe-

ductions. From Figure 8, we see that CAS significantly shortens

the Map phase and is responsible for a large fraction of Tarazu’s

speedups for these MapReductions. To explain these speedups, we

compare Hadoop and Tarazu in Figure 9 in terms of the distribu-

tion of remote Map traffic over Map execution time and in Table 6

in terms of the remote task execution times. We see that while

Hadoop’s traffic is bursty at the end of the Map phase, CAS evenly

distributes the traffic. As a result, CAS achieves much faster

remote task execution (Table 6) which translates to faster comple-

tion of the Map phase.

5.3 Effect of PLB

Figure 8 shows PLB’s impact on the Reduce phase. In baseline

Hadoop, the Reduce phase is much shorter than the Map phase for

most of our MapReductions except ranked-inverted-index, k-

means, term-vector, and multi-word count. Consequently, PLB’s

contributions to Tarazu’s speedups are less than those of CALB

and CAS. PLB improves k-means significantly. k-means has only

six Reduce tasks (number of centroids = 6, as shown in Table 4).

Hadoop assigns Reduce tasks to nodes on a first-come-first-served

basis where tasks have a high probability of being assigned to the

slower Atom-based nodes which are more in number than the

Xeon-based nodes (80 versus 10). In contrast, PLB assigns all

Reduce tasks to the Xeon-based nodes. In multi-word-count, PLB

slightly degrades performance because the ratio used for key distri-

bution, reduceSkewFactori, which is predicted using measurements

from the Map phase (Section 3.3), is inaccurate (the Xeon-based

nodes are 4.4 times faster than the Atom-based nodes for multi-

word-count’s Reduce tasks whereas the predicted skew is 1.5). For

the other MapReductions, the prediction is reasonably accurate.

5.4 Sensitivity to extent of heterogeneity

We show Tarazu’s sensitivity to the extent of heterogeneity by con-

sidering two different ratios of the number of Xeon-based nodes (8

cores/node) to that of Atom-based nodes (2 cores/node) — 10 to

80 (default) and 6 to 72. In first cluster, 33% of the cores are Xeons

whereas in the second cluster this fraction is 25%. We note that

extreme ratios where Xeons or Atoms are dominant make the clus-

ters nearly homogeneous and hence are not interesting. Further,

because Atoms are 3-4 times slower than Xeons, ratios with fewer

Atom-based cores than Xeon-based cores also lead to Xeon-domi-

nant clusters. Figure 10 shows Tarazu’s speedups over Hadoop on

these two clusters. We see that Tarazu works well on both the clus-

ters.

5.5 Effect of skewed input data distribution

Recall from Section 2.4 that skewing the input data can reduce the

number of remote Map tasks by placing more data on high-perfor-

mance nodes than on low-power nodes. We show the effect of such

skewed input data distribution on Tarazu in Figure 11. The input

data is skewed on Xeon-based and Atom-based nodes in the ratio

of 3:1 which is the mean mapComputeRatioXeon, Atom for our

benchmarks (Table 4). In the figure, the Y-axis shows Tarazu’s

speedups over Hadoop. From the figure, we see that Tarazu

achieves a mean speedup of 1.22, highlighting the fact that a single

skew ratio is not optimal for all the benchmarks and therefore

skewing does not eliminate Tarazu’s opportunity. As expected, thisFIGURE 9: Impact of CAS on remote task traffic
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Table 6: Impact of CAS on remote tasks

Benchmark  Remote task execution times (s)

Hadoop Tarazu % speedup

kmeans 87.58 82.55 6%

inverted-index 58.59 43.12 36%

term-vector 57.71 43.04 34%

grep 56.00 37.47 49%

histogram-movies 49.31 43.17 14%

word-count 56.56 42.14 34%

histogram-ratings 54.93 45.46 21%

multi-word-count 99.95 94.50 6%

FIGURE 10: Sensitivity to heterogeneity mix
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mean speedup is lower than that in the non-skewed case (1.4 in

Figure 7) due to fewer remote Map tasks in Hadoop. However, as

mentioned in Section 2.4, skewing input data compromises reli-

ability and hence may not be a viable approach. Tarazu achieves

better performance than skewing without degrading reliability.

6  Related Work

The interest in heterogeneous clusters has been spurred by recent

studies of servers designed with low-power processors [4,20,24]. A

number of start-up companies are developing servers using low-

power processors, such as [7,30,17]. Hamilton [15] and Lang et al.

[23] argue that not all workloads perform well on clusters built

with low-power nodes, and [23] specifically demonstrates that

enterprise databases do not. While these studies consider only

homogeneous clusters constructed with low-power components, or

"wimpy" nodes, Chun et al. [9] argue that hybrid data centers that

mix nodes designed to a multitude of power/performance points,

can handle diverse workloads in an energy-efficient manner.

Towards this end, NapSAC, an energy-proportional web server

cluster designed using three classes of servers based on Xeon,

Atom, and ARM processors was proposed in [22], together with

provisioning and load balancing algorithms for such a heteroge-

neous cluster. Further efforts along this direction were reported in

[28]. Our work fundamentally differs from [22,28] in the nature of

the workload targeted (interactive and highly time-varying versus

batch), and therefore the challenges involved in efficiently utilizing

a heterogeneous cluster are quite different.

Several implementations of MapReduce frameworks have been

developed that support extensions such as relational data process-

ing [14,11,34,35,27]. In addition, domain-specific libraries that

implement various algorithms on top of MapReduce frameworks

have been developed [5,33]. Due to the abundance of workloads

and applications based on MapReduce, optimizing their perfor-

mance on heterogeneous clusters is of great importance.

LATE [37] was the first work to point out and address the short-

comings of MapReduce in heterogeneous environments. They spe-

cifically focus on the observation that under heterogeneity, the

mechanisms built in to MapReduce frameworks for identifying and

managing straggler tasks break down, and propose better tech-

niques for identifying, prioritizing, and scheduling backup copies

for slow tasks. Techniques to improve the accuracy of progress

estimation for tasks in MapReduce were reported in [8]. Mantri [3]

explores various causes of outlier tasks in further depth, and devel-

ops cause- and resource-aware techniques to act on outliers more

intelligently, and earlier in their lifetime.

As described in Section 2, our work addresses fundamentally

different issues than [3,8,37]. We demonstrate that despite strag-

gler optimizations, the performance of MapReduce frameworks on

clusters with architectural heterogeneity remains poor, and we

identify and address the causes of this poor performance. There-

fore, we also report results comparing our techniques to baselines

that already incorporate straggler optimizations. MapReduce

frameworks have also been developed for other types of heteroge-

neous computing platforms such as multi-core processors and

accelerators [16,29,25]. In addition to the fact that our work is

complementary to these efforts, we note that the use of accelerators

in a subset of the nodes of a cluster would also result in cluster-

level heterogeneity, necessitating the use of our techniques (e.g.,

nodes with GPUs would process data at a faster rate than nodes

without GPUs, leading to the performance issues that we outline).

Finally, many recent papers optimize multi-tenant MapReduce

jobs on homogeneous clusters [19,12,36]. These papers propose

schedulers which, in one way or another, prioritize local tasks over

remote tasks across multiple jobs. In a heterogeneous cluster, how-

ever, high-performance nodes would run out of local tasks in all

the jobs, incurring the remote task problem addressed by Tarazu.

7  Conclusion

Current MapReduce frameworks perform poorly on heterogeneous

clusters. We analyzed the performance of MapReduce workloads

on a heterogeneous cluster composed of high-performance and

low-power nodes, and identified the key causes of poor perfor-

mance as follows: (1) the load balancing used in MapReduce

causes excessive and bursty network communication during the

Map phase, which competes with the Shuffle for the scarce bisec-

tion bandwidth and (2) the heterogeneity amplifies the Reduce’s

load imbalance. Addressing these issues require judicious run-time

decisions based on application and cluster characteristics (e.g., the

decisions of whether, how much, and when to steal tasks depend

upon whether Map or Shuffle is critical, and the relative rates of

Map computation and communication).

We proposed Tarazu to perform these decisions via Communi-

cation-Aware Load Balancing of Map computations (CALB),

Communication-Aware Scheduling of Map computations (CAS-

CAS), and Predictive Load-Balancing of Reduce computations

(PLB). Tarazu incorporates application and cluster characteristics

through various heuristics driven by on-line measurements We

implemented the proposed techniques in the Hadoop framework,

and showed that, on a 90-node heterogeneous cluster and across a

suite of 11 benchmarks, Tarazu achieves an average speedup of

40% over Hadoop.

Due to its effectiveness, Tarazu will be valuable in realizing the

potential of heterogeneous clusters for the important class of large-

scale data-intensive applications. The growing importance and

prevalence of heterogeneous clusters suggest that Tarazu will be an

important tool for these applications in the future.

FIGURE 11: Impact of skewed input data distribution
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