
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

10-30-2012

PUMA: Purdue MapReduce Benchmarks Suite
Faraz Ahmad
School of Electrical and Computer Engineering, Purdue University, faraz@purdue.edu

Seyong Lee
Oak Ridge National Labs

Mithuna Thottethodi
School of Electrical and Computer Engineering, Purdue University, muthuna@purdue.edu

T. N. Vijaykumar
School of Electrical and Computer Engineering, Purdue University, vijay@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Ahmad, Faraz; Lee, Seyong; Thottethodi, Mithuna; and Vijaykumar, T. N., "PUMA: Purdue MapReduce Benchmarks Suite" (2012).
ECE Technical Reports. Paper 437.
http://docs.lib.purdue.edu/ecetr/437

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F437&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F437&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F437&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F437&utm_medium=PDF&utm_campaign=PDFCoverPages

PUMA: Purdue MapReduce Benchmarks Suite

Faraz Ahmad

Seyong Lee

Mithuna Thottethodi

T. N. Vijaykumar

TR-ECE-12-11

October 30, 2012

School of Electrical and Computer Engineering

1285 Electrical Engineering Building

Purdue University

West Lafayette, IN 47907-1285

PUMA: Purdue MapReduce Benchmarks Suite

1

Faraz Ahmad†, Seyong Lee‡, Mithuna Thottethodi†, T. N. Vijaykumar†
†School of Electrical and Computer Engineering, Purdue University, IN, USA

‡Oak Ridge National Labs, Oak Ridge, TN, 37831
{faraz, mithuna, vijay}@purdue.edu lees2@ornl.gov

PUMA Suite

MapReduce[5] is a well-known programming model, developed within Google, for processing

large amounts of raw data such as crawled documents or web request logs on a cluster of com-

modity hardware comprising of thousands of machines. MapReduce provides automatic data

management and fault tolerance to improve programmability of clusters. In the MapReduce pro-

gramming model, programmers specify aMap function which processes input data to generate

intermediate data in the form of<key, value>tuples, and aReducefunction which further pro-

cesses values associated with a particular key. Hadoop is an open-source implementation of

MapReduce which is being improved and developed regularly by software developers / research-

ers and is maintained by Apache Software Foundation. Despite being vast efforts on the develop-

ment of Hadoop MapReduce, there has not been a very rigorous work done on the benchmarks

side.

During our work on MaRCO[2], we developed a benchmark suite[8], called “PUMA” which

represents a broad range of MapReduce applications exhibiting application characteristics with

high/low computation and high/low shuffle volumes. There are a total of 13 benchmarks, out of

which Tera-Sort, Word-Count, and Grep are from Hadoop distribution. The rest of the bench-

marks were developed in-house and are currently not part of the Hadoop distribution. The three

benchmarks from Hadoop distribution are also slightly modified to take number of reduce tasks as

input from the user as well as to generate final time completion statistics of jobs.

Benchmark details

The details of benchmarks, including command line execution format and input data set

description can be found below.

‡Work was done while at Purdue.

2

1 Term-vector

determines the most frequent words in a host and is useful in analyses of a host’s relevance to a

search. Map emits <host,termvector> tuples wheretermvectoris itself a tuple of the form <word,

1>. Reduce discards the words whose frequency is below some cut-off, sorts the rest of the list per

key in a descending order with respect to count and emits tuples of the form <host, list(termvec-

tor)>.

Input format: any document (usually a web document in text/xml format)

Output format: <host> <termvector>

Dataset: web documents [4] downloaded from wikipedia database[3]. Due to HDFS (Hadoop

File System) limitations, the datasets needed some processing such as (i) copying all files from

multiple hierarchical directories to one directory, (ii) merging multiple files together to create

small number of large-sized files rather than large number of small-sized files, and (iii) eliminat-

ing special character file names.

Command-line execution:

$ bin/hadoop jar hadoop-*-examples.jar termvectorperhost -m <num-
maps> -r <num-reduces> <input-dir> <output-dir>

2 Inverted-index

takes a list of documents as input and generates word-to-document indexing. Map emits <word,

docId> tuples with each word emitted once perdocId. Reduce combines all tuples on key <word>

and emits <word,list(docId)> tuples after removing duplicates.

Input format: any document (usually a web document in text/xml format)

Output format: <word> <docId>

Dataset: web documents[4].

Command-line execution:

$ bin/hadoop jar hadoop-*-examples.jar invertedindex -m <num-maps>
-r <num-reduces> <input-dir> <output-dir>

3 Self-join

is similar to the candidate generation part of thea priori data mining algorithm [1] to generate

association amongk+1 fields given the set ofk-field associations. Map receivesk-sized candidate

lists of the form {element1, element2,, elementk} in alphanumerically sorted order. Map breaks

the lists into <{element1, element2,, elementk-1}, { elementk}> tuples. Reduce prepares a sorted

3

list of all the map values for a given key by building <{element1, element2,, elementk-1}, { ele-

ment’1, element’2,, element’j}> tuples. From these tuples,k+1-sized candidates can be

obtained by appending consecutive pairs of map valueselement’i, element’i+1 to the k-1-sized

key. By avoiding repetition ofk-1-sizedkey values for every pair of values in the list, the tuples

are a compact representation of thek+1-sized candidates set.

Input format: {e1,e2, ..., ek}

Output format: <e1,e2, ek-1>< ek, ek+1 >

Dataset: Synthetic data [4]

Command-line execution:

$ bin/hadoop jar hadoop-*-examples.jar selfjoin -m <num-maps> -r
<num-reduces> <input-dir> <output-dir>

4 Adjacency-list

is similar to search-engine computation to generate the adjacency and reverse adjacency lists of

nodes of a graph for use by PageRank-like algorithms. Map receives as inputs graph edges <p,q>

of a directed graph that follows the power law of the World-wide Web. For the input, we assume

the probability, that a node has an out-degree ofi, is proportional to 1/(iskew) with an average out-

degree of 7.2. Map emits tuples of the form <q, from_list{p}:to_list{}> and <p,

from_list{}:to_list{q}>. For a given key, reduce generates unions of the respective lists in the

from_list and to_list fields, sorts the items within the union lists, and emits <x, from_list{sorted

union of all individual from_list}:to_list{sorted union of all individual to_list}> tuples.

Input format: {p,q}

Output format: <p><from{list_of_in_degree}:to{list_of_out_degree}>

,<q><from{list_of_in_degree}:to{list_of_out_degree}>

Dataset: Synthetic data [4]

Command-line execution:

$ bin/hadoop jar hadoop-*-examples.jar adjlist -m <num-maps> -r
<num-reduces> <input-dir> <output-dir>

5 k-means

is a popular data mining algorithm to cluster input data intok clusters [7]. k-means iterates to

successively improve the clustering. We classify movies based on their ratings using movies rat-

ing data which is of the form <movie_id, list{rater_id, rating}>. We use random starting values

4

for the cluster centroids. Map computes the cosine-vector similarity of a given movie with the

centroids, and determines the centroid to which the movie is closest (i.e., the cluster to which it

belongs). Map emits <centroid_id, (similarity_value, movie_data)>where movie_data is

(movie_id, list{rater_id, rating}). Reduce determines the new centroids by computing the average

of similarity of all the movies in a cluster. The movie closest to the average is the new centroid

and reduce emits the new centroid’s and all movies’ tuples to be used in the next iteration. The

algorithm iterates until the change in the centroids is below a threshold.

Input Format: {movie_id: userid1_rating1, userid2_rating2, ...}

Output Format: kmeans produces two types of outputs:

(a) <centroid_num><{movie_id: userid1_rating1, userid2_rating2, ...}> (list of all movies

associated with a particular centroid)

(b) <centroid_num>< {similarity_value} { centroid_movie_id} { num_members}

{ userid1_rating1, userid2_rating2, ...}> (new centroid}

Datasets: movie ratings dataset[4].

Command-line execution:

$ bin/hadoop jar hadoop-*-examples.jar kmeans -m <num-maps> -r
<num-reduces> <input-dir> <output-dir>

6 Classification

classifies the input into one ofk pre-determined clusters (unlikek-means, the cluster centroids

are fixed). Similar tok-means, classificationuses movie rating data which is of the form

<movie_id, list{rater_id, rating}>. Similar tok-means, Map computes the cosine vector similarity

of a given movie with the centroids, and determines the centroid to which the movie is closest

(i.e., the cluster to which it belongs). Map emits <centroid_id, movie_id>. Unlike k-means, the

details of movie ratings are not emitted because there are no further iterations which may need the

details. Reduce collects all the movies in a cluster and emits <centroid_id, movie_id>.

Input Format: {movie_id: userid1_rating1, userid2_rating2, ...}

Output Format: <centroid_num><movieid>

Datasets: movie ratings dataset[4].

Command-line execution:

$ bin/hadoop jar hadoop-*-examples.jar classification -m <num-
maps> -r <num-reduces> <input-dir> <output-dir>

5

7 Histogram-movies

generates a histogram of input data and is a generic tool used in many data analyses. We use the

movie rating data. Based on the average ratings of movies (ratings range from 1 to 5) we bin the

movies into 8 bins each with a range of 0.5. The input is of the form<rater_id, rating, date>and

the filename ismovie_id. Map computes the average rating for a movie, determines the bin, and

emits<bin, 1> tuples. Reduce collects all the tuples for a bin and outputs a<bin, n> tuple.

Input Format: {movie_id: userid1_rating1, userid2_rating2, ...}

Output Format: <bin_value><num_of_movies>

Datasets: movie ratings dataset [4].

Command-line execution:

$ bin/hadoop jar hadoop-*-examples.jar histogram_movies ?m <num-
maps> -r <num-reduces> <input-dir> <output-dir>

8 Histogram-ratings

generates a histogram of the ratings as opposed to that of the movies based on their average rat-

ings. The input is same as that forhistogram-movies. Here, we bin the ratings of 1-5 into 5 bins

and map emits<rating, 1> tuple for each review. Reduce collects all the tuples for a rating and

emits a<rating, n> tuple.

Input Format: {movie_id: userid1_rating1, userid2_rating2, ...}

Output Format: <rating ><num_of_user_reviews>

Datasets: movie ratings dataset [4].

Command-line execution:

$ bin/hadoop jar hadoop-*-examples.jar histogram_ratings ?m <num-
maps> -r <num-reduces> <input-dir> <output-dir>

9 Sequence-Count

generates a count of all unique sets of three consecutive words per document in the input data.

Map emits <word1|word2|word3|filename, 1> tuples. Reduce adds up the counts for the multi-

words from all map tasks and outputs the final count.

Input format: any document (usually a web document in text/xml format)

Output format: <word1|word2|word3|filename> <count>

Dataset: web documents [4].

Command-line execution:

6

$ bin/hadoop jar hadoop-*-examples.jar sequencecount -m <num-maps>
-r <num-reduces> <input-dir> <output-dir>

10 Ranked Inverted Index

takes list of words and their frequencies per document and generates lists of documents con-

taining the given words in decreasing order of frequency. Map takes sequence-count benchmark’s

output <word-sequence|filename,n> as its input and separates counts from the rest of the data in

the input. Map output format is <word-sequence, {filename,n}>. Reduce takes all map outputs and

produces a list per word-sequence in decreasing order of occurrence in the respective documents

<word-sequence><{count1, file1},{ count2, file2}, ..>.

Input format: <word-sequence|filename><count>

Output format: <word-sequence> <count | file>

Dataset: Output ofSequence-Count.

Command-line execution:

$ bin/hadoop jar hadoop-*-examples.jar rankedinvertedindex -m
<num-maps> -r <num-reduces> <input-dir> <output-dir>

11 Tera-sort

sorts 100-byte <key,value> tuples on the keys where key is a 10-byte field and the rest of the

bytes as value (payload). Map is identity function which simply reads and emits the tuples and

Reduce emits the sorted data to the final output. The sorting occurs in MapReduce’s in-built sort

while reduce tasks simply emit the sorted tokens.

Input format: {10-bytes key}{90-bytes value}

Output format: <10-bytes key><90-bytes value>

Dataset: Generated throughTeraGen in Hadoop[6].

Command-line execution:

$ bin/hadoop jar hadoop-*-examples.jar terasort <input-dir>
<output-dir> <num-reduces>

12 Grep

searches for a pattern in a file and is a generic search tool used in many data analyses. Map out-

puts lines containing either of the pattern as<regex, 1> tuples. Reduce task adds up the counts

and emits <regex, n> tuples.

Input format: any document (usually a web document in text/xml format)

7

Output format: <regex> <count>

Dataset: web documents [4]

Command-line execution:

$ bin/hadoop jar hadoop-*-examples.jar grep <input-dir> <output-
dir> <num-reduces> <regex> [<group>]

13 Word-count

counts the occurrences of each word in a large collection of documents. Map emits <word,1>

tuples. Reduce adds up the counts for a given word from all map tasks and outputs the final count.

Input format: any document (usually a web document in text/xml format)

Output format: <word> <count>

Dataset: web documents [4]

Command-line execution:

$ bin/hadoop jar hadoop-*-examples.jar wordcount -r <num-reduces>
<input-dir> <output-dir>

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules.Proceedings of 20th Intl. Conference

on Very Large Data Bases, VLDB, pages 487–499, 1994.

[2] F. Ahmad, S. Lee, M. Thottethodi, and T. Vijaykumar. MapReduce with Communication Overlap (MaRCO).

In Technical Report, ECE, Purdue University, 2007.

[3] Wikipedia HTML data dumps. http://dumps.wikimedia.org/enwiki/.

[4] PUMA Datasets. http://web.ics.purdue.edu/~fahmad/benchmarks/datasets.htm.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters.Commun. ACM, 51:107–

113, Jan. 2008.

[6] Hadoop. http://lucene.apache.org/hadoop/.

[7] J.Hartigan.Clustering Algorithms. Wiley, 1975.

[8] PUMA Benchmarks. http://web.ics.purdue.edu/~fahmad/benchmarks.htm

	Purdue University
	Purdue e-Pubs
	10-30-2012

	PUMA: Purdue MapReduce Benchmarks Suite
	Faraz Ahmad
	Seyong Lee
	Mithuna Thottethodi
	T. N. Vijaykumar

	PUMA Suite
	Benchmark details
	1 Term-vector
	2 Inverted-index
	3 Self-join
	4 Adjacency-list
	5 k-means
	6 Classification
	7 Histogram-movies
	8 Histogram-ratings
	9 Sequence-Count
	10 Ranked Inverted Index
	11 Tera-sort
	12 Grep
	13 Word-count

	References

