
Joint Optimization of Idle and Cooling Power in Data Centers

While Maintaining Response Time

Faraz Ahmad and T. N. Vijaykumar
School of Electrical and Computer Engineering

Purdue University

{fahmad,vijay}@ecn.purdue.edu
Abstract

Server power and cooling power amount to a significant fraction of

modern data centers’ recurring costs. While data centers provision

enough servers to guarantee response times under the maximum

loading, data centers operate under much less loading most of the

times (e.g., 30-70% of the maximum loading). Previous server-

power proposals exploit this under-utilization to reduce the server

idle power by keeping active only as many servers as necessary and

putting the rest into low-power standby modes. However, these

proposals incur higher cooling power due to hot spots created by

concentrating the data center loading on fewer active servers, or

degrade response times due to standby-to-active transition delays,

or both. Other proposals optimize the cooling power but incur con-

siderable idle power. To address the first issue of power, we pro-

pose PowerTrade, which trades-off idle power and cooling power

for each other, thereby reducing the total power. To address the

second issue of response time, we propose SurgeGuard to over-

provision the number of active servers beyond that needed by the

current loading so as to absorb future increases in the loading.

SurgeGuard is a two-tier scheme which uses well-known over-pro-

visioning at coarse time granularities (e.g., one hour) to absorb the

common, smooth increases in the loading, and a novel fine-grain

replenishment of the over-provisioned reserves at fine time granu-

larities (e.g., five minutes) to handle the uncommon, abrupt loading

surges. Using real-world traces, we show that combining Power-

Trade and SurgeGuard reduces total power by 30% compared to

previous low-power schemes while maintaining response times

within 1.7%.

Categories and Subject Descriptors: C.5.5 [Computer System

Implementation] Servers

General Terms: Design; Measurement; Performance

Keywords: data center; power management; idle power; cooling

power; response time

1 Introduction

Data centers have emerged as compute engines for many market

segments offering Web-based services (e.g., database and Web ser-

vices) and for commercially-important large-scale computations in

the Internet- and Web-computing domains such as machine learn-

ing and data mining. By sharing hardware, software, and infra-

structure resources among many service providers, data centers

reduce the total cost for the service providers. However, electric

power consumption is a major component of a data center’s total

cost of ownership which includes the cost of the building, servers,

air conditioners, power distribution equipment, and electric power.

While some of these components are related to peak power (e.g.,

cost of air conditioners and power distribution equipment), the

actual electric power drawn accounts for about 25% of the total

cost [15]. For instances, by 2011, US data centers are expected to

spend $7.4 billion per year on electric power [13].

A data center consumes electric power for operating both its

servers and its cooling system which removes the heat dissipated

by the servers; the corresponding power components are called

server power and cooling power, respectively. These components

are related via power usage effectiveness (PUE), which is defined

as total electric power / server power, where the total electric power

= server power + cooling power + power distribution losses. Mod-

ern data centers’ PUEs are close to 2, and server and cooling power

contribute significantly to the total power [4].

While data centers provision for the number of servers to guar-

antee response times specified in service-level agreements under

the maximum loading, data centers operate under much less load-

ing most of the times (e.g., 30-70% of the maximum loading) [3,

5]. Thus, data center servers idle a significant amount of time. Con-

sequently, the server power includes not only the active power con-

sumed while processing requests but also the idle power consumed

while waiting for requests. Server idle power adds not only to the

server power but also to the cooling power needed to remove the

heat due to the idle power. The pioneering work in [7, 26] proposes

to reduce server idle power by concentrating the data center load-

ing on a subset of the servers and powering-off the rest of the serv-

ers (or putting them in standby mode). While this approach, which

we call as spatial subsetting, significantly reduces idle power, the

approach raises two concerns: increased cooling power due to

higher temperature and response time degradation.

Spatial subsetting concentrates the data center loading on fewer

servers which run at higher utilization than they would if the load-

ing were distributed over all the servers. Consequently, the active

servers reach higher temperatures creating hot spots, even if the

servers are chosen to be physically distributed across the data cen-

ter. Because cooling effort increases with higher temperature even

if the amount of heat removed is the same (i.e., cooling requires

more input electric power), spatial subsetting increases cooling

power. While this effect is not considered by the spatial subsetting

papers, other papers observe that because cooling invariably is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’10 March 13-17, 2010, Pittsburgh, Pennsylvania, USA.
Copyright © 2010 ACM 978-1-60558-839-1/10/03...$10.00.
243

uneven, even identical servers under equal loading reach different

temperatures [21, 31]. For instance, air flow through the middle of

the aisles between machine racks is better than that near the ends

of the aisles, making the middle cooler than the ends. Therefore,

uniformly distributing the loading over all the servers results in hot

spots. Instead, the papers reduce cooling power by distributing the

loading over all the servers as the inverse of the server temperature,

and achieving uniform temperature. While this simple and effec-

tive strategy, which we call as inverse-temperature assignment,

reduces the temperature and hence the cooling power, this strategy

spreads the loading over all the servers and increases the server

idle power under the usual less-than-maximum loading. Thus, spa-

tial subsetting may increase cooling power more than it reduces

idle power (vice versa for inverse-temperature assignment).

Prior work has explored an alternative to spatial subsetting:

Instead of keeping only a subset powered on as in spatial subset-

ting, all the servers are kept powered on and the power at less-than-

maximum loading is reduced by dynamic voltage and frequency

scaling (DVFS) [8]. We call this approach as temporal subsetting.

Because temporal subsetting does not concentrate the loading on

fewer servers, temporal subsetting may not incur the temperature

problems of spatial subsetting. However, DVFS transition times

are too long and degrade response times [20], which is the second

issue in reducing idle power (relevant to both spatial subsetting and

temporal subsetting). In addition, DVFS is applicable only to the

CPU, which contributes only about one-thirds of the total system

power [20]. Furthermore, the supply voltage is already close to

about 1 V below which CMOS circuits may not work reliably,

leaving little room for DVFS in future technologies.

To address DVFS’s problems, another recent temporal subset-

ting proposal, called PowerNap [20], puts idle servers in well-

known standby modes, generally found in laptops, instead of

applying DVFS (e.g., the ACPI S3 state for the CPU and the self-

refresh state for the DRAM). Unlike DVFS, standby mode is appli-

cable to the whole system and is not limited by supply-voltage

scaling. While the PowerNap paper provides a detailed queuing-

theoretic analysis of response times, the authors presume standby-

to-active transition times of 1-100 ms which are inconsistent with

real-world systems. For instance, Linux documentation [11] shows

transition times of 1-2 seconds for ACPI S1 state and 3-5 seconds

for ACPI S3 state. Even with transition times as short as 100 ms,

PowerNap reports 1.5-3.5x response time degradations at low

loading where many servers are in standby mode. Like temporal

subsetting schemes, spatial subsetting also degrades response

times. While the spatial subsetting scheme [7] assumes infrequent

loading changes (e.g., 2-3 times a day), real-world loading changes

continually, which would require frequent transitions and would

degrade response times. While inverse-temperature assignment

avoids response time degradation by keeping all the servers acti-

vated, the scheme incurs high idle power, as discussed above.

To tackle the first issue of cooling power in spatial subsetting,

we make the key observation that there is a trade-off between

server idle power and cooling power in spatial subsetting and

hence, the two should be optimized together to reduce the total

data center power. Accordingly, we propose a novel joint optimiza-

tion, called PowerTrade, which reduces the sum of idle power and

cooling power, and hence, the total power. PowerTrade reduces the

sum by activating more servers than spatial subsetting to reduce

the load on each server, and hence its temperature, but fewer active

servers than inverse-temperature assignment to reduce the idle

power. We describe two implementation variants of PowerTrade.

To tackle the second issue of response time degradation in spa-

tial subsetting, we make the key observation that the data center

loading changes mostly smoothly over coarse granularities of time

(e.g., 30-60 minutes). Accordingly, we employ SurgeGuard to

over-provision the number of active servers beyond that needed by

spatial subsetting so as to absorb increases in the loading. Surge-

Guard is a two-tier scheme which operates at two time granulari-

ties: For the common, smooth increases in the loading, we employ

over-provisioning [8, 34] to handle a maximum increase in the

loading in a pair of consecutive coarse-grain time intervals (e.g.,

one hour). However, uncommon, abrupt loading surges may

deplete the over-provisioned reserves (e.g., CNN.com meltdown

after the 9/11 attacks). Though uncommon, such surges often test

service providers’ ability to retain customers by ensuring good

response times [18]. Previous over-provisioning schemes do not

address the surges which degrade response times. In contrast, we

employ a novel scheme to replenish the reserves at a fine granular-

ity (e.g., five minutes). Because the over-provisioning required is

relatively small for the increases in the loading in practice, we can

maintain response times while incurring only a small increase in

server idle power (e.g., in real-world traces, the average hourly

loading increase is 3%).

To reduce both total power and response time degradation, we

combine PowerTrade and SurgeGuard by simply applying Surge-

Guard’s over-provisioning to the number of servers arrived at by

PowerTrade. We summarize our key contributions as follows:

• We propose a novel joint cooling-power-idle-power optimiza-

tion, called PowerTrade, to reduce the sum of the cooling

power and the idle power;

• We propose a novel two-tier over-provisioning scheme, called

SurgeGuard, to alleviate response time degradation;

• Using real-world traces, we show that combining PowerTrade

and SurgeGuard (1) reduces total power by 30% over the better

of spatial subsetting which targets only idle power and inverse-

temperature assignment which targets only cooling power; and

(2) maintains response times within 1.7%, as compared to spa-

tial subsetting which degrades response time by a factor of 2.8.

The remainder of the paper is organized as follows: We

describe PowerTrade in Section 2 and SurgeGuard in Section 3. In

Section 4, we explain our experimental methodology. Section 5

presents our results. We discuss related work in Section 6 and con-

clude in Section 7.

2 Optimizing both idle & cooling power

As mentioned in Section 1, spatial subsetting reduces server idle

power but increases cooling power whereas inverse-temperature

assignment reduces cooling cost but incurs high idle power. We

propose a joint optimization, called PowerTrade, to reduce idle

power and cooling power together so that the total power is

reduced. Because PowerTrade builds on spatial subsetting and

inverse-temperature assignment, we describe these schemes first.

2.1 Background: Spatial Subsetting and Inverse-Temperature

Recall that spatial subsetting reduces server idle power by concen-

trating the data center loading on as few servers as possible. In spa-
244

tial subsetting, the resource allocator chooses a subset of servers

sufficient to satisfy the demand based on the current loading, and

assigns incoming requests to the subset. The number of active

servers can be determined using simple queueing theory estimates

for a given loading characterized by the request rate and size. The

rest of the servers are powered off (or put in standby mode) to

reduce idle power. If the loading increases, more servers are

brought into the active pool; and as the loading decreases, the

excess servers are powered off. While the spatial subsetting papers

do not discuss temperature issues, the active pool of servers can be

chosen to be physically distributed over the data center to help

cooling. Nevertheless, the high temperature of the active servers

leads to hot spots, which cause an increase in the cooling costs

(e.g., a 1120-server data center exhibits a temperature variation of

22oC - 37.12oC in the room at 60% loading). As mentioned in

Section 1, activating the servers (from power off or standby states)

takes time (e.g., 1-2 seconds for modern standby modes). We

address the resultant response time degradations in Section 5.

Recall that the inverse-temperature schemes [21, 31], on the

other hand, reduce the temperature to optimize the cooling cost by

distributing the load among all the servers as the inverse of the

server temperature, and achieving uniform temperature. We

describe only two variants here which represent the rest [21]. The

first variant, called CoolestOutlets [31], exploits temperature sen-

sors to sense the air temperature at the outlet of all the servers. The

resource allocator assigns work inversely proportional to the server

temperature. The allocator changes the load distribution, as the

loading of the data center and/or the temperature of the servers

vary, by assigning less work to hotter servers and more work to

cooler ones. Accordingly, for the same loading, the temperature is

lower for CoolestOutlets than that for spatial subsetting (e.g.,

under CoolestOutlets, a 1120-server data center exhibits a temper-

ature variation of 26oC - 32oC in the room at 60% loading). The

second variant, called MinHR [21], reduces cooling costs by mini-

mizing the heat that recirculates within a data center. Such heat

recirculation may result from obstructions in the server air flow,

server fans drawing air from the (hot) neighboring servers, and

blockage in the return vents of the air conditioners. MinHR distrib-

utes the load proportional to the ratio of heat produced to heat

recirculated, so that the servers that recirculate more heat than oth-

ers are assigned less work. This ratio is pre-computed for every

server via calibration runs. In either of the variants, because all the

servers remain powered on, there is significant idle power in the

common case of less-than-maximum data center loading. While

PowerTrade can be built on top of either of the variants, our imple-

mentation builds on CoolestOutlets due to its simplicity.

2.2 PowerTrade

Recall that (1) the total power = server power + cooling power +

power distribution losses, and PUE = total power / server power;

(2) the server power has two components; compute power and idle

power; and (3) PowerTrade reduces both idle power and cooling

power. The cooling power required to remove the heat is given by

the relation server power/COP where COP is the coefficient of

performance, an efficiency metric, for the computer room air con-

ditioning (CRAC) units in the data center. The COP is a decreasing

function of the average temperature of the hottest servers in the

room (e.g., the hottest 5% of servers). A higher value of the COP

means more efficient cooling (typical value for the COP is in the

range of 1-2 [25, 29]). Because we target server + cooling power

and not power distribution losses, we define net power to be server

power + cooling power. Thus,

Spatial subsetting reduces the server power by concentrating

the loading on fewer servers and reducing idle power. Although

reducing the idle power decreases the amount of heat to be

removed, concentrating the load results in hot spots in the room

due to increased per-server utilization. The hot spots, in turn, lower

the COP and increase the cooling power. On the other hand,

inverse-temperature reduces the temperature and improves the

COP by distributing the loading among all the servers to avoid hot

spots. While the improved COP reduces the cooling power, run-

ning all the servers increases the idle power (and the accompany-

ing cooling power) especially in low-loading periods.

To reduce the sum of the cooling power and the idle power,

PowerTrade should activate more servers than needed by spatial

subsetting to reduce the load on each server, and hence its temper-

ature, but fewer active servers than inverse-temperature assignment

to reduce the idle power. To this end, we would, ideally, like to

compare the gain in cooling power by keeping a server active

against the gain in idle power by putting a server to standby and

redistributing the server’s load among the remaining active servers.

This comparison would allow us to reduce the sum of idle power

and cooling power. However, performing this comparison for every

server, either at the time of every incoming request or even period-

ically over time, would be hard to implement given the large num-

ber of servers. Hence, we resort to a coarser granularity by

exploiting the fact that the data center can be divided into a few,

nearly-iso-temperature zones, which are formed naturally due to

air flow patterns in the data center. Because hot air rises from bot-

tom to top and the air flow is poor at the ends of the aisles, the top

shelf servers in each rack and the side racks of each row are hotter

than the rest and the servers at the very ends of the rows are the

hottest (see Figure 1), The zone division leads us to break up the

problem of distributing the overall loading to reduce the net power

into two questions - one across the zones and the other within a

zone:

• how is the overall loading distributed across the zones (i.e.,

what is the load distribution ratio across zones)? and

• how is a zone’s share of the load distributed among its servers?

While the first question deals with zones which are only a few

in number as compared to the total number of servers, the second

question deals with servers within each zone which are many in

number bringing back the original issue of assigning the loading

for each of the numerous servers. To avoid this issue, we use a sin-

gle policy for an entire zone and keep the problem tractable.

In the rest of the paper, we assume three zones — cool, warm,

and hot — in the data center (see Figure 1). However, our schemes

are applicable to more zones if needed, depending upon the desired

level of accuracy, temperature variations, and the size of the data

center.

We propose three implementations, two static and one

dynamic, where the static (dynamic) schemes employ static

NetPower ServerPower 1
1

COP
------------+ 

 ×=

ServerPower computepower idlepower+=
245

(dynamic) methods to answer the above two questions. In addition,

the static schemes reduce both the idle power and the cooling

power, targeting each separately without directly comparing the

idle power reduction against the cooling power savings so that the

net power is reduced, as is done by the dynamic scheme.

2.2.1 PowerTrade-s

The first static scheme, called PowerTrade-s, primarily targets the

cooling power in across-zone load distribution (the first question

above) and the idle power in within-zone load distribution (the sec-

ond question above). The within-zone load distribution also sec-

ondarily targets cooling power within each zone. We assume that

the data center loading is monitored and quantified so that Power-

Trade-s can perform its across-zone and within-zone load distribu-

tions. We describe PowerTrade-s assuming the data center loading

does not change and discuss such changes later.

For the across-zone load distribution, PowerTrade-s determines

the ratio of load distribution across the zones, called the iso-temp

ratio, by using a simple calibration run. In this run, we load the

cool zone to a particular reference loading (say 50%) and measure

the zone’s temperature. Then, we load every other zone, one by

one in isolation, until the same temperature is reached. To simplify

the calibration process, we uniformly distribute the load within

each zone across the zone’s servers. In line with its simple nature,

PowerTrade-s assumes that the iso-temp ratio remains the same

even when the loading is different from the reference loading, as

shown in Figure 2. In this figure, a 50% loading of the cool zone

and a 25% loading of the warm zone reach the same temperature

(22.5 oC), giving a cool-zone-to-warm-zone iso-temp ratio of 2:1.

Because load distribution as per the iso-temp ratio ensures that the

other zones do not exceed the cool’s zone temperature, Power-

Trade-s prevents hot spots in the warm and the hot zones.

Targeting idle power primarily and cooling power secondarily

in within-zone load distribution, we exploit the idle-power saving

feature of spatial subsetting and the cooling-power saving feature

of inverse-temperature. Because the cool zone is the least prone to

heating up, reducing the idle power is more important than avoid-

ing hot spots. Accordingly, PowerTrade-s employs spatial subset-

ting within the cool zone to distribute the cool zone’s share of the

load, as per the iso-temp ratio (i.e., concentrate the load on fewer

servers). In contrast, because avoiding hot spots is important in the

warm zone, PowerTrade-s distributes the warm zone’s share of the

load among all the warm-zone servers (equal distribution is equiv-

alent to inverse-temperature as all the active servers in a zone have

nearly the same temperature). Thus each zone uses a single policy

for load distribution within a zone. Because of their high propen-

sity to heating up, the hot-zone servers are kept in standby mode

unless the loading in the data center cannot be satisfied by the other

two zones. Whenever needed, the hot-zone servers are equally

loaded in the zone to prevent hot spots.

When a production-run loading exceeds the reference loading,

it is possible that distributing the load as per the iso-temp ratio

exceeds the cool or warm zone’s capacity (the capacity of the hot

zone, which is used only as a last resort, is never exceeded). In

such cases, the iso-temp ratio is disregarded and the cool, warm,

and hot zones are filled to capacity in that order.

So far, we have described PowerTrade-s for a fixed data center

loading. When the loading changes, PowerTrade-s readjusts the

across-zone and within-zone load distributions. We discuss Surge-

Guard to handle response-time issues with loading changes in

Section 3. We also discuss how PowerTrade-s can be combined

with SurgeGuard in Section 3.2.

Being a simple scheme, PowerTrade-s has three limitations:

First, PowerTrade-s’s simplifying assumption does not account for

the fact that the iso-temp ratio for different reference loadings

would be different due to non-linear relationship among server

loading, air flow, and temperature. Second, PowerTrade-s uses the

fixed policy of spatial subsetting in the cool zone to target idle

power while ignoring hot spots and the fixed policy of inverse-tem-

perature in the warm zone to target cooling power while ignoring

idle power. However, at high loading of cool zone and low loading

of warm zone, the cool zone may have hot spots and the warm

zone may have many servers idling, making this strategy sub-opti-

mal. And finally, PowerTrade-s ignores the exchange of heat

across the zones due to air flow. The calibration run loads each

zone in isolation until the desired temperature is reached but in

production runs the zones are loaded together and the zones

exchange heat.

To address the first limitation in PowerTrade-s, we propose a

variant, called PowerTrade-s++, which determines the iso-temp

ratios at multiple reference loadings. PowerTrade-s++ uses these

ratios to produce a piece-wise linear approximation of the iso-temp

ratio for all other loadings, as shown in Figure 3. In this figure, a

30% loading of the cool zone and a 7% loading of warm zone

reach the same temperature (20 oC) and the iso-temp ratio changes

with the loading. In our experiments we found that seven reference

ratios result in a good approximation. The other two limitations

listed above are addressed by our dynamic scheme but not by our

static schemes.

Figure 1: Data Center Model

Raised floor plenumCRAC Unit

Perforated tiles
for cool air intake

Hot exhaust air

Cool aisle

Hot aisle

Hot servers

Cool servers

Row

Warm
servers

Figure 2: Iso-temp ratio for PowerTrade-s

0 10 20 30 40 50 60 70 80 90 100
15

20

25

30

35

40

45

T
e
m

p
e
ra

tu
re

 (
o
C

)

%loading of the zone

cool zone

warm
 zone
246

2.2.2 PowerTrade-d

The last two limitations above indicate that the two questions of

across-zone and within-zone load distributions, and reductions in

idle power and cooling power are inter-dependent and cannot be

answered in isolation. However, minimizing the net power using

an offline analysis would require considering numerous variables

such as per-server temperature profile and loading, air flow, and

heat exchange for the current load distribution. Therefore, such an

analysis would be hard. Consequently, PowerTrade-d uses an

online approach to dynamically adjust the load distribution both

across and within zones based on the observed temperatures and

hence the cooling power, and the observed idle power dissipation.

Thus, instead of offline computation, PowerTrade relies on online

measurement to guide the optimization. PowerTrade directly com-

pares the potential idle power reduction achieved by activating

fewer servers against the potential cooling power savings achieved

by activating more servers. PowerTrade chooses the larger of the

two to reduce the net power.

As mentioned before in Section 2.2.1, performing this compari-

son for all the servers together in one shot would be hard. On the

other hand, performing this comparison one server at a time would

be slow because temperature takes some time to reach a steady

state after each step (e.g, 3-5 minutes in our simulated data center).

Instead, PowerTrade-d uses a coarser granularity of groups of serv-

ers to perform this comparison. Groups are much smaller than

zones but large enough to impact the temperature to a measurable

extent (e.g., 10 servers). PowerTrade successively reduces the net

power in steps of one group at a time until converging to a mini-

mum (i.e., where the net power does not reduce any more).

Three key issues with any successive refinement scheme are (1)

whether the scheme converges to the global minimum; (2) whether

the convergence is fast; and (3) the choice of server groups for data

centers providing multiple services. For the first issue, we observe

that because the idle power and cooling power, respectively, are

monotonically increasing and decreasing functions of the number

of active servers, the sum of these two components has a single

global minimum, as illustrated in Figure 4. Consequently, our

refinement process will converge towards this global minimum

without getting stuck in some local minimum. However, the con-

vergence point may not be the optimum due to discretization errors

from our groups, measurement errors, and other errors due to the

empirical nature of our approach.

The second issue is important because during the time of the

convergence the scheme operates sub-optimally. We observe that

because loading changes only slowly over large time intervals, our

groups are large enough to capture this change in only a few steps

of refinement (e.g., 3 steps per hour on the average). Consequently,

the refinement’s convergence delay is short. While increasing the

group size achieves faster convergence, doing so results in less

power reduction due to the coarseness of the refinement steps (and

vice versa for decreasing the group size). We empirically found

that a group size of 10 works well.

The third issue is that for data centers providing multiple ser-

vices, each server typically handles a specific service. Because

servers in a server groups are (de)activated together, server groups

that span servers for different services may either activate servers

and exceed the demand for their particular service or deactivate

servers and not meet the demand. To avoid this problem, we con-

strain server groups to comprise servers for only one service, thus

making our groups service-aware. Because server groups are much

smaller than the set of servers for a given service, this constraint is

acceptable (e.g., 10 in a group versus 500 for a service).

Our successive refinement is triggered only when the data cen-

ter loading changes; otherwise the current data center configura-

tion of active servers can satisfy the demand. Because a loading

change of less than 1% on our simulated data center did not affect

the temperature, and hence the cooling power, our refinement algo-

rithm is not triggered below this threshold (real data centers would

also have a similar threshold). There are two cases of loading

change: an increase and a decrease. In the first case, we initially

continue with the current configuration and distribute the load

among the currently active servers; if the loading cannot be satis-

fied with the current number of active servers then we activate new

servers (i.e., transition them from the standby mode to the active

mode). We measure the cooling power for this initial distribution

which gives us one of the two configurations to be compared in

each of our refinement steps. To obtain the other configuration, we

observe that inverse-temperature, and not spatial subsetting, mini-

mizes net power when the loading increases to the point that all the

servers need to be activated. At this point, while the idle power

cannot be reduced any further, the cooling power can be reduced

by using the inverse-temperature assignment. Because our current

loading has increased, we move the data center configuration

towards the inverse-temperature strategy of activating all the serv-

ers. Accordingly, we activate a new group of servers previously in

standby mode and redistribute the load among the active servers as

per inverse-temperature. We measure the resultant cooling power

once the temperature settles after the redistribution. Because the

new configuration has more active servers, the cooling power of

the new configuration is likely to be better than that of the initial

configuration. However, the new configuration incurs higher idle

power due to the newly-activated group of servers. We compute the

extra idle power based on the servers’ power ratings.

If the cooling power reduction from the initial configuration to

the new configuration is larger than the extra idle power then we

keep the new configuration and proceed to the next refinement step

by activating another group of servers. Otherwise (i.e., the extra

idle power is larger than the cooling power reduction), we revert

back to the initial configuration and our refinement process ends

for the current increase in the loading.

Figure 3: Iso-temp ratio for PowerTrade-s++

0 10 20 30 40 50 60 70 80 90 100
15

20

25

30

35

40

45

% loading of the zone

T
e
m

p
e
ra

tu
re

 (
o
C

)

cool zone
warm

 zone
247

In the second case of decreasing load, we start by measuring

the cooling power needed for the current configuration which is the

initial configuration in this case. To obtain the other configuration

for our comparison, we observe that spatial subsetting, and not

inverse-temperature, minimizes net power when the loading

decreases to the point that only a few servers need to be active. At

this point, the load is already distributed (keeping the temperature

low), however, the idle power can be reduced by using spatial sub-

setting. Because our current loading has decreased, we move the

data center configuration towards the spatial subsetting strategy of

keeping as few servers activated as needed to meet the loading

demand. Accordingly, we deactivate a group of servers (i.e., send

them to the standby mode) and redistribute the load among the rest

of the active servers as per inverse-temperature. We measure the

cooling power of the new configuration after the temperature set-

tles. We compute the idle power saved in the new configuration

due to the deactivated servers. If the idle power savings exceeds the

cooling power increase going from the previous configuration to

the new configuration then we keep the new configuration and pro-

ceed to the next refinement step by de-activating another group of

servers. Otherwise, we revert back to the previous configuration,

ending our refinement process for the current loading decrease.

The above discussion addresses whether server groups, but not

which server groups, are activated or de-activated. When moving

towards spatial subsetting, it is a straightforward choice to deacti-

vate the hottest server group. However, when moving towards

inverse-temperature, the choice of which inactive server group to

activate is harder. We choose the server group with the lowest idle

power rating, assuming the data center is heterogeneous. If all the

inactive server groups have the same idle power rating, then we

choose from the cool, warm, and hot zones (Section 2.2), in that

order.

The above discussion also implicitly assumes that the loading

does not change during the convergence process. If it does, then

servers are activated or deactivated appropriately depending on the

change in the load and the desired response time, as described in

Section 3.2. The resource allocator triggers these (de)activations

independently of PowerTrade-d’s refinement process. In such

cases, the refinement process abandons its current convergence and

starts afresh with the new configuration as the initial configuration.

PowerTrade-d addresses all the three limitations of the static

schemes discussed in Section 2.2.1. In contrast to the static

schemes, the dynamic scheme does not use any pre-computed

across-zone load distribution ratios (first limitation); does not

apply a fixed loading policy (spatial subsetting or inverse-tempera-

ture) to each zone (second limitation); and takes into account the

actual loading of the data center, and the air flows (heat interac-

tions) among the zones and servers (third limitation).

2.2.3 Other issues

Both PowerTrade-s and PowerTrade-d employ some form of spa-

tial subsetting — PowerTrade-s applies spatial subsetting to the

cool zone and PowerTrade-d approaches spatial subsetting when

the loading decreases. Server wear-and-tear due to thermal cycling

resulting from repeated activations and deactivations is a concern

for spatial subsetting [8] (this problem is less severe in inverse-

temperature which keeps all the servers activated). This problem

can be mitigated by simply using a round-robin order among the

cool-zone servers when choosing the servers to be activated.

Another concern with spatial subsetting is the power dissipa-

tion during the activation of servers [8]. However, because data

center loading changes are smooth and slow over coarse time gran-

ularities, this overhead adds little to the net power.

Finally, data centers typically employ stateless frontend servers

for handling requests and stateful backend servers for holding data.

Blindly putting stateful servers into standby mode would make the

servers’ data unavailable for requests. This problem is incurred by

any scheme that employs spatial subsetting or temporal subsetting

(including PowerTrade). Addressing this issue may involve state-

aware grouping of servers while defining PowerTrade’s server

groups. While this issue is beyond the scope of this paper, we

emphasize that any solution would benefit from PowerTrade by

jointly optimizing cooling and idle power.

3 SurgeGuard: Maintaining Response Time

Recall from Section 1 that response time degradation is a key issue

for data center power-reduction techniques. The inverse-tempera-

ture assignment does not degrade the response time as it keeps all

the servers activated (i.e., in active mode). However, the spatial

subsetting assignment activates only a subset of servers to reduce

the idle power. Thus, any increase in the loading requires more

servers to be activated by transitioning from standby mode to

active mode which takes time (e.g., transitioning from the ACPI S1

state, which consumes about 5 W in standby mode, takes about 1-2

s). As mentioned in Section 1 and later in Section 5, the data center

loading changes almost continually, though smoothly, requiring

frequent server activations which degrade response times. Because

both PowerTrade-s and PowerTrade-d use spatial subsetting, this

degradation is a concern.

3.1 SurgeGuard

Recall from Section 1 that we employ SurgeGuard to address this

degradation based on the observation that the data center loading

changes mostly smoothly over coarse granularities of time (e.g.,

over 30 to 60 minutes) as we show in Section 5. SurgeGuard uses

well-known over-provisioning of the number of active servers

beyond that needed by spatial subsetting so as to absorb increases

in loading [8, 34]. SurgeGuard is a two-tier scheme which operates

at two time granularities: To handle the common, smooth increases

in loading, we over-provision by an amount called server_reserve

to handle a maximum increase in the loading in a pair of consecu-

tive coarse-grain intervals (e.g., one hour). However, uncommon,

Figure 4: Idle power versus cooling power

P
o
w

e
r

number of active servers

sum (idle + cooling)

idle power

cooling power
248

abrupt loading surges may deplete the over-provisioned reserves,

as discussed in Section 1. To address such surges, we replenish the

reserves at a fine granularity (e.g., five minutes). Previous over-

provisioning schemes do not address such surges which result in

degraded response times. Because the over-provisioning required

is relatively small for the increases in the loading in practice, we

can maintain response times while incurring only a small increase

in server idle power (e.g., real-world traces show an average and

maximum loading increase from one hour to the next of 3% and

10%, respectively).

Server_reserve can be chosen based on the worst-case increase

in the loading in the past from one interval to the next or on the

amount of loading change that can be tolerated for a desired

power-performance goal. Different server_reserve values can be

used for busy periods of the day or busy days of the week, if at all

needed.

Because SurgeGuard provides an over-provisioning over spatial

subsetting, we first describe how to determine the number of serv-

ers needed for a given loading in spatial subsetting while ignoring

transition delays. SurgeGuard simply pads this number by some

amount to account for the delays. We compute the number using

queuing theory. A data center can be modeled as a GI/G/m queue

— i.e., an m-server queuing system serving requests with general-

ized arrival and request-size distributions where each server has a

generalized service time distributions.

Using the well-known Allen-Cunneen approximation [2, 6] for

the GI/G/m model, the response time and the number of servers

needed to satisfy a given demand are related as follows:

where

W is the mean response time,

 represents the mean service time of a server,

 is the mean request arrival rate,

 represents the average utilization of a server,

 is the mean request size,

is the service rate of a server,

m is the number of servers available to serve the request,

Pm = for and Pm = for ,

and CA
2 and CB

2 represent the squared coefficient of variation

of request inter-arrival times and request sizes, respectively.

The first term is the service time for a request and the second

term represents the average waiting time in the queue. Spatial sub-

setting can monitor the average request arrival rate and request

sizes to determine number of servers required to achieve a desired

response time.

To take response times into account, SurgeGuard exploits the

fact that the loading change in one interval to the next usually does

not exceed server_reserve. Accordingly, SurgeGuard simply adds

server_reserve to the number of active servers needed for the aver-

age loading of a coarse-grain interval and uses the sum as the pre-

dicted number of active servers for the next interval. We obtain the

average loading in an interval by monitoring the loading, and the

number of active servers needed for a given average loading and

desired response time by using the above expression. If the average

loading decreases during an interval compared to the previous

interval then the predicted number for the next interval decreases

accordingly and the next interval begins by deactivating the excess

active servers. However, in the uncommon case, the loading may

increase during an interval to the point that server_reserve is com-

pletely depleted (occurs in 2.90% of intervals in our traces). To

handle this case, we replenish server_reserve by activating more

servers at the finer granularity of mini-intervals (e.g., 5 minutes).

The mini-intervals should be short enough so that server_reserve is

not exceeded in all but extreme cases and long enough that unnec-

essary replenishments due to near-instantaneous loading changes

are avoided. We empirically found that five-minute mini-intervals

work well. Server_reserve was exceeded only in about 0.15% of all

the five-minute mini-intervals in our traces meaning that Surge-

Guard was able to maintain response times for 99.85% of all the

mini-intervals.

Repeatedly activating and deactivating the servers at the mini-

interval granularity would waste power and increase server wear-

and-tear [8]. To avoid these problems, we only activate the servers

to maintain server_reserve but do not deactivate servers if the load-

ing decreases at the mini-interval granularity. SurgeGuard deacti-

vates any excess active servers at the end of the coarse-grain

interval. Because the depletion of server_reserve is rare and

because the excess servers stay activated only till the end of the

current interval, not deactivating the excess servers as soon as the

mini-interval ends, adds only a modest amount of idle power. Fur-

thermore, to avoid large current surges due to simultaneously deac-

tivating a large number of servers at the end of each interval, we

stagger the deactivations over a few minutes. Server activations

occur over multiple mini-intervals and are automatically staggered;

each mini-interval activates at most server_reserve number of serv-

ers which is small enough so as not to create large current-surge

problems.

Finally, while spatial subsetting can be augmented with over-

provisioning as described above, augmenting temporal subsetting

may be hard: While it is relatively straightforward to determine

how many servers should be active to match the expected increase

in the loading, deciding when to activate the servers may require

predicting the arrival of individual requests, which seems harder

than predicting overall loading changes.

3.2 Combining SurgeGuard with PowerTrade

SurgeGuard addresses spatial subsetting’s response-time degrada-

tion. As such, SurgeGuard can be applied to any scheme that

employs spatial subsetting as is the case with PowerTrade-s.

SurgeGuard provides the predicted number of required servers

(including server_reserve) at every interval. PowerTrade-s uses the

predicted number to determine its across-zone and within-zone

load distributions (Section 2.2.1). PowerTrade-d uses the number

to determine whether the load has increased or decreased in order

to move the server configuration towards inverse-temperature or

spatial subsetting. respectively (Section 2.2.2). Further, each

refinement step in PowerTrade-d takes about the same time as a

mini-interval in SurgeGuard. Consequently, at the end of each

mini-interval, (1) SurgeGuard replenishes its server_reserve, if

W
1

µ

P
m

µ 1 ρ–()

C
A

2
C

B

2
+

2m

 
 
 
 

×+=

1 µ⁄
λ

ρ λϕ
mf
-------=

ϕ
f µϕ=

ρ
m 1+()

2

ρ 0.7≤
ρ

m
ρ+

2
------------------ ρ 0.7>
249

need be, and (2) PowerTrade-d chooses the better of its previous

and new configurations, as described in Section 2.2.2, and deter-

mines whether its refinement has converged or should be contin-

ued.

4 Experimental Methodology

We employ simulators and real-world traces to evaluate our tech-

niques. We use AirPAK [1], a computational fluid dynamics (CFD)

simulator by Ansys Inc. (formerly Fluent Inc.) to model cooling in

a data center.

4.1 Data Center Model

The simulated data center’s parameters are consistent with those

used in previous studies [21, 22, 31]. The data center (40’ x 12’ x

30’) consists of four rows of 1120 server blades with each row con-

taining seven 40U racks. For ease of configuration, we group four

servers into a 4U server block. As shown in Figure 1, the data cen-

ter employs the standard configuration of alternating hot and cold

aisles to facilitate air flow and to avoid mixing of hot air with cold

air [25, 33]. Our servers are modeled after the state-of-the-art serv-

ers (e.g, IBM Systems x3650 M2 or HP Proliant DL3xx series

[10]) with power consumption of 100 W when idle, 300 W at

100% utilization, and 5 W in standby mode. Because server power

varies almost linearly with server utilization [30], a 40%-utilized

server consumes 100 + (300-100) x 0.4 = 180 W. Each server has a

volumetric flow rate of 0.068 m3/s. Because modeling variable-

speed fans is hard, we conservatively assume that the server fans

run at the highest speed for good airflow but consume low power

(~2W) in all schemes. There are four CRAC units in the center,

each of which pushes chilled air at 15oC into a raised floor plenum

(1.5 ft. high) at a rate of 9000 ft3/min. The cool air enters the cold

aisles (inlets of servers) and hot air exits the hot aisles (outlets of

servers) to the CRAC exhaust vents.

Recall that cooling power = server power/COP and that the

COP is a decreasing function of the temperature in the room. The

higher the temperature of the room, the lower the temperature of

the air output by the CRAC units for quick removal of the heat, the

lower the COP. Consequently, the COP is an increasing function of

the CRAC output temperature (i.e., the lower the output tempera-

ture, the lower the COP). We used the function in Figure 5, which

models the chilled-water CRAC units at the HP labs Utility Data

Center [21]. To determine the CRAC output temperature at any

point in time of data center operation, we use the following meth-

odology from [21]. We assume a safe server outlet temperature,

Tsafe, of 25 oC. From the simulator, we obtain the average outlet

temperatures Tserver of 80 hottest servers for a given combination

of loading and choice of schemes for idle power and cooling power

reduction. Now Tadj = Tsafe-Tserver is the amount by which the

CRAC output temperature, Tout, needs to be adjusted to cool the

servers to the safe temperature. The adjusted new CRAC output

temperature is Tnew = Tout + Tadj. If Tadj is negative, the output

temperature will need to be reduced to provide more cooling and

vice versa. Based on the COP function shown in Figure 5, Tnew

determines the actual COP which, in turn, determines the cooling

power.

We validated our data center model by matching the tempera-

ture profile reported in [21, 31] under uniform distribution of a

fixed loading across all the servers.

4.2 Implementation of various schemes

For inverse-temperature, we simulate the implementation

described in [21] where each server’s temperature is sensed for the

purpose of load assignment. To implement spatial subsetting, we

use the GI/G/m model in Section 3.1 to compute the number of

servers required to achieve a desired response time for a given

loading demand — i.e., request arrival rate (), request size (),

and their coefficients of variation (CA and CB). These loading

parameters come from real-world traces described in Section 4.4.

We assume a response time (W) of 6 ms and a service rate (f) of 2.6

Gbytes/sec, consistent with [8]. We verified that this response time

was achievable for each trace provided an appropriate number of

servers were activated. To supplement spatial subsetting with

SurgeGuard, we add server_reserve to the number computed above

to obtain the total number of servers to be activated. We describe

how we compute server_reserve in Section 4.3. To alleviate hot

spots as much as possible, we choose the active servers such that

they are physically distributed throughout the data center.

To implement PowerTrade, we divide the data center into three

zones based on a calibration run of loading the data center at 50%

and uniformly distributing the load across all the servers. We

assign servers to zones based on three suitably-separated ranges of

server outlet temperatures. Out of 280 server blocks, 192 are in the

cool zone, 62 in the warm zone and 26 in the hot zone. For Power-

Trade-s, we use the same calibration run to determine the cool-

zone-to-warm-zone iso-temp ratio to be 2:1 (Section 2.2.1). The

cool-zone-to-hot-zone iso-temp ratio is 10:1, which is high imply-

ing that the hot zone is loaded only as a last resort when the

demand exceeds the other zones’ capacity. For PowerTrade-s++,

we use seven calibration runs to obtain cool-zone-to-warm-zone

iso-temp ratios of 4.3:1, 2.7:1, 2:1, 1.7:1, 1.6:1, 1.5:1 and 1.4:1

respectively, at seven different loadings of 30%, 40%, 50%, 60%,

70%, 80% and 90%. The cool-zone-to-hot-zone iso-temp ratios

remained close to 10:1 across all the loadings. For PowerTrade-d,

we simulate the refinement process to determine how many and

which servers are activated, and the corresponding cooling power.

To observe the time taken to reach steady-state temperature after a

refinement step, we simulate the transient temperature of our data

center. We found that starting from zero loading. the data center

reached the steady-state temperature at 50% loading in about 3-4

minutes. Because most changes in the loading are smaller, each

refinement step takes even less time.

Figure 5: COP Curve

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

CRAC Output Temperature (oC)

0

1

2

3

4

5

6

7

C
o
e
ff
ic

ie
n
t
o
f
P

e
rf

o
rm

a
n
c
e
 (

C
O

P
)

COP = (0.0068*T2 + 0.0008*T + 0.458)

λ ϕ
250

4.3 Response Time Analysis

For SurgeGuard, we find the largest increase in the loading in a

pair of consecutive one-hour intervals in each of our traces

(Section 4.4). We then apply the GI/G/m model in Section 3.1 to

determine server_reserve to be the difference in the number of

servers needed for the pair. We found that a value of 112 (10% of

the total number of servers) for server_reserve typically works

well.

In our results, we compare SurgeGuard against the original spa-

tial subsetting (without SurgeGuard) and temporal subsetting such

as PowerNap (Section 1) in terms of response time. The queuing

model in Section 3.1 determines the number of servers needed for

a given loading and desired response time. However, the model

does not account for the latency of the transition from standby

mode to active mode. This latency is seen in the original spatial

subsetting and temporal subsetting, and also in SurgeGuard in the

uncommon case of full depletion of server_reserve within a mini-

interval (Section 3.1). Though we use the GI/G/m model to com-

pute the number of active servers needed in spatial subsetting

(Section 3.1 and Section 4.2), we could not find a GI/G/m that cap-

tures this latency. Therefore, we compute the response time while

accounting for the transition latency using the GI/G/1 model with

exceptional first service given by Welsh [35]:

where

W is the mean response time,

 represents the mean service time of a server,

 is the mean request arrival rate,

 represents the average utilization of a server,

CA
2 and CB

2 represent the squared coefficient of variation of

request inter-arrival times and request sizes, respectively, and

E[I] represents the mean initial set-up time for the exceptional

first service.

This model assumes that every request arriving while the server

is idle experiences the exceptional service. However, in both the

original spatial subsetting and SurgeGuard, a newly-transitioned

server remains active even while idling for the rest of the interval.

Thus, the server does not impose the exceptional service on all but

those requests that arrive before or during the single transition.

Therefore, this model provides an upper bound on the response

times for the original spatial subsetting and SurgeGuard.

Using Tt to denote the transition time in our case, E[I] = Tt, and

E[I2] = Tt
2 for servers in standby mode, and E[I] = E[I2] = 0 for

servers in active mode. We assume Tt to be 1 s based on Linux’s

ACPI S1 transition times [11]. We assign values for µ, λ, CA, and

CB, as described before for the GI/G/m model in Section 4.2.

4.4 Traces

We use the following traces provided by the Internet Traffic

Archive [17]: (1) Fifa WorldCup 1998 — 14-day trace shown in

Figure 6, (2) University of Berkeley’s home IP server — 14-day

trace shown in Figure 7, (3) ClarkNet WWW server — 14-day

trace shown in Figure 8, (4) NASA Kennedy Space Center Web

W
1

µ

ρ
µ 1 ρ–()

C
A

2
C

B

2
+

2

 
 
 
  2E I[] λE I

2
[]+

2 1 λE I[]+()
---------------------------------------+×+=

1 µ⁄
λ

ρ λ
µ
---=

Figure 6: WorldCup 98 Trace

0 40 80 120 160 200 240 280 320

Time (in hours)

0

50

100

150

200

250

300

350

R
e
q
u
e
s
t
ra

te
 (

x
1
0
0
0
)/

h
r

Figure 7: UC Berkeley IP Trace

0 30 60 90 120 150 180 210 240 270 300

Time (in hours)

0

10

20

30

40

50

60

R
e
q

u
e
s
t
ra

te
 (

x
1
0
0
0
)/

h
r

Figure 8: Clarknet-HTTP Trace

0 30 60 90 120 150 180 210 240

Time (in hours)

0

5

10

15

20

25
R

e
q
u
e
s
t
ra

te
 (

x
1
0
0
0
)/

h
r

Figure 9: NASA-HTTP Trace

0 10 30 40 50 60 70 80 90 100 110 120 130

Time (in hours x 10)

0

5

10

15

R
e
q
u

e
s
t
ra

te
 (

x
1
0
0
)/

h
r

20

Figure 10: Saskatchewan-HTTP Trace

0 10 20 30 40 50 60 70 80 90 100 110 120

Time (in hours x 10)

0

10

20

30

40

50

60

R
e
q
u
e

s
t
ra

te
 (

x
1
0
0
)/

h
r

251

server — 60-day trace shown in Figure 9, and (5) University of

Saskatchewan’s WWW server — 60-day trace shown in Figure 10.

We analyze the traces in terms of power and response time in

Section 5.

5 Results

We start by quantifying PowerTrade’s power reduction over spatial

subsetting and inverse-temperature at various fixed loadings. To

understand the power savings, we show both a breakdown of the

net power and the temperature of the zones for the different

schemes. We also show the sensitivity of our power reduction to

the servers’ idle power rating. Next, we present our total energy

savings under real loadings seen in the traces. Finally, we present

response times with and without SurgeGuard.

5.1 Net Power Savings at fixed loadings

We compare PowerTrade against spatial subsetting and inverse-

temperature to show PowerTrade’s power savings. Figure 11

shows the various schemes’ net power consumption along the Y-

axis at different loadings of the data center along the X-axis. The

net power includes the cooling power, server power (= compute

power + idle power) of active servers and standby power of inac-

tive servers (for spatial subsetting and PowerTrade). We apply

SurgeGuard to PowerTrade and spatial subsetting to alleviate

response time degradation. Inverse-temperature naturally incurs no

response time degradation by keeping all the servers active.

Though PowerTrade and spatial subsetting incur extra idle power

due to SurgeGuard, alleviating response time degradation is impor-

tant for a fair comparison (recall that SurgeGuard’s server_reserve

is only 10% of all the servers present in the data center). The graph

also includes an ideal curve which takes the server power +

standby power of spatial subsetting combined with SurgeGuard

and distributes this power among all the servers using inverse-tem-

perature while ignoring the idle power of the excess servers (all

servers - active servers of spatial subsetting). Thus, the ideal curve

has the minimum server power (from spatial subsetting) and the

minimum cooling power (from inverse-temperature). From

Figure 11, we see that spatial subsetting performs better than

inverse-temperature for lower loadings where hot spots are rarer

and thus saving idle power is more important than saving cooling

power. And the converse is true for higher loadings. The static

PowerTrade schemes perform better than both spatial subsetting

and inverse-temperature for most of the loading span (inverse-tem-

perature performs slightly better at 87% loading and above). Pow-

erTrade-d is better than both for the entire span while staying close

to our ideal in the 40-70% loading range.

In Table 1, we show the percent reduction in net power

achieved by PowerTrade and the ideal over the better of spatial

subsetting and inverse-temperature at various loadings. We see that

for the range of 30-70% loadings where data centers operate most

of the time [3, 5] (confirmed in Section 5.2), PowerTrade-d

achieves substantial power savings of 22-36%. Recall from

Section 1 that because power is a major component in the recurring

cost of a data center, such improvements are significant. At 80%

loading, the static PowerTrade schemes perform slightly better

than PowerTrade-d. This exception is due to the fact that at higher

loadings, the temperature is sensitive to even a slight increase in

server utilization and the group size for PowerTrade-d is too coarse

to capture this sensitivity.

5.1.1 Net Power Breakdown

We explain the above power savings by breaking down the net

power into its components — idle, compute, and cooling.

Figure 12 shows these components (Y-axis) for the low-power

schemes at three typical data center loadings (X-axis). We choose

only three loadings to avoid overcrowding the graph with too many

bars. Ideal’s idle power comes from SurgeGuard’s extra servers

added for iso-response-time comparison, as discussed before, and

standby power of inactive servers.

Spatial subsetting incurs only a little idle power, which is con-

tributed by SurgeGuard’s extra servers and by the servers in

Figure 11: Net Power (* includes SurgeGuard)

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

N
e
t
P

o
w

e
r

(K
W

a
tt
s
)

Data Center Loading (%)

spatial subsetting*

inverse-temperature

PowerTrade-s*

PowerTrade-s++*

PowerTrade-d*

Ideal*

 fs

Table 1: Net Power Savings (* includes SurgeGuard)

Loading
PowerTrade

-s*

Power-

Trade-s++*

PoweTrade-

d*
Ideal*

10% 12% 12% 18% 39%

20% 14% 17% 26% 42%

30% 16% 22% 33% 42%

40% 19% 22% 36% 41%

50% 20% 20% 30% 35%

60% 17% 18% 28% 29%

70% 12% 17% 22% 25%

80% 13% 19% 11% 21%

90% -5% -3% 0% 18%

Figure 12: Net Power Breakdown (* includes SurgeGuard)

N
e
t
P

o
w

e
r

(K
W

a
tt
s
)

Data Center Loading (%)

30% 50% 70%

0

100

200

300

400

500

600

700

800
Idle Power Compute Power Cooling Power

a b c d e f

a spatial subsetting*
b inverse-temperature
c PowerTrade-s*
d PowerTrade-s++*
e PowerTrade-d*
f ideal*

a b c d e f a b c d e f
252

standby mode, but significantly high cooling power due to hot

spots created by concentrating the loading on a subset of servers.

Conversely, inverse-temperature incurs high idle power due to

keeping all the servers activated but low cooling power by avoiding

hot spots. PowerTrade incurs both low idle power and low cooling

power by avoiding hot spots while keeping as few servers activated

as needed to alleviate response time degradation. PowerTrade’s

cooling power is lower than that of inverse-temperature because

cooling power depends not only on the total amount of server heat

(recall that Cooling Power = ServerPower/COP) but also on the

temperature because the COP is a non-linear decreasing function

of temperature (i.e., lower temperature implies better COP). By

keeping fewer servers active to reduce idle power, PowerTrade also

reduces the cooling power. Compute power is not affected by the

choice of the scheme and hence remains the same for all the

schemes at a particular loading. At 50% loading, PowerTrade-s

and PowerTrade-s++ have identical power components because

their iso-temp ratios are equal at this loading.

5.1.2 Temperature Profile

To explain the cooling power component in the above breakdown,

we show the temperatures of the zones for the schemes. Figure 13

shows the zone temperatures along the Y-axis at 30% and 70%

loading of the data center for spatial subsetting, inverse-tempera-

ture, and PowerTrade along the X-axis. Spatial subsetting has the

highest temperature variation across the zones whereas the temper-

ature is even for inverse-temperature. The static PowerTrade

schemes perform better than spatial subsetting but worse than

inverse-temperature. This worse behavior stems from PowerTrade-

s’s limitations — fixed policy per zone and ignoring heat exchange

across zones (Section 2.2.1). For PowerTrade-d, not only the

across-zone temperature variation is small (close to that of inverse-

temperature) but also the absolute temperatures of the zones are

lower than those in inverse-temperature due to lower idle power.

5.1.3 Sensitivity to Idle Power

The idle power rating of the servers is an important factor in the

server’s net power and the amount of savings achieved by our

schemes. Further, this rating has been improving, if slowly, over

server generations. To capture the effect of these improvements,

we show our power savings as the idle power rating is lowered

while holding the server power at 100% utilization to be a constant

300 W as before. In Figure 14, the Y-axis shows the net power con-

sumption for various schemes at the three fixed loadings of 30%,

50%, and 70%, and the X-axis shows the idle power varied as 50

W, 100 W (default), and 150 W. We note these idle-power values

cover both the state-of-the-art and near-future server offerings. We

show only PowerTrade-d and not PowerTrade-s to avoid crowding

the graph.

Spatial subsetting performs worse than inverse-temperature as

we decrease the idle-power rating because spatial subsetting’s

reduction of idle power becomes less critical than inverse-tempera-

ture’s reduction of cooling power. On the contrary, as the idle-

power rating is increased, reducing the idle power becomes more

important giving spatial subsetting the upper hand at higher load-

ings. PowerTrade-d performs the best over the whole range of idle-

power ratings, achieving significant power savings even at 50-W

rating (18-23% improvement over inverse-temperature).

5.2 Total Energy Savings under real loadings

While the previous section shows net power, here we present total

energy savings of PowerTrade over inverse-temperature and spatial

subsetting summed over all five of our traces (recall that total

power = net power + distribution losses). We show energy instead

of power to capture the time duration of the traces. All the schemes

except inverse-temperature are combined with SurgeGuard for iso-

response-time comparison, as discussed before. To compute the

energy for each trace under each scheme, we determine the loading

in each one-hour interval of each trace and look up the power for

that loading under each scheme in Figure 11. Because the absolute

loadings across the traces vary, we normalize the loadings by set-

ting the maximum loading in each trace to be 100% and scale the

rest of the trace accordingly. To simplify the energy calculation, we

ignore the fact that the COP, and hence the cooling power, changes

with the temperature during the time the temperature settles after

loading changes. Instead, we assume that the temperature settles

instantaneously. Because loading changes and hence the tempera-

ture changes are not large, our approximation is reasonable. How-

ever, for PowerTrade-d, we assume that a 1% loading change

triggers the refinement process. During each step of the process (5

minutes) we assume the power of the previous (sub-optimal) con-

figuration to be conservative. Because the traces cover unequal

time spans, we consider only the first 14 days from each trace to

compute the sum over the traces.

Figure 13: Temperature variation across zones

spatial Power- Power-

23

25

27

29

31

33

35

37

T
e
m

p
e
ra

tu
re

 (
C

)

subsetting temperature
Power-inverse-

30% loading
70% loading

a b c

a - cool zone
b - warm zone
c - hot zone

a b c a b c a b c a b c

Trade-s Trade-s++ Trade-d

Figure 14: Idle power sensitivity

N
e
t
P

o
w

e
r

(K
W

a
tt
s
)

100

200

300

400

500

600

700

800

50 100 150

30% 50% 70%

spatial subsetting inverse-temperature PowerTrade-d

Idle Power (in Watts)

30% 50% 70% 30% 50% 70%
253

Before we discuss PowerTrade’s energy savings, we make a

few observations about our traces shown in Figure 6 through

Figure 10. The loadings in the traces are often well below the max-

imum, providing opportunity for idle power reduction (e.g., 42%,

67%, and 88% of the traces are, respectively, under 30%, 50%, and

70% loading). Further, loadings vary smoothly and slowly over

hours-long periods of time (the X-axis spans many days). The

average and maximum increase in the loading from one interval to

the next for the traces in Figure 6 through Figure 10, is 3% and

10%, respectively. Consequently, SurgeGuard’s server_reserve is

small — 112 or 10% of all servers. Because of the variations being

slow, PowerTrade-d’s refinement process took only 1.2 steps to

converge for each loading change in the traces. Table 2 shows the

total energy breakdown and energy savings for each scheme. Total

energy is the sum of the server energy, cooling energy, and power

distribution losses (Section 2.2). We assume that the distribution

losses are 10% of the server power as per [14]. In all the three

PowerTrade schemes, power savings at fixed loadings translate

well into significant energy savings under real loadings.

5.3 Response Time

Recall that PowerTrade achieves power reduction by keeping only

a subset of servers active and putting the rest into standby mode.

Also recall that SurgeGuard alleviates response time degradation

by padding PowerTrade’s active server count at the first-tier inter-

val granularity with server_reserve. Further, SurgeGuard replen-

ishes server_reserve at the second-tier mini-interval granularity if

any loading surge depletes the reserve. However, loading surges

that exceed the reserve result in response time degradation as new

servers are transitioned from standby. To evaluate SurgeGuard’s

effectiveness, we show in Table 3 the response time degradation of

PowerTrade-d with three configurations for SurgeGuard — no

SurgeGuard,. one-tier SurgeGuard, and full SurgeGuard — for our

traces (Figure 6 through Figure 10). In one-tier SurgeGuard,

server_reserve is not replenished at mini-intervals and continues to

get depleted until either the interval ends or the loading exceeds the

capacity of the active servers incurring response time degradation

as new servers are activated. We show only PowerTrade-d because

it has better power savings than the static PowerTrade schemes. We

compute the response times for the current interval as a mean of

two parts: (1) response time of servers that either are active from

the previous interval or are part of server_reserve (if SurgeGuard is

present) and (2) response time of servers that are newly activated

because the servers in the first part are insufficient. We determine

the number of servers in the second part as the difference between

(1) the actual number of servers needed for the current interval

using the GI/G/m model in Section 3.1 and (2) the number of serv-

ers in the first part. To compute the response time of each part, we

use the GI/G/1 with exceptional first service model in Section 4.3

with transition times being 0 for the first part and 1 s for the second

part (like ACPI S1 [11]). The overall response time is the mean

over the actual number of servers. We assume 1-hour intervals, 5-

minute mini-intervals, and server_reserve to be 112 (10% of all

servers). The column “Distribution (% success)” shows the percent

of all mini-intervals where the loading falls within the capacity of

the active servers (with or without SurgeGuard). The column

“Average relative RT” shows the response time normalized against

the desired response time of 6 ms.

Before we discuss PowerTrade’s response time, we make a few

more observations about our traces shown in Figure 6 through

Figure 10. The loading varies continually confirming that putting

all un-utilized servers in standby mode to save power (e.g., original

spatial subsetting) would degrade response time. However,

because the variations are smooth and slow, SurgeGuard is likely

to perform well. In Table 3, PowerTrade-d without SurgeGuard

cannot meet the loading demand in more than 15% of all the mini-

intervals (see “Distribution (% success)”), degrading response time

by more than a 2x factor. PowerTrade-d with one-tier SurgeGuard

improves on these numbers and covers about 97% of all the mini-

intervals maintaining average response time within 7%. In con-

trast, PowerTrade-d with full SurgeGuard meets the loading

demand in more than 99.85% of all the mini-intervals and main-

tains average response time within an almost-imperceptible 1.7%.

The difference between one-tier SurgeGuard and full SurgeGuard

shows the value of SurgeGuard’s second tier, which is our novelty,

in handling uncommon and abrupt, but important, loading surges

(Section 1).

Next, we compare PowerTrade-d against spatial subsetting and

PowerNap, a temporal subsetting scheme which puts servers into

standby mode upon service completion if no further requests are

present [20]. We perform this comparison by varying the interval

length as 30, 60 (default), and 180 minutes while holding the

server_reserve and mini-interval length constant at 112 and 5 min-

utes, respectively. In Figure 15, the X-axis shows the various inter-

val lengths and the Y-axis shows the normalized response times

averaged over all our traces for PowerNap, spatial subsetting, Pow-

erTrade-d without SurgeGuard, and PowerTrade-d with one-tier

SurgeGuard. We do not show PowerTrade-d with full SurgeGuard

 fs
Table 2: Total Energy Savings

Scheme

(* includes

SurgeGuard)

S
er

v
er

 E
n

er
g
y

(M
W

h
)

C
o
o
li

n
g

E
n

er
g
y

(M
W

h
)

D
is

tr
ib

u
ti

o
n

L
o
ss

es
 (

M
W

h
)

T
o
ta

l
E

n
er

g
y

(M
W

h
)

%
 E

n
er

g
y

S
a
v
in

g
s

Inverse-temperature 169 113 17 298 ---

Spatial subsetting* 140 146 14 299 ---

PowerTrade-s* 113 104 11 228 23%

PowerTrade-s++* 113 97 11 220 26%

PowerTrade-d* 107 89 11 207 30%

Table 3: SurgeGuard’s Response Time (RT):

Distribution & Average

Trace

Distribution

(% success)
Average relative RT

No

Surge-

Guard

1-tier

Surge-

Guard

Full

Surge-

Guard

No

Surge-

Guard

1-tier

Surge-

Guard

Full

Surge-

Guard

worldcup98 84.7 97.85 99.93 3.05 1.05 1.014

NASA-http 79.2 96.72 99.72 3.24 1.07 1.018

UC-Berkeley 83.3 97.30 99.91 3.07 1.06 1.014

ClarkNet-http 84.1 97.65 99.93 3.07 1.04 1.014

Saskatchewan 80.2 96.86 99.65 3.18 1.08 1.018

average 81.6 97.10 99.85 3.12 1.07 1.017
254

because Table 3 shows the degradation to be 1.7% which would

not be visible in the graph. For PowerNap, we used M/G/1 with

exceptional first service model they adopted. We assume that spa-

tial subsetting activates new servers as the loading increases, incur-

ring the same delays as PowerNap (original spatial subsetting

assumes that loading changes are infrequent and so does not pro-

tect against increases in the loading). Therefore, we show Power-

Nap and spatial subsetting in the same curve.

PowerNap, spatial subsetting, and PowerTrade-d-without-

SurgeGuard considerably degrade response time — by more than a

factor of 2X — due to the standby-to-active transition delay.

Because these schemes do not use intervals, their response times

do not change with interval length. Because PowerTrade-d-with-

out-SurgeGuard keeps more servers active than PowerNap for

avoiding hot spots, PowerTrade-d-without-SurgeGuard performs a

little better than PowerNap. We note that the PowerNap paper

reports much less degradation (around 12% degradation at 40%

loading) because the paper assumes standby-to-active transition

times of 10 ms whereas we assume 1-s transition times consistent

with Linux documentation [11]. Recall from Section 1 that it is not

easy to apply SurgeGuard to PowerNap for reducing this degrada-

tion because using SurgeGuard for temporal subsetting, as in Pow-

erNap, amounts to predicting the arrival times of individual

requests. In contrast to PowerNap and spatial subsetting. Power-

Trade-d with one-tier SurgeGuard maintains response time within

3%, 7% and 17% at interval lengths of 30 minutes, 1 hour and 3

hours, respectively, and PowerTrade-d with full SurgeGuard (not

shown) degrades response time only by 1.7% (at 60-minute inter-

vals).

6 Related Work

Prior work on data center power can be divided into two catego-

ries: server power optimizations and cooling power optimizations.

Here we discuss prior work other than spatial subsetting [7, 26],

inverse-temperature [21, 31] and PowerNap [20] which we have

already discussed. In the first category, Ranganathan et al. [29],

Fan et al. [14], Raghavendra et al. [27] propose optimizations for

power and resource management at the enterprise level by combin-

ing resources from different enterprise components. Lim et al. [19]

propose to use low-power embedded CPUs and flash-based disk

caching in data center servers. However, these schemes do not

address the implications on response times. Two other proposals

propose over-provisioning to address response time degradation in

two different contexts. Urgaonkar et al. [34] propose a single tier

of over-provisioning in allocating servers of a shared, multi-service

cluster to each service. This work considers only allocation and not

any power optimizations. Chen et al. [8] consider response time

impact in data centers while optimizing server power using DVFS.

The authors use a queuing-theoretic predictive scheme to estimate

the combination of number of active servers and clock frequency.

This estimate includes some over-provisioning to alleviate

response time degradation. However, the scheme does not account

for depletion of the over-provisioned resources due to spikes in the

data center loading, unlike SurgeGuard’s second tier. Choi et al.

[9], Sharma et al. [32] and Elnozahy et al. [12] also explore DVFS

for server applications. However, DVFS has several limitations as

discussed in Section 1. Heath et al. [16] and Rusu et al. [30] pro-

pose power management techniques for matching workloads to

servers in heterogeneous server clusters. VirtualPower [24] inte-

grates power management with virtualization in data centers by

coordinating the power management policies of independent guest

VMs.

In the second category of cooling optimizations, Patel et al.

[25] and Sullivan [33] optimize layout of the data center to

improve air flow. C-Oracle [28], Weatherman [22] propose soft-

ware infrastructure to predict heat profiles in the data center for

dynamic thermal management. Mukherjee et al. [23] propose a

software infrastructure to monitor and control resource manage-

ment to enable global thermal-aware scheduling decisions in a data

center. These schemes are orthogonal to PowerTrade which opti-

mizes the sum of cooling and server power.

While the above schemes optimize either server power or cool-

ing power, PowerTrade is the first proposal to optimize the two

together.

7 Conclusions

Server power and cooling power amount to a significant fraction of

modern data centers’ recurring costs. Previous server idle power

optimizations concentrate the data center loading on as many serv-

ers as needed while putting the rest into low-power standby modes,

but increase the cooling power by creating hot spots. Previous

cooling optimizations, on the other hand, reduce the cooling power

by distributing the loading among all the servers to achieve uni-

form temperature, but increase the idle power by keeping all the

servers active. Further, server idle power optimizations also

degrade response times due to standby-to-active transition delays,

We proposed a novel joint optimization of idle power and cool-

ing power, called PowerTrade, which trades-off idle power and

cooling power for each other, thereby reducing the total power. We

addressed response time degradations via SurgeGuard, which

over-provisions the number of active servers beyond the current

need so as to absorb future loading increases. SurgeGuard is a two-

tier scheme which uses well-known over-provisioning at coarse

time granularities (e.g., one hour) to absorb the common, smooth

increases in the loading, and a novel fine-grain replenishment of

the over-provisioned reserves at fine time granularities (e.g., five

minutes) to handle the uncommon, abrupt loading surges. We

showed that PowerTrade and SurgeGuard reduce the total power

for real-world traces by 30% compared to previous low-power

schemes while maintaining response times within 1.7%.

Figure 15: Interval length sensitivity

R
e
s
p
o
n
s
e
 T

im
e
 D

e
g
ra

d
a
ti
o
n

PowerTrade-dPowerNap/ PowerTrade-d-

30 60 180
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00

spatial subsetting without-SurgeGuard with 1-tier SurgeGuard

Interval Length (minutes)
255

Acknowledgments

We thank Peter Chen, our shepherd, and the anonymous reviewers

for their helpful comments and suggestions. This work is sup-

ported, in part, by the National Science Foundation (Award Num-

ber: 0621457).

References

[1] AirPAK. Computational fluid dynamics (CFD) software by

Ansys Inc. http://www.ansys.com/products/airpak/default.asp.

[2] O. Allen. Probability, statistics and queuing theory with com-

puter science applications. 1990.

[3] L. A. Barroso and U. Hölzle. The case for energy-proportional

computing. IEEE Computer, 40(12):33–37, 2007.

[4] C. Belady. Green grid data center power efficiency metrics,

PUE and DCIE. White paper: Metrics & Measurements. http:/

/www.thegreengrid.org, 2007.

[5] P. Bohrer, E. Elnozahy, T. Keller, M. Kistler, C. Lefurgy,

C. McDowell, and R. Rajamony. The case for power manage-

ment in web servers. Power aware computing, 2002.

[6] G. Bolch, S. Greiner, H. Meer, and K. S. Trivedi. Queuing net-

works and markov chains: Modeling and performance evalua-

tion with computer science applications. 1998.

[7] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and

R. P. Doyle. Managing energy and server resources in hosting

centers. In SOSP ’01: Proceedings of the eighteenth ACM sym-

posium on Operating systems principles, pages 103–116, 2001.

[8] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and

N. Gautam. Managing server energy and operational costs in

hosting centers. In SIGMETRICS ’05: Proceedings of ACM

SIGMETRICS International Conference on Measurement and

Modeling of Computer Systems, vol. 33, pages 303–314, 2005.

[9] J. Choi, Y. Kim, A. Sivasubramaniam, J. Srebric, Q. Wang,

and J. Lee. Modeling and managing thermal profiles of rack-

mounted servers with thermostat. In HPCA ’07: High Perfor-

mance Computer Architecture, pages 205–215, 2007.

[10] Standard Performance Evaluation Corporation. http://

www.spec.org/power_ssj2008/results/power_ssj2008.html.

[11] Linux Documentation. latest release 2.6, http://www.ker-

nel.org/doc/documentation/power/states.txt.

[12] E. Elnozahy, M. Kistler, and R. Rajamony. Energy-efficient

server clusters. In Proceedings of the 2nd Workshop on Power-

Aware Computing Systems, pages 179–196, 2002.

[13] U.S. EPA. Report to congress on server and data center energy

efficiency. In U.S. Environmental Protection Agency, Tech Re-

port, 2007.

[14] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning

for a warehouse-sized computer. In 34th International Sympo-

sium on Computer Architecture, pages 13–23, 2007.

[15] J. Hamilton. Internet-scale service infrastructure efficiency. In

ISCA ’09 keynote, http://perspectives.mvdirona.com/2008/11/

28/CostOfPowerInLargeScaleDataCenters.aspx, 2009.

[16] T. Heath, B. Diniz, E. V. Carrera, W. M. Jr., and R. Bianchini.

Energy conservation in heterogeneous server clusters. In

PPoPP ’05: 10th ACM SIGPLAN symposium on Principles

and practice of parallel programming, pages 186–195, 2005.

[17] Traces in the Internet Traffic Archive. http://ita.ee.lbl.gov/

html/traces.html.

[18] W. LeFebvre. CNN.com: Facing a world crisis. http://www.tc-

sa.org/lisa2001/cnn.txt.

[19] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and

S. Reinhardt. Understanding and designing new server archi-

tectures for emerging warehouse-computing environments. In

ISCA ’08: Proceedings of the 35th International Symposium on

Computer Architecture, pages 315–326, 2008.

[20] D. Meisner, B. T. Gold, and T. F. Wenisch. Powernap: Elimi-

nating server idle power. In ASPLOS ’09: Proceeding of the

14th conference on Architectural support for programming

languages and operating systems, pages 205–216, 2009.

[21] J. Moore, J. Chase, P. Ranganathan, and R. Sharma. Making

scheduling "cool": Temperature-aware workload placement in

data centers. In Proceedings of USENIX , 2005.

[22] J. Moore, J. Chase, and P. Ranganathan. Weatherman: Auto-

mated, online and predictive thermal mapping and manage-

ment for data centers. In ICAC ’06: Proceedings of IEEE

Conference on Autonomic Computing, pages 155–164, 2006.

[23] T. Mukherjee, Q. Tang, C. Ziesman, S. K. S. Gupta, and

P. Cayton. Software architecture for dynamic thermal manage-

ment in data centers. In COMSWARE, 2007.

[24] R. Nathuji and K. Schwan. Virtualpower: Coordinated power

management in virtualized enterprise systems. In SOSP ’07:

Proceedings of 21st ACM SIGOPS symposium on Operating

systems principles, pages 265–278, 2007.

[25] C. D. Patel, C. E. Bash, R. K. Sharma, and A. Beitelmal. Smart

cooling of data centers. In Proceedings of the Pacific RIM/

ASME International Electronics Packaging Technical Confer-

ence and Exhibition, IPACK, 2003.

[26] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath. Load

balancing and unbalancing for power and performance in clus-

ter-based systems. In Workshop on Compilers and Operating

Systems for Low Power, 2001.

[27] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and

X. Zhu. No "power" struggles: Coordinated multi-level power

management for the data center. In ASPLOS XIII: Proceedings

of the 13th conference on Architectural support for program-

ming languages and operating systems, pages 48–59, 2008.

[28] L. Ramos and R. Bianchini. C-Oracle: Predictive thermal man-

agement for data centers. In Proceedings of High-Performance

Computer Architecture, HPCA, pages 111–122, 2008.

[29] P. Ranganathan, P. Leech, D. Irwin, and J. Chase. Ensemble-

level power management for dense blade servers. ISCA ’06:

Proceedings of the 33rd annual international symposium on

Computer Architecture, 34(2):66–77, 2006.

[30] C. Rusu, A. Ferreira, C. Scordino, and A. Watson. Energy-ef-

ficient real-time heterogeneous server clusters. In RTAS ’06:

Proceedings of the 12th IEEE Real-Time and Embedded Tech-

nology and Applications Symposium, pages 418–428, 2006.

[31] R. K. Sharma, C. Bash, C. D. Patel, R. Friedrich, and J. Chase.

Balance of power: Dynamic thermal management for internet

data centers. IEEE Internet Computing, 9(1):42–49, 2005.

[32] V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, and Z. Lu.

Power-aware QoS management in web servers. In RTSS ‘03:

Proceedings of the 24th International IEEE Real-Time Systems

Symposium, pages 63–72, 2003.

[33] R. F. Sullivan. Alternating cold and hot aisles provides more

reliable cooling for server farms. In Uptime Institute, 2000.

[34] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource overbook-

ing and application profiling in shared hosting platforms. SI-

GOPS Oper. Syst. Rev., 36(SI):239–254, 2002.

[35] P. Welch. On a generalized M/G/1 queuing process in which

the first customer of each busy period receives exceptional ser-

vice. In Operations Research, vol. 12, pages 736–752, 1964.
256

	Abstract
	1 Introduction
	2 Optimizing both idle & cooling power
	2.1 Background: Spatial Subsetting and Inverse-Temperature
	2.2 PowerTrade
	2.2.1 PowerTrade-s
	2.2.2 PowerTrade-d
	2.2.3 Other issues

	3 SurgeGuard: Maintaining Response Time
	3.1 SurgeGuard
	3.2 Combining SurgeGuard with PowerTrade

	4 Experimental Methodology
	4.1 Data Center Model
	4.2 Implementation of various schemes
	4.3 Response Time Analysis
	4.4 Traces

	5 Results
	5.1 Net Power Savings at fixed loadings
	5.1.1 Net Power Breakdown
	5.1.2 Temperature Profile
	5.1.3 Sensitivity to Idle Power

	5.2 Total Energy Savings under real loadings
	5.3 Response Time

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

