A graph $G(V, E)$ has a weight function w. It was suggested to solve the shortest path problem from s by using the following algorithm:

1. Find the minimum weight of an edge, $w_{\text{min}} = \min \{ w(e) : e \in E \}$.
2. If $w_{\text{min}} < 0$, then for every edge $e \in E$, assign $w(e) = w(e) - w_{\text{min}}$.
3. Apply Dijkstra’s algorithm to find the shortest paths from s.

Specify weights for the edges in the following graph such that the algorithm above will not find the shortest path from A to E. Do not create negative cycles. Show the shortest path from A to E in the original graph, and in the graph with the modified weights. Show the lengths of the shortest paths you listed.

Shortest path in the original graph: $<A,B,D,E>$ weight 1 -> 7
Shortest path in the modified graph: $<A,C,E>$ weight 2 -> 6
A graph $G(V, E)$ has a weight function w. It was suggested to solve the shortest path problem from s by using the following algorithm:

1. Find the minimum weight of an edge, $w_{\text{min}} = \min \{ w(e) : e \in E \}$.
2. If $w_{\text{min}} < 0$, then for every edge $e \in E$, assign $w(e) = w(e) - w_{\text{min}}$.
3. Apply Dijkstra’s algorithm to find the shortest paths from s.

Specify weights for the edges in the following graph such that the algorithm above will not find the shortest path from A to E. Do not create negative cycles. Show the shortest path from A to E in the original graph, and in the graph with the modified weights. Show the lengths of the shortest paths you listed.