A hash table with $m = 10$ is implemented using open addressing and the hash functions

$h'(k) = k \ mod \ 10$ and

$h(k, i) = (h'(k) + i) \ mod \ 10$.

Use the figure below to show the hash table after inserting the numbers 18, 23, 28, 33, 38, 44 and 52.

Do not change the order by which numbers are inserted.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>38</td>
<td>52</td>
<td>23</td>
<td>33</td>
<td>44</td>
<td></td>
<td></td>
<td>18</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

$h(18,0) = 8$

$h(23,0) = 3$

$h(28,0) = 8$, $h(28,1) = 9$

$h(33,0) = 3$, $h(33,1) = 4$

$h(38,0) = 8$, $h(38,1) = 9$, $h(38,2) = 0$

$h(44,0) = 4$, $h(44,1) = 5$

$h(52,0) = 2$
A hash table with $m = 10$ is implemented using open addressing and the hash functions $h'(k) = k \mod 10$ and $h(k, i) = (h'(k) + i) \mod 10$.

Use the figure below to show the hash table after inserting the numbers $24, 19, 34, 29, 45, 57$ and 39.

Do not change the order by which numbers are inserted.