The binary tree corresponding to a heap has \(n \) nodes, a depth of \(h \), and \(n_h \) leaves in its last level. It is known that \(n \) is odd.

1. Is \(n_h \) even, odd, or it is not possible to determine? Explain your answer.

2. How many internal nodes are there in level \(h - 1 \)? Express your answer only in terms of \(n \), \(h \) and \(n_h \) (you do not have to use all of them).

Answers:

1. \(n = \sum_{i=0}^{h-1} 2^i + n_h \).

\[\sum_{i=0}^{h-1} 2^i \] is odd. For \(n \) to be odd, \(n_h \) must be even.

2. \(n_h \) leaves in level \(h \) have \(n_h/2 \) parents in level \(h - 1 \). These parents are internal nodes. The remaining nodes in level \(h - 1 \) are leaves. Therefore, there are \(n_h/2 \) internal nodes in level \(h - 1 \).
The binary tree corresponding to a heap has n nodes, a depth of h, and n_h leaves in its last level. It is known that n_h is even.

1. Is n even, odd, or it is not possible to determine? Explain your answer.

2. How many leaves are there in level $h - 1$? Express your answer only in terms of n, h and n_h (you do not have to use all of them).

1. $n = \sum_{i=0}^{h-1} 2^i + n_h$.

 $\sum_{i=0}^{h-1} 2^i$ is odd. If n_h is even, n must be odd.

2. n_h leaves in level h have $n_h/2$ parents in level $h - 1$. These parents are internal nodes. The remaining nodes in level $h - 1$ are leaves. The total number of nodes in level $h - 1$ is 2^{h-1}. The number of leaves is $2^{h-1} - n_h/2$.