The following claim is part of a theorem we have seen in class.
Claim: Let A be a finite set. Any partition of A determines an equivalence relation on A for which the sets in the partition are the equivalence classes.

The proof of this claim considers an arbitrary partition of A with subsets A_1, A_2, \ldots, A_n. Based on this partition it defines a relation R, and shows that it is an equivalence relation.

1. Define the relation R. Be as accurate as possible.
2. Show that R is reflexive.

Answers:

1. $R = \{(a, b): a, b \in A_i, 1 \leq i \leq n\}$, or
 $R = (A_1 \times A_1) \cup (A_2 \times A_2) \cup \cdots \cup (A_n \times A_n)$.

2. For every $a \in A$ there is a subset A_i such that $a \in A_i$. Therefore, R contains (a, a). Since this applies to every $a \in A$ the relation is reflexive.
The following claim is part of a theorem we have seen in class.
Claim: Let S be a finite set. Any partition of S determines an equivalence relation on S for which the sets in the partition are the equivalence classes.

The proof of this claim considers an arbitrary partition of S with subsets S_1, S_2, \cdots, S_m. Based on this partition it defines a relation R, and shows that it is an equivalence relation.

1. Define the relation R. Be as accurate as possible.
2. Show that R is symmetric.

Answers:

1. $R = \{(a, b): a, b \in S_i, 1 \leq i \leq n\}$, or
 $R = (S_1 \times S_1) \cup (S_2 \times S_2) \cup \cdots \cup (S_m \times S_m)$.

2. Suppose that $(a, b) \in R$. Then a and b are in the same subset, say S_i. With $a, b \in S_i$, $(b, a) \in R$. Since this applies to every $(a, b) \in R$, the relation is symmetric.