Tarjan’s algorithm for finding strongly-connected components is given on the other side of this page. This question refers to the stack S that the algorithm uses.

When the algorithm is applied to a specific graph, the stack S evolves as shown below. The stack is shown after every case where a vertex or subset of vertices is added or removed from the stack.

Show a graph that causes the stack to evolve in this way.

Show the d labels that the algorithm assigns.

$S = A$
$S = AB$
$S = ABC$
$S = AB$
$S = ABD$
$S = A$
$S = \phi$

Answer: From S, the strongly-connected components are $\{C\}$, $\{B,D\}$, $\{A\}$.

![Graph Diagram]

Diagram:
- Nodes: A1, B2, C3, D4
- Edges: A1 to B2, B2 to C3, C3 to D4, D4 to A1, A1 to D4, B2 to D4
Tarjan’s algorithm:

(1) Mark all the edges "unused".
 For every \(v \in V \), let \(d[v] = 0 \) and \(\Pi(v) = NULL \).
 Empty \(S \).
 Set \(i = 0 \) and \(v = s \).

(2) Set \(i = i + 1 \), \(d[v] = i \), \(L[v] = i \), and put \(v \) on \(S \).

(3) If there are no unused incident edges from \(v \) then go to Step 7.

(4) Select an unused incident edge \(e = (v, u) \).
 Mark \(e \) "used".
 If \(d[u] = 0 \) then set \(\Pi[u] = v \), \(v = u \) and go to Step 2.

(5) If \(d[u] > d[v] \) (\(e \) is a forward edge), go to Step 3.
 Else, if \(u \) is not on \(S \) (\(u \) and \(v \) do not belong to the same component), go to Step 3.

(6) \((d[u] < d[v] \) and both vertices are in the same component)
 Set \(L[v] = \min \{ L[v], d[u] \} \) and go to Step 3.

(7) If \(L[v] = d[v] \) then delete all the vertices from \(S \) down to and including \(v \); these vertices form a component.

(8) If \(\Pi[v] \) is defined then set
 \(L[\Pi[v]] = \min \{ L[\Pi[v]], L[v] \} \),
 \(v = \Pi[v] \),
 and go to Step 3.

(9) \((\Pi[v] \) is undefined)
 If there is a vertex \(u \) for which \(d[u] = 0 \) then set \(v = u \) and go to Step 2.

(10) (all the vertices have been explored)
 Stop.
Tarjan’s algorithm for finding strongly-connected components is given on the other side of this page. This question refers to the stack S that the algorithm uses. When the algorithm is applied to a specific graph, the stack S evolves as shown below. The stack is shown after every case where a vertex or subset of vertices is added or removed from the stack.

Show a graph that causes the stack to evolve in this way.

Show the d labels that the algorithm assigns.

$S = A$
$S = AB$
$S = ABC$
$S = AB$
$S = A$
$S = AD$
$S = \phi$

Answer: From S, the strongly-connected components are \{C\}, \{B\}, \{A,D\}.

A 1
B 2
C 3
D 4
Tarjan’s algorithm:

1. Mark all the edges "unused".
 For every \(v \in V \), let \(d[v] = 0 \) and \(\Pi(v) = NULL \).
 Empty \(S \).
 Set \(i = 0 \) and \(v = s \).

2. Set \(i = i + 1 \), \(d[v] = i \), \(L[v] = i \), and put \(v \) on \(S \)

3. If there are no unused incident edges from \(v \) then go to Step 7.

4. Select an unused incident edge \(e = (v, u) \).
 Mark \(e \) "used".
 If \(d[u] = 0 \) then set \(\Pi[u] = v \), \(v = u \) and go to Step 2.

5. If \(d[u] > d[v] \) (\(e \) is a forward edge), go to Step 3.
 Else, if \(u \) is not on \(S \) (\(u \) and \(v \) do not belong to the same component), go to Step 3.

6. \((d[u] < d[v] \) and both vertices are in the same component\)
 Set \(L[v] = \min \{ L[v], d[u] \} \) and go to Step 3.

7. If \(L[v] = d[v] \) then delete all the vertices from \(S \) down to and including \(v \); these vertices form a component.

8. If \(\Pi[v] \) is defined then set
 \(L[\Pi[v]] = \min \{ L[\Pi[v]], L[v] \} \),
 \(v = \Pi[v] \),
 and go to Step 3.

9. \((\Pi[v] \) is undefined\)
 If there is a vertex \(u \) for which \(d[u] = 0 \) then set \(v = u \) and go to Step 2.

10. \(\) (all the vertices have been explored)
 Stop.