Complete part (2b) of the following proof.

Theorem: CLIQUE is NPC.

Proof:

(1) CLIQUE is NP: Given a guess, we can verify in polynomial time that its size is at least K and that for every two vertices, the edge between them is in E.

(2) 3DM \propto CLIQUE:

(2a) The transformation:
Let W, X, Y, and M be the input to 3DM. We construct the input to CLIQUE, which consists of a graph $G(V, E)$ and an integer K, as follows.

$V = M$.

$E = \{\{m_1, m_2\}: m_1, m_2 \in M \text{ and the triples } m_1, m_2 \text{ are disjoint}\}$

$K = |W|$.

(2b) Equivalence:

See the class notes for a solution.
Complete part (2b) of the following proof.

Theorem: FVS is NPC.

Proof:

1. \(\text{FVS} \in \text{NP} \): Given a guess, we can verify that its size does not exceed \(K \). We can eliminate the vertices in the guess from the graph, and verify that it is cycle free by performing DFS.

2. \(\text{VC} \preceq \text{FVS} \).

2a) Let the input to VC be a graph \(G(V, E) \) and an integer \(k \). The input to FVS, which is a digraph \(H(U, F) \) and an integer \(K \), is constructed as follows.

\[
U = V.
\]

\[
F = \{ a \rightarrow b, b \rightarrow a : a - b \in E \}.
\]

\[
K = k.
\]

2b) Equivalence:

See the class notes for a solution.