1) 24.1-3
2) 24.1-4
3) 24.2-4
4) 24.3-2
5) 24.3-10
6) 24-2
7) 25.1-9
8) 25.2-6
9) 25.2-7
10) 25-1
(1) CLR 24.1-3

The proof of Lemma 24.2 shows that for every v, $d[v]$ has attained its final value after length (any shortest-weight path to v) iterations of BELLMAN-FORD. Thus after m passes, BELLMAN-FORD can terminate. We don’t know m in advance, so we can’t make the algorithm loop exactly m times and then terminate. But if we just make the algorithm stop when nothing changes any more, it will stop after $m+1$ iterations (i.e., after one iteration without a change), unless there is a negative weight cycle. Hence, we should also make sure that the number of iterations does not exceed $|V[G]| - 1$.

BELLMAN-FORD-$(M + 1)(G, w, s)$
1. INITIALIZE-SINGLE-SOURCE(G, s)
2. changes \leftarrow TRUE
3. iteration \leftarrow 1
4. while (changes = TRUE) \land (iteration \leq $|V[G]| - 1$)
 do changes \leftarrow FALSE
 iteration \leftarrow iteration + 1
7. for each edge $(u, v) \in E[G]$
 do RELAX-M(u, v, w)
9. for each edge $(u, v) \in E[G]$
10. do if $d[v] > d[u] + w(u, v)$
11. then return FALSE
12. return TRUE

RELAX-M(u, v, w)
1. if $d[v] > d[u] + w(u, v)$
2. then $d[v] \leftarrow d[u] + w(u, v)$
3. $\pi[v] \leftarrow u$
4. changes \leftarrow TRUE

(2) CLR 24.1-4

Change line 7 of the BELLMAN-FORD algorithm, as given in the CLR text, to:

then $d[v] \leftarrow -\infty$

(3) CLR 24.2-4

Consider a node v in a directed acyclic graph G. The paths in G starting from v must go from any outgoing edge from v. Let $< V, u >$ be one of such edges, then the paths starting from v and containing $< v, u >$ can either stop at u or continue from u
to some other vertices. Since \(G \) is a directed acyclic graph, any edge can only appear at most once in any path. We can thus conclude that the number of paths starting from \(v \) and containing \(\langle v, u \rangle \) equals the number of paths starting from \(u \) plus one. We give the algorithm for calculating the total number of paths in \(G \) below.

\[\text{DAG-COUNTPATHS-(G)} \]

1. topologically sort the vertices of \(G \)
2. \(\text{totalcount} \leftarrow 0 \)
3. for every vertex \(v \) in \(G \), taken in reverse topologically sorted order
 4. \(\text{do} \ \text{count}[v] \leftarrow 0 \)
 5. \(\text{for} \) each \(u \in \text{Adj}[v] \)
 6. \(\text{do} \ \text{count}[v] \leftarrow \text{count}[v] + \text{count}[u] + 1 \)
 7. \(\text{totalcount} \leftarrow \text{totalcount} + \text{count}[v] \)

The running time of this algorithm is \(\Theta(V + E) \).

(4) CLR 24.3-2

Consider the graph below:

![Graph diagram](attachment:graph.png)

The predecessor subgraph returned by Dijkstra's algorithm will look like this:
The correct answer should use the path \(s \rightarrow x \rightarrow t \rightarrow u \) instead of \(s \rightarrow u \), since \(\delta(s, u) = 0 \).

In Theorem 24.6, the assumption of no negative weights is used to conclude that \(\delta(s, y) \leq \delta(s, u) \) and \(d[y] \leq d[u] \). If there are negative weights in the path \(p \), \(\delta(s, y) \) may be greater than \(\delta(s, u) \), and the contradiction will not hold, as \(d[u] \) can be greater than \(\delta(s, u) \) and hence \(d[u] \neq \delta(s, u) \).

(5) CLR 24.3-8

We use the loop invariant:

At the start of each iteration of the while loop of lines 4-8, \(d[v] = \delta(s, v) \) for each vertex \(v \in S \).

Initialization: Initially \(S = \phi \) so the invariant is trivially true.

Maintenance: To prove by contradiction, assume that \(u \) is the first vertex added to \(S \) such that \(d[u] \neq \delta(s, u) \). We know that \(u \neq s \) because \(s \) is the first vertex added to \(S \) and \(d[s] = \delta(s, s) = 0 \) at that time. As \(u \neq s \) we know that \(S \neq \phi \) when \(u \) is added.

There is a shortest-path \(p \) from \(s \) to \(u \) in \(G \), otherwise \(d[u] = \delta(s, u) = \infty \) from the very beginning, contradicting our initial assumption. Say on path \(p \), when going from \(s \) to \(u \), \(y \) is the first vertex in \(V - S \). Also, \(x \) is the predecessor of \(y \) along this path.

\(d[y] = \delta(s, y) \) when \(u \) is added to \(S \). To see why this is so we observe that \(x \) was added to \(S \) before \(u \). And when \(x \) was added to \(S \) the edge \((x, y) \) was relaxed and since \(d[x] = \delta(s, x) \) at that moment, therefore \(d[y] \) gets set to \(\delta(s, y) \).

No edge along the path from \(y \) to \(u \) has a negative weight because all negative edges must be of the form \((s, -)\) and \(s \neq y \). Because \(y \) occurs before \(u \) on a path with no negative-weight edges \(\delta(s, y) \leq \delta(s, u) \). Then we have

\[d[y] = \delta(s, y) \leq \delta(s, u) \leq d[u] \]
Now both y and u were in $V - S$ when u was chosen as the next vertex to add to S therefore

$$d[u] \leq d[y]$$

From the above two equations we have $d[u] = \delta(s, u)$ contradicting our intial assumption.

Termination: $Q = \emptyset$ and $S = V$, thus $d[v] = \delta(s, v)$ for all $v \in S$ and the shortest path has been solved.

(6) CLR 24-2

(a) Say that x nests in y and y nests in z. This means that we can formulate a π mapping for both nesting relaitons such that:

$$x_{\pi_i} < y_i \text{ and } y_{\pi_j} < z_j$$

Because all values of i and j are unique and drawn from the set $1...d$ we can find for each i a j such that $i = \pi_j$. Then we have:

$$x_{\pi_i} < y_i = y_{\pi_j} < z_j$$

$$x_{\pi_i} < z_j$$

And we can find such a unique z_j for every x_{π_i}. Thus the relation is transitive.

(b) Sort in non-decreasing order the d dimension values within both $x = (x_1, x_2...x_d)$ and $y = (y_1, y_2...y_d)$. Compare x_i and y_i for every value of $i = 1$ to d. If $x_i < y_i$ for all i then x nests within y.

(c) Sort the d dimension values within each box B_i. This takes $O(d \log d)$ for every box, totalling to $O(nd \log d)$ for the n boxes. For each possible pair of box (B_i, B_j) check if B_i nests in B_j or if B_j nests in B_i. Each pair-comparison takes $O(d)$ and there are $O(n^2)$ pairs in total, so all nesting pair relations can be obtained in $O(dn^2)$ steps. We create a graph with n nodes each representing one of the B_i's. For each (B_i, B_j) pair such that B_i nests in B_j we add a directed edge from B_i to B_j. This graph construction takes $O(n^2)$ time. Now add two new vertices s and d to the graph, such that s has an outgoing edge to each vertex and d had an incoming edge from each vertex.

Run topological sort on the resulting graph with s as the root vertex. Since $|V| = O(n)$ for this graph, the running time for topological sort is $O(n + n^2)$. Now consider all the vertices in topological order. For each vertex u examine its adjacency list and for each edge (u, v) “anti-relax” the edge as:

```
if d[v] < d[u] + w(u, v)
then d[v] = d[u] + w(u, v)
```
\[\pi[v] = u \]

This traversal takes \(O(E) = O(n^2) \) time. When the traversal terminates, find the vertex \(v \) with the largest \(d[v] \) value in \(O(n) \) time. Remove \(s \) from the graph and call PRINT-PATH on the vertex \(v \).

the overall running time of the algorithm is bounded by \(O(dn^2) \)

(7) CLR 25.1-9

The presence of a negative-weight cycle can be determined by looking at the diagonal of the matrix \(L^{(n-1)} \) computed by an all-pairs shortest-path algorithm. If the diagonal contains any negative number there must be a negative-weight cycle.

(8) CLR 25.2-6

There are several ways to use FLOYD-WARSHALL to detect negative-weight cycles:

- If we modify the algorithm to calculate \(\Pi^{[k]} \), then while FLOYD-WARSHALL is running, if any element \(\Pi[i,i] \) is not NIL, then there exists some node that is the predecessor of the node \(i \) in a path from \(i \) to \(i \). Since the distance from a node to itself is 0, there must be some other path from the node to itself. Since this path must have a weight less than 0, it is a negative weight cycle.

- Similarly, if any element on the diagonal of the \(D \) matrix is non-zero, then there must be a negative weight cycle including that vertex, for reasons as above.

- The algorithm could be altered to perform one more iteration (e.g., by invoking EXTEND-SHORTEST-PATHS(\(D^{[n]} \), \(W \)) to detect any changes by comparing \(D^{[n]} \) and \(D^{(n+1)} \). If any distances are changed, then there must be a negative weight cycle.

(9) CLR 25.2-7

Initialize the \(\phi \) matrix as follows:
\[\phi_{ij}^{(0)} = \text{NIL if there is no edge } (i, j) \]
\[\phi_{ij}^{(0)} = \text{DIRECT if there is an edge } (i, j) \]

We can recursively define \(\phi_{ij}^{(k)} \) as follows:
\[\phi_{ij}^{(k)} \leftarrow k \text{ if } d_{ik}^{(k-1)} + d_{kj}^{(k-1)} < d_{ij}^{(k-1)} \]
\[\phi_{ij}^{(k)} \leftarrow \phi_{ij}^{(k-1)} \text{ otherwise} \]

For modifying the Floyd-Warshall algorithm, insert the following between line 6 and 7:
if \(d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\)
\[\phi_{ij}^{(k)} \leftarrow k\]
else
\[\phi_{ij}^{(k)} \leftarrow \phi_{ij}^{(k-1)}\]

And the modified version of printing a shortest path from the all-pairs algorithm:

PRINT-ALL-PAIRS-PATH-2(\(\phi, i, j\))
1. if \(\phi_{ij}^{(n)} = \text{DIRECT E}\)
2. then PUSH(S, i)
3. PUSH(S, j)
4. else if \(\phi_{ij}^{(n)} = \text{NIL}\)
5. then print “No path from \(i\) to \(j\) exists”
6. else PRINT-ALL-PAIRS-PATH-2(\(\phi^{(n)}, i, \phi_{ij}^{(n)}\))
7. POP(S)
8. PRINT-ALL-PAIRS-PATH-2(\(\phi^{(n)}, \phi_{ij}^{(n)}, j\))
9. while !empty(S)
10. \(x \leftarrow \text{POP}(S)\)
11. print \(x\)

(10) CLR 25-1

(a) Let \(T\) be the \(|V| \times |V|\) matrix representing the transitive closure, such that \(T[i, j] = 1\) if there is a path from \(i\) to \(j\), and 0 if not. Initialize \(T\) (when there are no edges in \(G\)) as follows:
\[
T[i, j] = \begin{cases}
1 & \text{if } i = j \\
0 & \text{otherwise}
\end{cases}
\]

\(T\) can be updated as follows when an edge \((u, v)\) is added to \(G\):

TRANSITIVE-CLOSURE-UPDATE(u, v)
1. for \(i \leftarrow 1\) to \(|V|\)
2. do for \(j \leftarrow 1\) to \(|V|\)
3. do if \(T[i, u] = 1\) and \(T[v, j] = 1\)
4. then \(T[i, j] \leftarrow 1\)

1. This says that the effect of adding edge \((u, v)\) is to create a path (via the new edge) from every vertex that could already reach \(u\) to every vertex that could already be reached from \(v\).
2. Note that the procedure sets \(T[u, v] \leftarrow 1\), since the initial values \(T[u, u] = T[v, v] = 1\).
3. This takes \(\Theta(V^2) \) time because of the two nested loops.

(b) Consider inserting the edge \(v_n \rightarrow v_1 \) into the straight-line graph \(v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_n \), where \(n = |V| \). Before this edge is inserted, only \(\frac{n(n+1)}{2} \) entries in \(T \) are 1 (the entries on and above the main diagonal). After the edge is inserted, the graph is a cycle in which every vertex can reach every other vertex, so all \(n^2 \) entries in \(T \) are 1. Hence \(n^2 - \frac{n(n+1)}{2} = \Theta(n^2) = \Theta(V^2) \) entries must be changed in \(T \), so any algorithm to update the transitive closure must take \(\Omega(V^2) \) time on this graph.

(c) The algorithm in part (a) would take \(\Theta(V^4) \) time to insert all possible \(\Theta(V^2) \) edges, so we need a more efficient algorithm in order for any sequence of insertions to take only \(O(V^3) \) total time.

To improve the algorithm, notice that the loop over \(j \) is pointless when \(T[i,v] = 1 \). That is, if there is already a path from \(i \) to \(v \), then adding the edge \(u \rightarrow v \) can’t make any new vertices reachable from \(i \). The loop to set \(T[i,j] \) to 1 for \(j \) such that there’s a path from \(v \) to \(j \) is just setting entries that are already 1. Eliminate this redundant processing as follows:

\[
\text{Transitive-Closure-Update}(u,v) \\
1. \text{for } i \leftarrow 1 \text{ to } |V| \\
2. \quad \text{do if } T[i,u] = 1 \text{ and } T[i,v] = 0 \\
3. \quad \quad \text{then for } j \leftarrow 1 \text{ to } |V| \\
4. \quad \quad \quad \text{do if } T[v,j] = 1 \\
5. \quad \quad \quad \quad \text{then } T[i,j] \leftarrow 1
\]

We show that this takes \(O(V^3) \) time to update the transitive closure for any sequence of \(n \) insertions:

1. There can’t be more than \(|V|^2 \) edges in \(G \), so \(n \leq |V|^2 \).
2. Summed over \(n \) insertions, the time to execute lines 1 and 2 is \(O(nV) = O(V^3) \).
3. Lines 3-5, which take \(\Theta(V) \) time, are executed only \(O(V^2) \) times for \(n \) insertions. To see this, notice that lines 3-5 are executed only when \(T[i,v] = 0 \), and in that case line 5 sets \(T[i,v] \leftarrow 1 \), so the number of 0 entries in \(T \) is reduced by at least one each time lines 3-5 run. Since there are only \(|V|^2 \) entries in \(T \), lines 3-5 can run at most \(|V|^2 \) times.
4. Hence the total running time over \(n \) insertions is \(O(V^3) \).