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Abstract—Though experimental results have shown a strong 
correlation between contextual features and driver’s fatigue state, 
contextual features have been applied only offline to evaluate a 
driver’s fatigue state. This study identifies three of the most 
effective contextual features, i.e., continuous driving time, sleep 
duration time, and current time, to facilitate the real-time (online) 
recognition of fatigue state. By applying grey relational analysis, 
the three contextual features, together with the most effective 
facial and vehicle behavior features, are introduced in a two-level 
fusion structure to improve fatigue driving recognition. In the 
first level of fusion, labelled the feature-level fusion, three 
separate multi-class support vector machine (MCSVM) classifiers 
are used for the three feature sources, i.e., contextual features, 
driver’s facial features and vehicle behavior features, to fuse 
information. These three MCSVM classifiers output probabilities 
as inputs for the three real-time dynamic basic probability 
assignments (BPAs) at the second level of fusion, labelled 
decision-level fusion. These BPAs, and the fusion result of the 
previous time step, are fused in the decision-level fusion based on 
Dempster-Shafer evidence theory. This includes modifying the 
BPAs to accommodate the decision conflict among the different 
feature sources. Field experiments show that the proposed 
recognition method can outperform the single-fatigue-feature 
method and the single-source fusion-based method. 

  
Index Terms—Fatigue driving, contextual features, multi-class 

support vector machine classifier, Dempster-Shafer evidence 
theory. 
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I. INTRODUCTION 

ATIGUE driving is a primary reason for many traffic 
accidents, casualties, and property losses. Hence, there is 

the need to effectively recognize driver’s fatigue driving state 
to improve travel safety by leveraging technological advances. 
In the literature, many factors have been used to recognize 
fatigue driving, including drivers’ physiological state, facial 
expression, and vehicle operation/running conditions [1].  

Existing fatigue driving recognition methods can be divided 
into two categories: single-source information and multi-source 
information. The recognition methods based on single-source 
information have inevitable limitations in acquiring reliable 
and robust data. For example, physiology based methods 
[2]-[4] need to place multiple electrodes on a driver’s skin for 
physiological signals. The direct contact can cause an 
uncomfortable and annoying feeling for drivers. Facial-features 
based methods [5]-[10] recognize fatigue driving by analyzing 
facial expression changes, such as eye closure duration, 
blinking, yawning, or eyelid/gaze movement, through a 
real-time monitoring system. However, external interferences, 
such as lighting change, sudden head movement, and darkness 
at night, can reduce the recognition accuracy. Vehicle behavior 
based methods recognize fatigue driving by detecting vehicle 
operational conditions, such as the lane departure degree [11], 
[12], or the variation of steering wheel angle [13], [14]. 
However, a travel environment with blurred lane markings may 
impede the applicability of these methods.  

To overcome the limitations of single-source information 
methods, fatigue driving recognition methods have been 
proposed based on information from multiple sources. These 
methods contain two main steps: selection of fatigue features, 
and construction of recognition model, which play important 
roles in improving fatigue driving recognition.  

In general, incorporating as many fatigue features as possible 
from multiple information sources can improve fatigue driving 
recognition [15]. However, too many features for a recognition 
model can cause heavy computational burden, which impedes 
the timeliness of fatigue driving recognition [15]. Therefore, 
only the most effective features should be selected to enable a 
practical fatigue recognition method. 

Laboratory experiments suggest that driver’s contextual 
information, such as sleep time, sleep quality, continuous 
driving time, working time, and temperature in cab, can be used 
to reflect driver’s fatigue states [16], [17]. However, these 
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contextual features have been used previously only to explain 
fatigue cause. They could serve as candidates in the selection of 
effective fatigue features to develop fatigue driving recognition 
methods. 

Existing fatigue recognition models are mainly based on 
artificial neural network [18], support vector machine [19] and 
dynamic Bayesian network [20]. These models adopt a 
single-level structure, wherein the fatigue features are fused 
simultaneously. Therefore, they may not work properly when a 
certain fatigue feature measurement fails due to unpredictable 
disturbances, such as sudden lighting changes, missing sensor 
signals, etc., in a real-world travel environment. 

Some fatigue recognition models [21]-[23] adopt a two-level 
fusion structure based on Dempster-Shafer evidence theory 
(D-SET). However, they cannot resolve the evidence conflict 
among multiple pieces of evidence caused by unpredictable 
disturbances, due to the following inherent methodological 
limitations. First, the deterministic basic probability assignment 
(BPA) used in the two-level fusion models is not accurate 
enough for each feature source. While BPA can be determined 
dynamically based on Takagi-Sugeno fuzzy neural network 
(T-SFNN) model [23], training the T-SFNN model requires a 
large number of samples to cover various fatigue states. A small 
number of samples could reduce the accuracy of fatigue driving 
recognition. As obtaining a large-size training sample is 
difficult, these models are not suitable for online fatigue driving 
recognition over a long period. Second, with more evidence 
sources, evidence conflict is inevitable during evidence fusion 
when external disturbances exist. Without a correction 
technique to deal with the evidence conflict, existing models 
cannot effectively produce accurate fatigue recognition results 
that can accommodate real-world travel environment changes. 

In summary, though some methods apply multi-source 
information to improve the efficiency of fatigue driving 
recognition, they have the following limitations. First, though 
contextual features have a strong correlation with driver’s 
fatigue state, they have not been considered for real-time 
fatigue driving recognition. Second, real-time fatigue driving 
recognition cannot be improved by simply increasing the 
number of incorporated fatigue features. Too many fatigue 
features entail a heavy computational burden and data 
redundancy. Third, fatigue recognition models lack modeling 
flexibility to deal with the evidence conflict among features 
caused by disturbances from travel environment changes.  

To address the aforementioned limitations, we propose a 
fatigue driving recognition method based on multi-feature 
identification and two-level fusion of multi-source information. 
Three fatigue feature sources, driver’s contextual features, 
facial features and vehicle behavior features, are considered. 
The most effective fatigue features are selected through a 
feature identification process based on grey relational analysis 
(GRA) that reduces computational burden and precludes 
potential data redundancy. The potential evidence conflict is 
eliminated through a modified BPA that is based on the 
multi-class support vector machine (MCSVM) classifier with a 
correction technique that considers conflicting evidence. The 
method proposed in this paper can outperform the methods 

based on percentage of eye closure (PERCLOS) [24]-[26] in 
terms of reliability. In particular, when external interferences 
occur, such as lighting change and sudden head movement, 
PERCLOS- based methods may not work as they rely totally on 
a single fatigue feature. 

The contributions of this study are threefold. First, 
contextual features related to fatigue driving, i.e., continuous 
driving time, sleep duration time, and current time, are selected 
for the proposed fatigue driving recognition model, leading to 
improved fatigue driving recognition. Second, a GRA-based 
method is proposed to select the most effective fatigue features, 
which can eliminate potential data redundancy. Third, a 
MCSVM classifier is used to fuse multiple fatigue features 
from different sources. The MCSVM classifier relies on only a 
small set of training samples, which not only enhances the 
feature-level fusion but also enables a dynamic BPA of each 
feature source in the decision-level fusion. An assignment 
correction technique for the dynamic BPA is proposed to 
resolve the evidence conflict caused by disturbances from 
travel environment changes. 

The remainder of this paper is organized as follows. Section 
II describes the fatigue feature measurements that will be used 
to recognize driver’s fatigue state. Section III presents the 
fatigue feature identification method, in which grey relational 
analysis is introduced to investigate the correlation between 
fatigue driving and the measured fatigue features. Section IV 
proposes a two-level recognition model, which consists of a 
feature-level fusion based on the MCSVM classifier and a 
decision-level fusion based on the improved D-SET. Section V 
presents a case study using field data collected on the 
Nanjing-Zhenjiang expressway in China, to illustrate the 
effectiveness of the proposed method. The final section 
provides some concluding comments.  

II. PRELIMINARIES  

A previous study [23] used facial features and vehicle 
behavior features to characterize the fatigue state of drivers. 
Facial features considered in [23] include blinking frequency 
(BF), eye-closed duration (ECD), mean of eye-opened level 
(MEOL), and yawning frequency (YF). Vehicle behavior 
features considered include the percentage of non-steering 
(PNS), standard deviation of steering-angle (SDSA), frequency 
of abnormal lane deviation (FALD), and standard deviation of 
vehicle speed (SDVS). This paper includes these features as 
candidate fatigue features. Please refer to [23] for the real-time 
measurement of these candidate fatigue features. 

Some studies in physiology have shown that factors such as 
sleep condition, driving time, and environmental temperature in 
cab have a significant correlation with driver’s fatigue state 
[27]. Therefore, fatigue features derived from driver’s 
contextual information can be used to enhance the fatigue 
driving recognition. Four contextual features have been shown 
to have a strong correlation with driver’s fatigue state [16], [17], 
[27]: continuous driving time (CDT), air temperature in cab 
(ATC), sleep duration time (SDT), and current time (CT). As 
these features are easy to measure in real time, this study selects 
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these four features as candidate contextual features. They are 
defined as follows: 

(i) Continuous driving time (CDT): Let CDTt  denote the 
CDT, which can be measured by a vehicle-mounted stopwatch. 

(ii) Air temperature in cab (ATC): Let ATCt  denote the ATC, 
which can be detected in real time by a vehicle-mounted 
thermometer. 

(iii) Sleep duration time (SDT): Let SDTt  denote the SDT of 
a driver, which reflects the sleep situation of a driver before 
starting to drive. SDT SS At T T= - , where SST  is the time when a 
driver starts to go to sleep, and AT  is the time when the driver 
wakes up after having a rest. SST  and AT  can be measured by a 
sleep tracker worn by the driver. 

(iv) Current time (CT): Variable CTt  denotes the CT of the 
day, which can be measured by a vehicle-mounted clock. 

III. FATIGUE FEATURE SELECTION  
Efficiency and reliability are two contradictory factors for a 

real-time fatigue driving recognition model. From an efficiency 
perspective, if a recognition model incorporates fewer fatigue 
features, it can compute faster. By contrast, from a reliability 
perspective, if a recognition model incorporates a larger 
number of fatigue features, it can be more reliable. This is 
because if a sensor fails in a multiple-source based recognition 
system due to unpredictable disturbances, a reliable recognition 
result can be obtained through other sensors based on data 
fusion algorithms [15], [20], [21]. This illustrates a tradeoff 
related to the number of fatigue features selected. It motivates 
the need to evaluate the effectiveness of the fatigue features 
presented in Section II, and to select the most effective ones as 
inputs to the fatigue recognition model. 

A. Fatigue state assessment 
Previous studies focus on subjective assessments of fatigue 

driving by observing phenomena such as a driver’s facial 
expression and operational behavior, and by his/her 
self-evaluation of fatigue. As fatigue state assessment based on 
EEG [28] is objective and has higher reliability, we introduce a 
comprehensive method for assessing fatigue state by 
combining subjective and objective assessments, to evaluate 
and determine driver’s fatigue states and to provide ground 
truth data for model calibration and verification.  

The comprehensive assessment method is composed of four 
steps: (i) observer assessment, (ii) objective assessment, (iii) 
self-assessment, and (iv) comprehensive assessment. We adopt 
the 9-point Karolinska sleepiness scale (KSS) table [29], [30], 
for self-assessment, instead of the 7-point Stanford Sleepiness 
Scale table used in [23], to enable a more reliable assessment of 
fatigue state.  

During the self-assessment, every participant evaluates 
his/her fatigue state according to the current physical, 
physiological and psychological situations. Note that the 
observer and objective assessment processes based on EEG 
detection must be implemented simultaneously to cross-check 
the fatigue state. The self-assessment process based on the KSS 

table should be carried out within one minute after the other two 
assessments are accomplished. 

B. Correlation analysis based on GRA 
To avoid the heavy computational burden caused by 

including many features, only features that are highly 
correlated with fatigue driving are adopted in the proposed 
model. The GRA method is effective in determining the critical 
elements that significantly influence certain defined objectives 
[31]. Compared with other methods, such as Pearson test [23], 
it has advantages such as small sample size, no restriction of 
functional form, no requirement for independence or normal 
distribution, and fewer computations. Hence, it has been 
extensively used for relevance analysis in various disciplines 
[31]. Here, the GRA method is used to perform correlation 
analysis between fatigue features and fatigue state, and to select 
the most effective fatigue features. The detailed steps are as 
follows: 

(i) Based on the fatigue feature measurement and fatigue 
state assessment, the collected samples are viewed as a group of 
discrete data sequences, denoted by 0 ( )X j  and ( )iX j , 
1,2, ,i M= , 1,2, ,j N= , where 0 ( )X j  represents a 

parent data sequence and ( )iX j  represents a child data 
sequence. We further define fatigue level of the sample data 
according to their fatigue state evaluated in Section III.A. Here, 

12M =  represents the twelve candidate fatigue features 
presented in Section II. 0 ( )X j  represents the fatigue level 

value of the thj  sample data and ( )iX j  denotes the thi  
fatigue feature value of the thj  sample data, where 1( )X j , 

2 ( )X j , , 11( )X j  and 12 ( )X j  denote the measurement 
values of BF, ECD, MEOL, YF, PNS, SDSA, FALD, SDVS, 
CDT, ATC, SDT, and CT of the thj  sample data, respectively.  

(ii) Sample data are normalized as:  
0
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where 1,2, ,i M=  and 1,2, ,j N= . 

(iii) The grey relational coefficient between 0 ( )X j  and 

( )iX j  is calculated as: 
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where r  is a coefficient in [0, 1], which can be determined 
through experiments and is used to better distinguish between 
the parent and child data sequences.  

(iv) The grey relational coefficient is transformed into a grey 
relational density (0, )j ig : 

0

0
1

( ( ), ( ))
(0, ) , 1, , , 1, , .

( ( ), ( ))

i
j N

i
j

X j X j
i i M j N

X j X j

y
g

y
=

= = =

å
 (3) 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

4 

(v) After the grey relational density (0, )j ig  is obtained, the 

entropy ( )E i  of the grey relational coefficient of each child 
sequence is obtained: 

( )
1

(0, ) ln (0, )
( ) ,  1,2, ,

ln

N

j j
j

i i
E i i M

N

g g
=

-
= =
å

 (4) 

where the term of 
1
(0, )ln (0, )N
j jj
i ig g

=
-å  expresses the grey 

entropy between the parent sequence 0 ( )X j  and the child 

sequences ( )iX j , and ln( )N  is the maximum grey entropy, 
with 0 ( ) 1E i£ £ . 

(vi) By multiplying the entropy ( )E i  and the average grey 

relational coefficient of the child sequence ( )iX j , we obtain 
the grey relational degree (GRD): 

0
1

( )( ) ( ( ), ( ))
N

i
j

E iD i X j X j
N

y
=

= å  (5) 

where ( ) [0,1]D i Î  is the GRD between the child and parent 
sequences. A larger value of ( )D i  indicates a higher degree of 
correlation between the child and parent sequences. Therefore, 
the GRD can be used to identify the effectiveness of fatigue 
features. 

IV.  TWO-LEVEL FUSION MODEL 

We propose a two-level fusion model based on multi-source 
information for fatigue driving recognition, which consists of 
the feature-level fusion based on the MCSVM and the 
decision-level fusion based on D-SET. The proposed model 
structure is illustrated in Fig. 1. In the feature-level fusion, the 
contextual, facial, and vehicle behavior features are the inputs 
of three MCSVM classifiers, MCSVM-1, MCSVM-2, and 
MCSVM-3, respectively, to produce dynamic BPAs in real 
time for the decision-level fusion. The outputs of the three 
MCSVM classifiers are inputs for the decision-level fusion 
based on D-SET.  

Decision-level fusion

Feature-level fusion

Contextual features Facial features Vehicle behavior 
features

MCSVM-1 MCSVM-2 MCSVM-3

Probability output 
of MCSVM-1

Probability output 
of MCSVM-2

Probability output 
of MCSVM-3

Improved D-S evidence combination rule

Fusion result at time t

Fatigue state recogniton

BPA-1 BPA-2 BPA-3

Fusion result at 
time t-1

Time tTime t-1 Time t+1

Evidence source-1 Evidence source-2 Evidence source-3

Evidence source-4
BPA-4

 
Fig. 1.  Flowchart of fatigue driving recognition. 

In the decision-level fusion, the outputs of MCSVM-1, 
MCSVM-2 and MCSVM-3 are viewed as three pieces of 
evidence. The fusion result from the previous time step is the 
fourth evidence, and these four pieces of evidence are fused 
using an improved evidence combination rule. In the improved 

evidence combination, a correction technique is proposed for 
the BPAs to resolve evidence conflicts. 

A.  Feature-level fusion 

Support vector machine (SVM) is based on statistical 
learning theory for classification, and has the advantage of 
requiring only a small sample set compared to artificial neural 
network and Bayesian based classification methods. The basic 
SVM classifier can enable binary classification, but cannot 
achieve multi-class classification [32]. To classify fatigue 
feature data into multiple class labels, we propose a 
feature-level fusion method based on MCSVM classifier. A 
sigmoid function is introduced to carry out the probability 
classification of the data with two class labels based on the 
basic SVM classifier. Then, the “one-against-one” strategy [33] 
is introduced to compute multi-class probability classification 
for the data with multiple class labels. 
1) Probability classification based on binary-class SVM 

Instead of predicting the binary label, we apply a posterior 
class probability for the classification of fatigue state. To solve 
the problem, we introduce a sigmoid function to calculate the 
posterior probability ( 1 )P y f=  [34]: 

,
1( 1 ) ( )

1 exp( )U VP y f P f
U f V

= » =
+ × +

 (6) 

where * *
1

( )= ( , )l
i i ii

f f x y k x x ba
=

= +å , which is the decision 

function of binary classification. Discriminant function 
sgn( ( ))f x  is used to predict the binary label of test sample x . 
The radical basis function (RBF) is selected as kernel function 
of the SVM. For the parameter calculation related to the binary 
classification based on basic SVM, please refer to [35]. For the 
optimal parameter * * *( , )z U V=  in (6), please refer to [36]. 

2) Probability classification based on multi-class SVM 
The method in the previous section is suitable only for binary 

classification. For the multi-class classification problem, 
“one-against-all” [37] and “one-against-one” [33] strategies are 
two effective methods. However, compared to the 
“one-against-all” strategy, the “one-against-one” strategy 
performs better in terms of training time in practice [33]. 
Therefore, we propose a new probability classification method 
based on the basic SVM classifier and “one-against-one” 
strategy. The detailed procedure is as follows:  

(i) Given the data set 1{( , )}li i ix y = , n
ix RÎ , which is a fatigue 

feature vector with n  elements, and {1,2, , }i Fy kÎ  is the 
class label of ix . Here, Fk  is the number of evaluated fatigue 
states. 

(ii) Construct MN  binary-class SVM classifiers using the 
method described in [35], where ( 1) / 2M F FN k k= - .  

(iii) In the MN  SVM classifiers, for the binary-class 

classifier constructed for the sample data of the thi  and thj  

classes, the posterior probability of x  belonging to the thi  
class can be calculated as:  
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, * *
,

1( )
1 exp( )i j

i j

p x
U f V

=
+ × +

 (7) 

where ,i jf  is the estimate of the decision function ( )f x  

determined by the thi  class and thj  class sample data. 
(iv) For the classification of three fatigue states, the final 

posterior probability of x  belonging to the thi  fatigue state 
can be calculated as: 

,
1,

,
1 1,

( )
( ) ,   1,2, ,

( )

F

F F

k

i j
j j i

i Fk k

r j
r j j r

p x
p x i k

p x

= ¹

= = ¹

= =
å

å å
. (8) 

B. Decision-level fusion 
1) Dynamic basic probability assignment 

Generally, after the BPA is subjectively assigned by experts 
according to their experience, it is unable to dynamically 
change the assignment according to external travel 
environment, which will degrade fatigue driving recognition.  

To overcome this limitation, a dynamic BPA assignment 
method is proposed, where the BPAs of three fatigue feature 
sources are assigned dynamically by three MCSVM classifiers, 
according to real-time fatigue feature measurements. In 
particular, we let ( ) ( )i im A p x= , where ( )im A  is the BPA of 

the thi  state in the D-SET, 1,2, , Fi k= . 
2) Improved evidence combination 

Compared with other statistical inference methods, D-SET is 
closer to the human perception and reasoning process, and can 
fuse multi-source information to infer the results with some 
degree of certainty [38]. However, evidence conflict is 
inevitable during evidence fusion. To resolve this problem, this 
section proposes an improved evidence fusion method by 
introducing a conflict factor to judge conflicting evidence and a 
conflict scale factor to eliminate the conflict.  

Denote discernment frame as Q ={ 1A , 2A , ,
HN

A }, 

evidence set as e ={ 1e , 2e , ,
En
e }, 1m , 2m , , and 

En
m  as 

mass functions on Θ , 1( )m × , 2 ( )m × , , and ( )
En

m ×  as the 

BPAs on Θ , HN  as the number of hypotheses, and En  as the 
number pieces of evidence. In this paper, HN  also equals the 
number of fatigue states. The Dempster combination rule for 
every evidence is as follows [39]: 

1

1 ( ),      Θ,
1( )
0,                                                

j k E

i j k k
A A i nk

k

m A A A
Km A

A
= £ £

ì " Î ¹ Æï -= í
ï =Æî

å Õ  (9) 

where 
1

( )
j E

i jA i n
K m A

=Æ £ £
=å Õ  denotes the conflict degree 

among all pieces of evidence. 
In this paper, four pieces of evidence from different 

information source are combined at each time step, where three 
pieces are from three fatigue feature sources and the fourth is 
from the fusion result based on D-SET in the previous time 
step. 

In (9), if 1K = , then the En  pieces of evidence completely 
conflict to each other. In the case, the rule of (9) fails and 
cannot be used to obtain a correct result. When 1K ® , the n  
pieces of evidence have a higher conflict, and an illogical result 
may be produced by this rule. Therefore, we need to identify 
whether conflict will happen before conducting evidence 
combination. If the conflict happens, we need to make a 
correction for the conflicting evidence. 

The conflicting evidence can also contain some valuable 
information for evidence fusion. If the conflicting evidence 
piece is removed randomly, it will result in a loss of 
information [40]. Therefore, we propose an improved evidence 
combination method that combines both the similar evidence 
piece and conflicting evidence piece to obtain a more 
reasonable inference. The evidence combination method is 
illustrated in Fig. 2. 

End

Start

  Construct evidence vector space     

  Calculate                     between      and

  Calculate conflict factor       of evidence

  Similar evidence Conflicting evidence

Evidence combination rule

Yes
No

No Yes

nR

( )cos ,i jE E iE jE

iD

?i tD >

( )i jm A

 Calculate conflict scale factor h

?h d<

 Partial modification ( )i jm A¢  Global modification ( )i jm A¢¢

 
Fig. 2.  Flowchart of the improved evidence combination. 

Here, we define a conflict factor based on the average 
similarity between a certain evidence piece and other evidence 
pieces to identify the conflicting evidence piece. The detailed 
procedure is as follows: 

(i) Construct a vector space HNR  with HN  dimensions 
according to the number of fatigue states. Let 

T

1( ), , ( )
Hk k k NE m A m Aé ù= ë û  be an evidence vector in the 

space HNR for all 1 Ek n£ £ . The similarity between evidence 
vectors of iE  and jE  is defined as: 

( )( )

T

, 1
T T 2

i j
i j

i i j j

E E
S

E E E E
=
é ùë û

 (10) 

where ( ) ( )T
1
HN

i j i jl
E E m l m l

=
=å , , 1,2, , , 1,2,E Hi j n l n= = . 

(ii) The average similarity iS  between evidence piece iE  
and other evidence pieces is measured by: 

( ),1,
1En

i i j Ej i j
S S n

= ¹
= -å . 

(iii) Conflict factor iD  of evidence piece i  is defined as: 

( ) / ( )i iSb b aD = - - , where 
1
min

E
ii n
Sa

£ £
= , and 

1
max

E
ii n
Sb

£ £
= . 
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When 0iD = , it indicates that evidence piece iE  is identical 
with other evidence pieces and has no conflict with them. When 

1iD = , it indicates that iE  is entirely different from other 
evidence pieces, and has the largest conflict with them. 
Therefore, based on the conflict factor, the evidence pieces can 
be divided into two categories: similar evidence pieces and 
conflicting evidence pieces. For evidence im , if the conflict 
factor i tD £ , then evidence im  is regarded as a similar 
evidence piece; if conflict factor i tD > , then evidence im  is 
regarded as a conflicting evidence piece, where 0 1t£ £  is a 
threshold set, which is determined through a sequence of 
numerical experiments based on field data. 

To overcome evidence conflict, we modify the original 
BPAs of the similar evidence pieces and conflicting evidence 
pieces by defining a conflict scale factor. The conflict scale 
factor h  indicates the proportion of conflicting evidence pieces 
to all evidence pieces in the discernment frame Q , which can 
be expressed as: = /c En nh , where cn  is the number of 
conflicting evidence pieces. The BPA modification procedure 
is as follows:  

(i) When h d< , a partial modification is made for only 

conflicting evidence pieces: (A) ˆ( ) ( )i j i i jm A S m A¢ = × , where 

ˆ ( )i jm A  represents the BPA of the thi conflicting evidence 

piece and (A)
iS  is the absolute similarity of thi conflicting 

evidence piece formulated as: (A) /i iS S b= .  
(ii) When h d³ , a global modification is made for all 

evidence pieces: (R)( ) ( )i j i i jm A S m A¢¢ = × , where ( )i jm A  

represents the BPA of the thi  evidence piece and (R)
iS  is the 

relative similarity of the thi evidence piece formulated as: 
(R)

1
HN

i i jj
S S S

=
= å . According to the analysis above, the 

original BPA is updated as ( )i jm A : 

( )     

( ) ( )     ,

( )     ,

i j i

i j i j i

i j i

m A
m A m A

m A

t

t h d

t h d

ì D £
ï

¢= D > <í
ï ¢¢ D > ³î

 (11) 

Based on the updated BPAs, the improved Dempster 
evidence combination rule is given by: 

1

1 ( ),      Θ, ,
1( )
0,                                                ,

j k E

i j k k
A A i nk

k

m A A A
Km A

A
= £ £

ì " Î ¹ Æï -= í
ï =Æî

å Õ  (12) 

where 
1

( )
j E

i jA i n
K m A

=Æ £ £
=å Õ . 

3) Decision making 
After the evidence fusion, we formulate a decision rule to 

draw the final conclusion on the fatigue state. Let ( )Fm A
max{ ( ), Θ}k km A A= Î , ( )Sm A = max{ ( ) | Θ \ }k k Fm A A AÎ  

represent the largest and the second largest probability values, 
respectively. The proposed decision is determined as follows: 

1

2

( ) ( )
( )

F S T

F T

m A m A
m A

e
e

- >ì
í >î

 (13) 

where 1Te  and 2Te  are pre-specified thresholds [39]. If the 
fusion result satisfies the decision rule (13), then FA  is adopted 
as the final fatigue driving state. If the fusion result at current 
time step does not satisfy decision rule (13), the driver’s fatigue 
state at the previous time step is adopted to ensure the program 
reliability considering that driver’s fatigue state would not 
change over a relatively short time. 

V. FIELD EXPERIMENTS 

Field experiments were conducted on the Nanjing-Zhenjiang 
expressway in China to investigate the performance of the 
proposed fatigue driving recognition model. 

A. Two experiment stages 

These experiments are divided into two stages: the offline 
training stage and the online recognition stage, as shown in Fig. 
3. The offline training stage first constructs an experiment 
platform and designs a detailed experimental procedure. 
Second, it conducts fatigue feature measurements and classifies 
the fatigue state of each fatigue feature. Third, based on the 
collected sample data, including fatigue features and 
corresponding fatigue states, the offline training stage identifies 
the effectiveness of these fatigue features using the GRA 
method and selects the most effective fatigue features. Fourth, 
based on the collected sample data, the offline training stage 
trains the MCSVM classifier and obtains the optimal parameter 
values.  

Fatigue feature 
measuement

Fatigue state 
assessment

Sample data collection

Experiment design

 Training MCSVM 
classifier

Fatigue feature 
identification based 

on GRA

Parameter 
determination of 

MCSVM classifier

Selection of most 
effective fatigue 

features

Real-time measurement of 
the most effective fatigue 

features selected

Trained MCSVM classifier

Probability output of multiple 
fatigue feature sources based 

on MCSVM classifier

Improved multi-source 
information fusion model 

based on D-SET

Fatigue state recognition 
at current time step

Offline training stage Online recognition stage

Fig. 3.  Experimental stages of fatigue driving recognition. 

The online recognition stage first performs real-time 
measurement of the most effective fatigue features selected in 
the offline training stage. Second, as input parameters, these 
most effective fatigue features are fused by the trained 
MCSVM classifiers to generate real-time probability outputs 
for further decision-level fusion. Third, the online recognition 
model fuses the four pieces of evidence (see Fig. 1) using the 
improved D-SET fusion method. Fourth, the driver’s fatigue 
state is determined using the set decision rule based on the final 
fusion result, and the effectiveness of the proposed method is 
validated. 
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B. Experiment design 
Fig. 4 highlights the experiment location, the 

Nanjing-Zhenjiang expressway, which is 81.7 km long. Six 
men and four women participated in the experiments. Their 
ages ranged from 24 to 34 years, and they had more than three 
years of driving experience each. Alcohol, tea, coffee, drugs, or 
any drinks that could cause excitement to the nervous system 
were prohibited for 24 hours before the experiments. All 
experiments were performed after informed consent of the 
procedures was received from all participants.  

 
Fig. 4.  Experiment route shown on Google map. 

The experiments were conducted from 12:00 PM to 3:00 PM 
on March 15th, 2015 for all participants. Previous studies 
suggest that drivers are more easily fatigued during this time 
period of a day [3]. To avoid traffic accidents, the experiments 
were conducted on road sections with few vehicles. In addition, 
to ensure safety, an experienced driver assistant was asked to sit 
in the front passenger seat to warn the participant or execute the 
brake in an emergency. 

C. Fatigue state classification 
Based on the comprehensive assessment method of fatigue 

state in Section III.A, we propose an accurate classification of 
three driver fatigue states: Non-fatigue (NF), Moderate fatigue 

(MF) and Severe fatigue (SF), respectively. For the detailed 
steps, please refer to our previous study [23].  

Note that in the self-assessment step, fatigue is rated into 
three states, NF (1-4 points), MF (5-7 points), and SF (8-9 
points), based on the scores from the KSS table. 

D. Field data collection 
Based on the measurements described in Section II, twelve 

fatigue features were measured. 1,000 data points were 
collected, each of which included the twelve fatigue features. 
They were separated into two sets. The training set included 
600 data points for model calibration, and the testing set 
included 400 data points for model verification. Further, based 
on the proposed comprehensive assessment method, the 
measurements of every fatigue feature were divided into three 
groups according to their corresponding fatigue states (NF, MF, 
and SF). We select 150 data from the 1,000 data illustrated in 
Fig. 5. For each fatigue feature, 50 data belong to the NF group, 
50 data belong to the MF group, and the rest belong to the SF 
group.  

As shown by Fig. 5, for some fatigue features, it is difficult to 
classify driver’s fatigue state according to the distribution of the 
measured value. For example, the data for the NF state should 
have larger values than the data for the MF state, and data for 
the MF state should be higher than those for the SF state for 
ATC, MEOL and PNS, as shown in Figs. 5(b), (g), and (i), 
respectively. However, some data for the NF state have smaller 
values than those for the MF state. Therefore, the effectiveness 
of these measured fatigue features need to be verified for a 
reliable fatigue driving recognition. 

 
 

 
(a)                                                                               (b)                                                                            (c) 

 

 
                                       (d)                                                                              (e)                                                                              (f) 
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                                               (g)                                                                              (h)                                                                             (i) 

 
                                               (j)                                                                              (k)                                                                             (l) 

Fig. 5.  Fatigue feature measurements: (a) CDT. (b) ATC. (c) SDT. (d) CT. (e) BF. (f) ECD. (g) MEOL. (h) YF. (i) PNS. (j) SDSA. (k) FALD. (l) SDVS. 
 

E. Fatigue feature selection 
This step identifies the fatigue features, and selects the most 

effective fatigue features. First, the GRA is used to calculate the 
GRD between every fatigue feature and fatigue driving state. 
Then, according to the GRD rank, the fatigue features with a 
larger GRD value are selected as the most effective fatigue 
features. For determining the GRD, we identify the fatigue 
level for the collected sample data as follows: (i) if the fatigue 
state of the sample is NF, the fatigue level is quantified as 1; (ii) 
if the fatigue state of the sample is MF, the fatigue level is 
quantified as 2; (iii) if the fatigue state of the sample is SF, the 
fatigue level is quantified as 3. We randomly select 800 sample 
data from the 1,000 collected data points to perform the 
correlation analysis. The GRD values of the twelve fatigue 
features are shown in Fig. 6. 

 
Fig. 6.  GRD between fatigue features and fatigue driving. 

As shown in Fig. 6, nine fatigue features (SDT, BF, CDT, 
ECD, SDSA, YF, FALD, SDVS, and CT) have GRD values 
over 0.80, and the other three (PNS, MEOL, and ATC) have 
values less than 0.80. This indicates that these nine fatigue 
features have more significant correlation with fatigue driving, 
and are selected as the most effective fatigue features. The other 
three are excluded. In future research, we can further analyze 
whether inter-correlation exists among the most effective 
fatigue features selected in the paper to identify more effective 
fatigue features. 

F. Model verification 
1) Feature-level fusion result 

The feature-level fusion fuses the most effective fatigue 
features and generates dynamic BPAs for the decision-level 
fusion. From the fatigue feature identification results, three 
contextual features (SDT, CDT and CT), three facial features 
(BF, ECD and YF) and three vehicle behavior features (SDSA, 
FALD and SDVS) are fused as input parameters for 
MCSVM-1, MCSVM-2 and MCSVM-3 to provide BPAs for 
the decision-level fusion, respectively. We select 400 sample 
data from the training set to implement the feature-level fusion, 
and use six of the fusion results as examples in Fig. 7. In the 
feature-level fusion, the fusion result of every MCSVM 
classifier is a vector with three elements. Let { 1( )t

ip A , 2( )t
ip A ,

3( )t
ip A } 1,2,3i =  denote the fusion result of the thi  MCSVM 

classifier at time t . The three elements, 1( )t
ip A , 2( )t

ip A , and 

3( )t
ip A , denote the probabilities of the sample belonging to the 

three fatigue states, NF, MF and SF, respectively. In Fig. 7, 
they are denoted by three vertical bars. 
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(a) 

  
     (b) 

  
         (c) 

Fig. 7.  Feature-level fusion results for: (a) Contextual features, (b) Facial 
features, and (c) Vehicle behavior features. 
2) Decision-level fusion result 

Based on the improved evidence fusion method, the four 
pieces of evidence, including the three fatigue features and the 
fusion result for the previous time step, are fused at the 
decision-level fusion. The fusion result for the previous time 
step is shown in Fig. 8(a), and the fusion result for the current 
time step is shown in Fig. 8(b). 

The decision-level fusion result is also a vector with three 
elements. Let { 1( )tm A , 2( )tm A , 3( )tm A } denote the fusion 

result at time t . The three elements, 1( )tm A , 2( )tm A , and 

3( )tm A , denote the probabilities of the sample belonging to the 
three fatigue states, NF, MF and SF, respectively.  

  

        (a) 

  

          (b) 

Fig. 8.  Decision-level fusion results for: (a) Previous time step, and (b) Current 
time step. 

Fig. 9 illustrates the difference between the maximum and 
the second maximum of the three vector elements in the 
feature-level fusion and the decision-level fusion. The 
difference values are much smaller in the feature-level fusion 
than in the decision-level fusion. For example, for the 5th 
sample, in the MCSVM-1 classifier, 1 1( ) 0.483tp A = , 

1 2( ) 0.315tp A = , 1 3( ) 0.202tp A = ; the difference between the 
maximum (0.483) and the second maximum (0.315) values is 
0.168. Similarly, for the MCSVM-2 classifier, the difference 
between the maximum 0.452 ( 2 3( )tp A ) and the second 

maximum 0.335 ( 2 2( )tp A ) is 0.117, and for the MCSVM-3 

classifier, the difference between the maximum 0.503 ( 3 1( )tp A ) 

and the second maximum 0.413 ( 3 2( )tp A ) is 0.090. However, 
after the decision-level fusion, the difference value between the 
maximum 0.603 ( 1( )tm A ) and the second maximum 0.294 (

2( )tm A ) is 0.309, which is much larger than those based on the 
feature-level fusion. Hence, this enhancement based on the 
two-level fusion process makes the recognition of fatigue state 
easier and more credible. 
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Fig. 9.  The difference between the maximum and the second maximum of three 
vector elements in feature-level fusion and in decision-level fusion. 

The recognition results based on the proposed 
comprehensive assessment method are viewed as ground truth 
to verify the effectiveness of the proposed method. By 
analyzing the recognition results based on the training dataset 
and ground truth data, we specify 1=0.25Te  and 2 =0.55Te  in 
(13) to conclude the fatigue state. We find that the proposed 
recognition method is capable of accommodating external 
condition changes, especially under the cases when driver nods 
sharply, lane becomes blurred, lighting becomes dim, or GPS is 
incapable of receiving location signals. For example, for the 4th 
sample data, 1 3( )tp A  has the maximum value (0.553) in the 

output of MCSVM-1 classifier, 2 3( )tp A  has the maximum 

value (0.452) for MCSVM-2 classifier, 3 2( )tp A  has the 

maximum value (0.457) for MCSVM-3 classifier, and 3( )tm A  
has the maximum value (0.725) in the decision-level fusion at 
time t . Therefore, from the individual results of the 
MCSVM-1 and MCSVM-2 classifiers and the decision-level 
fusion at time t , the driver’s fatigue state should be identified 
as SF. Conversely, based on the fusion result of MCSVM-3, the 
driver’s fatigue state should be identified as MF, which is 
contradictory. Based on the proposed comprehensive 
assessment method, we find that the driver’s actual fatigue state 
is evaluated as SF, which is consistent with the recognition 
result of the decision-level fusion. An analysis of the collected 
data suggests that the MCSVM-2 classifier was inconsistent 
because the fatigue features ECD and YF were incorrectly 
measured due to the driver’s suddenly nodding. 

Similarly, for the 4th sample data, the recognition results of 
MCSVM-1, MCSVM-2 and decision-level fusion indicate SF, 
while that of MCSVM-3 classifier is MF. The video records 
show that the fatigue feature FALD was incorrectly measured 
due to the blurred lane and dim lighting, which resulted in the 
failure of MCSVM-3 classifier. By contrast, the recognition 
result of fatigue state based on decision-level fusion at current 
time step is consistent with the result based on the proposed 
comprehensive assessment. Therefore, although certain fatigue 
feature measurements are problematic, the proposed fusion 
model can robustly recognize driver’s fatigue state. 

For the 6th sample data, the driver’s fatigue state is identified 
as SF, MF, and NF according to the fusion results based on the 
MCSVM-1, MCSVM-2 and MCSVM-2 classifiers, 

respectively. However, the fatigue state of the 6th sample data is 
SF according to the decision-level fusion result shown in Fig. 
8(b). The comprehensive assessment verifies that the actual 
fatigue state is SF, which is consistent with the decision-level 
fusion result. An analysis of the collected data illustrated that 
the GPS device did not receive any signal of vehicle position 
and velocity, and the camera did not capture legible face image 
of driver because the vehicle had entered a tunnel, which 
resulted in the recognition failure of the MCSVM-2 and 
MCSVM-3 classifiers. By contrast, the decision-level fusion 
was able to obtain correct fatigue recognition by considering 
the fusion result at the previous time step. This indicates that 
even when two fatigue feature measurements from different 
feature sources fail simultaneously due to sudden external 
travel environment changes, the proposed method may be able 
to correctly recognize driver’s fatigue state by factoring the 
fusion result from the previous time step. 

The performance of the proposed two-level fusion model is 
investigated based on four sets of fatigue feature measurements 
from five perspectives: number of incorporated fatigue features 
(NIFF), accuracy rate (AR), missing rate (MR), false alarm rate 
(FAR), and average computational time (ACT). Among these, 
AR, FAR and MR can reflect the reliability of the proposed 
method and ACT can reflect its efficiency. Here, 
AR=(N0,0+N1,1+N2,2)/N, FAR=(N0,1+N0,2)/N, MR=(N1,0+N2,0)/N, 
where N is the number of samples, and Ni,j is the number of 
sample data points recognized as having fatigue state j when the 
actual fatigue state is i. The four sets of fatigue features are 
characterized as follows: (i) all 12 fatigue features, (ii) the 9 
most effective fatigue features (excluding PNS, MEOL and 
ATC), (iii) only 8 fatigue features (by excluding contextual 
features from (ii)), and (iv) the 6 most effective fatigue features 
(by excluding contextual features, PNS and MEOL from (ii)). 
The results are summarized in Table I, where CFs indicates 
contextual features. 

Table I shows that the proposed method performs better not 
only in terms of reliability but also in terms of efficiency when 
the contextual features are included and ineffective fatigue 
features are excluded by performing fatigue feature selection. 
In particular, while fewer fatigue features are used in the fatigue 
recognition model, the performance of the proposed method is 
improved in terms of AR, MR, FAR and ACT. This 
demonstrates that implementing fatigue feature selection is 
necessary and effective for real-time fatigue driving 
recognition. Further, incorporating the contextual features can 
also enhance the reliability of the recognition method. 

 

 

 
TABLE I 

PERFORMANCE COMPARISON BASED ON DIFFERENT FATIGUE FEATURE SETS 

Fatigue feature selection NIFF AR 
(% 

MR 
(%) 

FAR 
(%) 

ACT 
(ms) 

Including CFs 
Without GRA 12 92.8 2.5 2.6 348 

With GRA 9 95.1 2.1 2.2 287 

Excluding CFs 
Without GRA 8 92.7 2.6 2.5 321 

With GRA 6 94.0 2.2 2.3 259 
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The performance of the proposed method based on different 
evidence sources is summarized in Table II, where NIES 
denotes the number of incorporated evidence sources, and FFs 
and VBFs indicate facial features and vehicle behavior features, 
respectively. Note that, unlike in Table I, the used fatigue 
features in the feature-level fusion are based only on the most 
effective fatigue features through feature selection in Table II, 
and the fatigue state at the previous time step is not considered 
in the decision-level fusion. By comparing tables I and II, we 
note that the proposed method obtains better recognition results 
when the fatigue state at the previous time step is considered in 
the decision-level fusion. 

 
 

 
 

The performance of a fatigue recognition method applying 
single-level fusion to different evidence sources is summarized 
in Table III. In Table III, all features from different evidence 
sources are incorporated into the MCSVM classifier, and 
driver’s fatigue state recognition results are outputted through 
it. A comparison of tables II and III illustrates that the 
recognition method based on two-level fusion outperforms the 
one based on single-level fusion in terms of accuracy and 
reliability. 

 

 
Table IV compares the proposed method with those based on 

single feature and single-source fusion in terms of NIFF, AR, 
MR, FAR and ACT. Based on tables I and IV, the proposed 

method, which incorporates the most effective fatigue features 
from four feature sources, outperforms the other methods in 
terms of AR, MR and FAR. It indicates that the proposed 
method can provide more reliable and robust recognition 
results in real-world applications. 

Finally, we compare the proposed method with the one 
developed in [23]. From Table I, the AR, MR and FAR of the 
proposed method are 95.1%, 2.1% and 2.2%, respectively. By 
contrast, the AR, MR and FAR from the method developed in 
[23]are 93.8%, 2.3% and 2.8%, respectively. This suggests that 
the proposed method has better reliability. In addition, from 
Table IV, the recognition results based on FFs and MCSVM 
classifier are 91.9%, 3.3% and 3.6% in terms of AR, MR and 
FAR, respectively, and those based on VBFs and MCSVM 
classifier are 91.2%, 3.4% and 3.9%, respectively. However, 
the recognition results based on the FFs and T-SFNN model in 
[23] are 91.6%, 3.4% and 3.7% in terms of AR, MR and FAR, 
respectively, and those of the VBFs and T-SFNN model are 
90.8%, 3.6% and 4.1%, respectively. These comparisons 
indicate that the proposed MCSVM classifier outperforms the 
T-SFNN model in the feature-level fusion applied in [23]. 

The analyses heretofore indicate that the proposed fatigue 
driving recognition method incorporating contextual feature 
with multi-feature identification and two-level fusion is more 
reliable, even under ineffective fatigue features or sensor 
failure. 

VI. CONCLUDING COMMENTS  

Based on the need to recognize fatigue driving of drivers 
reliably and robustly, this study proposes a novel fatigue 
driving recognition method incorporating contextual features 
with multi-feature identification and two-level fusion. It has the 
following characteristics. First, contextual features related to 
fatigue driving are shown to improve fatigue driving 
recognition. Second, the proposed GRA-based fatigue feature 
selection method can efficiently identify the most effective 
fatigue features, which can enhance the efficiency and 
reliability of the recognition model. Third, a two-level fusion 
model consisting of feature-level fusion and decision-level 
fusion is developed. In the feature-level fusion, the most 
effective fatigue features are fused based on the proposed 
MCSVM classifier, which enables a dynamic assignment of 
BPA for each fatigue feature source. In the decision-level 
fusion based on the D-SET, the evidence conflict among 
multiple pieces of evidence is resolved during evidence 
combination and the reliability of the recognition model is 
enhanced by modifying the BPA and combining the fatigue 
state identified at the previous time step. 

The study offers the possibility of developing more 
sophisticated fatigue driving recognition methods. First, the 
proposed method can be extended by identifying and selecting 
other fatigue features that can reflect the fatigue driving state 
more accurately. Second, more evidence sources can be 
considered and combined through the improved decision-level 
fusion rule. Finally, more accurate feature-level fusion 
algorithms can be integrated into the two-level fusion model. 

 
TABLE II 

PERFORMANCE COMPARISON BASED ON DIFFERENT EVIDENCE SOURCES 
Evidence source 

selection NIFF NIES  AR 
(%) 

MR 
(%) 

FAR 
(%) 

ACT 
(ms) 

CFs+FFs 6 2 92.7 3.2 3.3 242 

CFs+VBFs 6 2 92.6 3.5 3.2 187 

FFs+VBFs 6 2 93.1 3.2 3.2 251 

CFs+FFs +VBFs 9 3 93.5 3.0 3.1 278 

 
TABLE III 

PERFORMANCE COMPARISON OF THE MCSVM CLASSIFIER BASED ON 
DIFFERENT EVIDENCE SOURCES 

Evidence source 
selection NIFF NIES  AR 

(%) 
MR 
(%) 

FAR 
(%) 

ACT 
(ms) 

CFs+FFs 6 2 92.1 3.6 3.4 232 

CFs+VBFs 6 2 92.3 3.7 3.5 181 

FFs+VBFs 6 2 92.5 3.4 3.4 248 

CFs+FFs +VBFs 9 3 91.8 3.2 3.3 276 

 

TABLE IV 
PERFORMANCE COMPARISON OF SINGLE FEATURE AND SINGLE-SOURCE 

FUSION BASED METHODS 

Evidence source selection NIFF AR 
(%) 

MR 
(%) 

FAR 
(%) 

ACT 
(ms) 

Single feature based (YF) 1 85.9 4.3 4.1 53 

Single feature based (SDSA) 1 85.4 4.4 4.0 11 
Single-source fusion based 

(CFs and MCSVM) 3 90.6 3.8 3.7 28 

Single-source fusion based  
(FFs and MCSVM)  3 91.9 3.3 3.6 95 

Single-source fusion based  
(VBFs and MCSVM) 3 91.2 3.4 3.9 44 
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APPENDIX 
LIST OF ACRONYMS 

Acronym Meaning Acronym Meaning 
ACT Average computational time MEOL Mean of eye-opened 

level 
AR Accuracy rate MF Moderate fatigue 
ATC Air temperature in cab MR Missing rate 
BF Blinking frequency NF Non-fatigue 
BPA Basic probability assignment NIES  Number of incorporated 

evidence sources  
CDT Continuous driving time NIFF Number of incorporated 

fatigue features 
CT Current time PERCLOS Percentage of eye 

closure  
D-SET Dempster-Shafer evidence 

theory 
PNS Percentage of 

non-steering 
ECD Eye-closed duration RBF Radical basis function 
EEG Electroencephalography  SDSA Standard deviation of 

steering-angle 
FAR False alarm rate SDT Sleep duration time 
GRA Grey relational analysis SF Severe fatigue 
GRD Grey relational degree SVM Support vector machine 
KSS Karolinska sleepiness scale T-SFNN Takagi-Sugeno fuzzy 

neural network 
MCSVM Multi-class support vector 

machine 
YF Yawning frequency 
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