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Abstract 

 This study seeks to identify the optimal location of an advance point traffic detector (APTD) to 

support green termination algorithms for enhanced dilemma zone protection systems at high-speed 

isolated signalized rural intersections. This is done by developing a nonlinear optimization model with the 

objective to maximize the opportunities to predict empty dilemma zones during a look-ahead time period 

subject to the prediction accuracy which is manifested through prediction efficiency and safety constraints 

in the model. The distance of the APTD from the stop bar of the intersection represents the decision 

variable. The Golden-Section line search algorithm combined with numerical integration techniques is 

proposed to identify the feasible region and the optimal solution. The proposed methodology is analyzed 

using field data from a high-speed isolated intersection in Lincoln, Nebraska. The numerical experiments 

demonstrate that as the constraints associated with prediction efficiency and safety are relaxed, the 

feasible range to deploy the APTD increases. The optimal solution is influenced by the relationship 

between the prediction error and the location of the APTD, illustrating the need to robustly calibrate the 

function used to estimate the variance of the prediction error using field data. From a practice standpoint, 

the study confirms the potential concerns related to the performance efficiency of green termination 

systems using a point detector; typical field implementations locate the detector 750ft - 1000ft from the 

stop bar, which can potentially lead to significant levels of missed opportunities to terminate green safely. 

Overall, the proposed approach not only provides a systematic analytical methodology to determine the 

optimal location of the advance detector, but also to identify its feasible range based on user-specified 

thresholds related to efficiency and safety. 
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Optimal Advance Detector Location for Green Termination Systems  

on High-speed Isolated Rural Intersections 

Lili Du, Anuj Sharma, Srinivas Peeta 

1 Background and motivation 

In contrast to urban intersections with balanced traffic for main and cross streets, rural 

intersections typically have significantly lower volume to saturation flow rate for the cross street but 

relatively congested traffic for the main street. Therefore, traffic signal control algorithms for high speed 

isolated rural intersections differ from that of a typical urban intersection control. Under the conditions of 

unbalanced traffic flow at rural intersections, it is advantageous to continue the green phase on the main 

street until some vehicles arrive on the cross street to justify the interruption of main street traffic 

(Newell, 1989). It is possible for the main street queue to clear before any vehicle demands the cross-

street green. Under such situations, high speed traffic on the main street may face a yellow phase. At the 

onset of the yellow phase, a driver approaching the intersection on the main street has to decide whether 

to stop or go. A risky decision to go can possibly lead to a right angle crash, and a risky decision to stop 

can possibly lead to a severe rear-end crash. The area in which the driver has a high risk of making a 

wrong decision is referred to as the decision dilemma zone (Olson and Rothery, 1962; May,1968; 

Parsonson, 1978). Bonneson et al. (1994) indicate that the start of the dilemma zone is 5-6 seconds 

upstream and the end is about 3 seconds upstream of the stop bar. The proposed study uses this 

commonly applied dilemma zone boundary in the temporal domain (5.5 seconds - 3 seconds).  

Dilemma zone protection systems are deployed to operate rural isolated high speed signalized 

intersections to provide safe and efficient operations (Bonneson et al., 2002; Sharma et al., 2011; Sharma 

et al., 2012). There are two basic algorithms used by dilemma zone protection systems: the green 

extension algorithm and the green termination algorithm. In the green extension algorithm (Zegeer, 1977; 

Sharma et al., 2007), the green phase of the high-speed approach is extended until there is no vehicle in 

the dilemma zone. However, an upper threshold, a maximum green time, is provided for this operation to 

avoid excessive delays to the cross street traffic. The termination of green on reaching this upper 

threshold is defined as max-out. As the number of lanes increases, the probability of finding an empty 

dilemma zone within the maximum green time decreases. This problem becomes worse when the high 

speed approach carries medium-to-heavy traffic volumes. Also, the safety benefits are negated when the 

high speed through phase is arbitrarily terminated on reaching the maximum green time. Sharma et al. 

(2006) provide a detailed analysis of this problem. For the intersection analyzed in their study, the 
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implementation of the green extension logic led to a max-out in 3.5 to 40 percent of the cycles per hour 

during the peak traffic flow periods, and around 200 dilemma zone incursions per day. 

Green termination algorithms (Kronborg et al., 1997; Bonneson et al., 2002; Zimmerman et al., 

2003; Zimmerman et al., 2004; Zimmerman, 2007) have been developed in recent years to address the 

limitations of green extension algorithms. They search for an optimal time to terminate green beyond the 

minimum green time. A combination of cross-street delays and number of vehicles in the dilemma zone is 

used to determine the optimal green termination time. There is a high cost of safety associated with the 

presence of vehicles in their dilemma zone at the end of green, as they have higher risk of crash. Hence, 

one of the objectives of the green termination logic is to minimize this cost by identifying green 

termination points with empty dilemma zones. Thus, it is critical to accurately predict the opportunities 

for having empty dilemma zones. An advance detector upstream of the stop bar is placed on the high-

speed through approach for predicting the number of vehicles in the dilemma zone in the near-term future 

(which is labeled the “look-ahead time period” in Fig. 1). The performance of the signal is evaluated 

assuming that green is to be terminated at any point in the current look-ahead time period. Based on the 

evaluation of intersection performance in this look-ahead time period, if the current time is the best time 

to end the green, the green phase is terminated; otherwise the green phase is continued. If the green is not 

terminated at the current instance, the search process for the optimal green termination time is repeated 

after a small wait time (usually 0.5 seconds). 

As illustrated in Fig. 1, the advance detector in green termination systems is located at some 

distance in advance of the dilemma zone boundary (DLZ Start) of the fastest vehicle that is to be 

protected. The length of the look-ahead time period is the time it takes the fastest vehicle being protected 

to traverse the distance from the location of the advance detector to the start of its dilemma zone boundary 

(Bonneson, 2002; Zimmerman et al., 2003; Zimmerman, 2007). On the left side of Fig. 1, a high-speed 

approach is shown with an advance detector located at 800 feet from the stop bar. The dilemma zone 

boundaries extend from 444 ft to 242 ft (5.5 seconds - 3 seconds in time domain) for a vehicle traveling at 

55 mph. Time 0 represents the current time. Any event registered before the current time is the history 

and any event that will occur after time 0 is the future. On the right side of Fig. 1, the trajectories of three 

vehicles traveling at 55 mph are illustrated. The events representing the three vehicles crossing the 

advance detector occur at times   ,   , and   . These events are the history and have been recorded prior 

to the current time (  = 0). The estimated arrival times of the three vehicles to their dilemma zones, 

denoted by   
   ,   

   , and   
   , can be predicted by assuming that these vehicles will maintain their speeds 

measured at the advance detector. Any vehicle arriving after the current time and traveling at a speed 
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lower than 55 mph will not affect the number of vehicles estimated in the look-ahead time period. The 

duration of the look-ahead time period can be increased by shifting the advance detector further upstream.  

There are two countervailing aspects that need to be considered in determining the advance 

detector location. First, the length of the look-ahead time period increases in proportion to the distance of 

the advance detector from the stop bar, thus increasing the probability of finding a time point at which the 

dilemma zone will be empty. Second, the accuracy of the prediction of an empty dilemma zone decreases 

in proportion to the distance of the advance detector from the stop bar, as the vehicles have more temporal 

opportunities to change their speeds after they pass the advance detector. The need to trade-off these two 

aspects represents the conceptual platform in this study to formulate a systematic mathematical model to 

identify the optimal location of the advance detector.  

Prior studies (Bonneson et al., 2002; Sharma et al., 2012) have highlighted the problem of speed-

change behavior affecting the prediction of empty dilemma zones. Bonneson et al. (2002) reported that of 

104 observations, 82% of the vehicles changed speed while traveling from the upstream location to the 

stop bar. Nearly 50% of the vehicles had over 2 mph change in speeds. For Intelligent Detection-Control 

Systems, they proposed to use conservative dilemma zone boundaries of 1.5 to 6.5 seconds (instead of 

2.5-5.5 seconds) in the field to minimize the impacts of speed changes. The adoption of conservative 

dilemma zone boundaries can significantly reduce the number of opportunities to find empty dilemma 

zones, thereby reducing both safety and efficiency of operations at the intersection (Sharma et al., 2006; 

Zimmerman, 2007). While speed prediction accuracies have been identified as a problem for green 

termination systems, to the best of our knowledge there exists no analytical formulation to provide 

bounds on prediction accuracy with the change in the location of the advance detector. This paper 

proposes techniques to identify these bounds and find the optimal location to place the advance detector 

such that the prediction error is within a limit that can be specified by the traffic engineer.  

The proposed approach to determine the optimal advance detector location and analyze its 

effectiveness is briefly summarized hereafter. First, a mathematical formulation is provided to predict the 

number of empty dilemma zones in a look-ahead time period. In conjunction with this formulation, a 

nonlinear optimization model is proposed to find the optimal location to deploy the advance detector in 

dilemma zone protection systems. The solution method is then described. Numerical experiments are 

conducted in which the field traffic data are used to calibrate the probability density functions of the 

random variables and the related parameters for the nonlinear optimization model. The experiment results 

indicate that the methodology identifies the minimum and maximum distances as well as the optimal 

location to deploy the ATPD with the desired prediction accuracy requirements. Hence, the proposed 

methodology provides a systematic analytical approach to implement the associated dilemma zone 

protection systems in practice. 
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The remainder of the paper is organized as follows. Section 2 formulates the problem and 

develops the solution methodology. Section 3 conducts numerical experiments to implement the proposed 

methodology based on the field data from Lincoln, Nebraska. It discusses the associated results and 

related insights. Section 4 provides some concluding comments.   

2 Problem formulation and solution methodology 

This section first describes the problem and its characteristics. Then, it introduces a mathematical 

formulation to predict an empty dilemma zone based on the traffic data at the APTD. It then develops the 

formulations to determine the probability: (i) that the dilemma zone is empty in the field, (ii) that the 

dilemma zone is predicted empty, and (iii) of the intersection of (i) and (ii). Next, a nonlinear 

optimization model is proposed for the optimal location of the APTD. This is followed by a line search 

algorithm to solve the model. 

2.1 Problem description and characteristics 

This study seeks to determine the optimal location of the advance detector so as to maximize the 

number of predicted empty dilemma zones over a look-ahead time period subject to constraints on the 

prediction accuracy. The underlying objective is that the larger the number of empty dilemma zones, the 

higher the number of potential opportunities to efficiently terminate the green time while ensuring safety 

and mobility needs at the intersection. These needs are manifested through the prediction accuracy 

associated with the empty dilemma zones. The prediction accuracy is represented through the prediction 

efficiency and the prediction safety. That is, the higher these values, the higher the prediction accuracy. 

To define the prediction efficiency and the prediction safety, we first illustrate the linkage between the 

empty dilemma zone prediction and the operational performance of the dilemma zone protection system 

at an intersection in Table 1. As defined in the table, the prediction efficiency is reflected through the 

need to reduce the error event    that the dilemma zone is predicted occupied while empty in the field. 

That is, the larger the number of events   , the greater the number of potential missed opportunities to 

terminate the green time. The prediction safety is viewed through the need to reduce the error event    

that the dilemma zone is predicted empty though it is occupied in the field. The error event    has safety 

implications for the intersection as it may cause the green light termination while vehicles are in their 

dilemma zone. Hence, to ensure acceptable levels of operational efficiency and safety at the intersection, 

there is a need to constrain the occurrences of the events    and   .  

The scope of the problem in developing the mathematical model is characterized as follows. The 

spatial area of interest in terms of the traffic events lies between the APTD location and the stop bar at the 

intersection. The advance detector provides data on the time stamp of the vehicle detection and its speed. 
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The empty dilemma zone prediction is performed after each time a vehicle passes through the advance 

detector. While the study does not constrain that two consecutive vehicles must be on the same lane of an 

approach, it does not cover the situation that two vehicles in adjacent lanes arrive at the detector together 

with the same speed; that is, the model determines a single dilemma zone. Further, the model does not 

consider situations involving overtaking between vehicles downstream of the APTD location.  

2.2 Prediction of empty dilemma zone and related events 

We first observe the movements of two vehicles which consecutively pass through the study area 

from the APTD to the stop bar in the field. Let vehicle     pass through the advance detector after 

vehicle   ; we label vehicle    as the “head” vehicle and vehicle    as the “following” vehicle. Then, an 

empty dilemma zone occurs between these two consecutive vehicles if the vehicle    arrives at its 

dilemma zone later than its head vehicle    leaves its dilemma zone. Hence, to predict an empty dilemma 

zone, we need to first determine the time stamp that vehicle    leaves its dilemma zone,   
   , and the time 

stamp that the vehicle    enters its dilemma zone,   
   . Ideally,    

    and    
   can be determined precisely 

if the variation in vehicle speeds after they pass through the APTD can be accurately measured. However, 

this is not realistic in the field due to the dynamic nature of traffic and the absence of sensors to do so. 

Consequently, as illustrated in Fig. 2, this study approximates    
    and   

   using Equations (1) and (2), 

respectively, by assuming that the individual vehicles maintain their speeds after they pass through the 

APTD, and that a dilemma zone starts at 5.5 seconds and ends at 3.0 seconds upstream of the stop bar.  

 

  
        

       

  
 

(1) 

  
       

         

  
 

(2) 

Hence,   
     represents the prediction of    

    and    
    represents the prediction of   

  .     and    represent 

the observed time stamps that the vehicles    and    pass through the APTD, respectively, and    and    

represent their measured speeds at the ATPD, respectively.   is the distance of the ATPD from the stop 

bar. Accordingly, the event    that the dilemma zone is predicted to be empty can be mathematically 

described by Equation (3): 

      
      

            
         

  
 

       

  
       

 

  
 

 

  
 0 (3) 

where          is the observed time headway between the two consecutive vehicles at the location of 

the APTD.  
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 Based on the field data, the speeds of the individual vehicles and the headways between vehicles 

at the APTD vary according to certain probability distributions. Hence,      and    at the APTD are 

treated as random variables. Then, the event     occurs with the probability represented by Equation (4): 

              
 

  
 

 

  
                       

      
 
  

 
 
  

  

 (4) 

where            represents the joint probability density of       and    . The expression for 

           can be obtained from the density functions for headway and speed in the literature (Zhang et 

al., 2007; Gerlough and Huber, 1975). Accordingly,       is a triple integral of            over the half 

space defined by        
 

  
 

 

  
   . We provide a more detailed discussion on            in 

Section 2.4, and demonstrate the process to specify            in the experiments in Section 3. 

  Next, extending the conceptual representation of the event   , the event   that the dilemma zone 

is empty in the field and its probability      are analytically derived hereafter. The predicted values of 

  
     and    

    in Equations (1) and (2) are influenced by two potential sources of random error, the speed 

variation of vehicles downstream of the APTD and the possible measurement error of the vehicle arrival 

time at the APTD. These errors are denoted by the random variables   
    and   

  . Based on these error 

terms, the linear functions in Equations (5) and (6) are used to represent the observed time stamps of 

   
    and    

  , respectively. 

  
      

       
       

       

  
   

     (5) 

  
     

        
      

         

  
   

   
 (6) 

 

Following Equation (3), Equation (7) mathematically describes the event E that the dilemma zone is 

empty in the field: 
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Accordingly, Equation (8) represents the probability that event   occurs in a look-ahead time period: 

                 
 

  

 
 

  

      (8) 

where     
     

    represents the empty dilemma zone prediction error; also referred to as “prediction 

error” in the remainder of this paper. As          and   are continuous random variables,      can be 

computed using the integral in Equation (9), where               represents the joint probability density 

function of         , and  .  
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As   is a function of   
    and   

  , it is also characterized by different sources of random error. Hence, it is 

considered to be independent of   ,  , and  . Then, we have                             , where 

     represents the probability density function of  . Accordingly, Equation (9) is equivalent to Equation 

(10), where            represents the region defined by the feasible ranges of    ,   , and  ; that is, 

         ,          , and         . 
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Substituting          
  

          
 

  
 

 

  
 

  in Equation (10) by             
 

  
 

 

  
  , we obtain 

Equation (11) to represent     , which is equal to the triple integral of             
 

  
 

 

  
             over the feasible region defined by           . 
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 Further discussion on the distribution of   is provided in Section 2.4, and the computation of 

            
 

  
 

 

  
    is illustrated in Section 3 using the collected field data in the study 

experiments. 

 Equation (11) seems to indicate that      is a function of the location of the APTD, y. However, 

in reality, the unfolding traffic flow determines whether a dilemma zone is empty or not at a given time, 

independent of the location of the advance detector. That is, an empty dilemma zone exists regardless of 

the location of the detector. However, the location of the APTD influences the observed traffic data, the 

prediction error, and the associated distributions. Therefore, for the traffic flow that has unfolded at an 

intersection, the value of      is fixed and independent of y. This aspect is validated in the experiments 

in Section 3.3.2. Here, we provide a brief conceptual linkage to the experimental validation by first noting 

that the location of the APTD influences the observed values of    ,  , and   and the unobserved value 

of  . Hence, the value of y affects the distributions of            and  . Therefore, the value of y influences 

the distribution of   in Equation (11). In the experiments, the collected field data are used to determine the 

distributions of   for different values of y, and the   distribution corresponding to each y value is used to 
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compute      using Equation (11). The computed values of      are practically identical, thereby 

validating the relationship between y and the estimation of      using Equation (11). 

Using conceptual and mathematical processes similar to those for deriving       and     , 

Equation (12) derives the joint probability that the dilemma zone is empty in the field and is also 

predicted empty.   
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Mathematically, it is equal to the triple integral of             
 

  
 

 

  
             

over the half space defined by       
 

  
 

 

  
  . The expressions for     ,       and        are 

used in the next section to develop the nonlinear optimization model to identify the optimal APTD 

location in dilemma zone protection systems.  

2.3 Optimization model  

The optimization model to determine the optimal location to deploy the APTD seeks to maximize 

the expected number of times that a dilemma zone is predicted empty in a look-ahead time period while 

satisfying the prediction efficiency and safety requirements. This objective function is established as 

follows. Using    , the 85
th
 percentile speed based on the field data, as the highest speed of individual 

vehicles to be protected using dilemma zone protection systems, the length of a look-ahead time period is 

 
        

   
 . Note that without loss of generality, a different value can be used for the highest speed if 

desired by the traffic engineer. Let    denote the average headway in the look-ahead time period at the 

APTD. Then, the system has an average number of  
        

      
  opportunities to predict if the dilemma 

zone is empty or not as individual vehicles pass through the APTD. Also, Equation (4) provides the 

predicted probability of detecting an empty (     ) or non-empty (       ) dilemma zone as each 

vehicle passes through the APTD in a look-ahead time period. Viewing each prediction opportunity in a 

look-ahead time period as an independent instance with two possible outcomes that have constant 

probabilities, the resulting Bernoulli process to capture the probability of the number of empty dilemma 
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zones in that look-ahead time period follows a Binomial distribution. Accordingly, the mean of this 

Binomial distribution represents the expected number of times that the dilemma zone is predicted empty 

during a look-ahead time period. This is illustrated in Equation (13), which represents the objective 

function of the proposed nonlinear optimization model. 

         

      
      (13) 

As discussed in Section 2.1, however, this objective is constrained by the need to ensure 

acceptable levels of prediction efficiency and prediction safety. In this study, the prediction efficiency 

   is defined as the probability of the event that the dilemma zone is predicted empty given that it is 

empty in the field. To sustain an acceptable value of    for dilemma zone protection systems, we require 

its complement, the probability of the error event           , to be less than a user-defined efficiency-

related threshold parameter  . This leads to Equation (14), which is used as the prediction efficiency 

constraint in the optimization model. 

               
      

    
     

(14) 

 

 Similarly, the prediction safety     is defined as the probability of the event that the dilemma zone 

is predicted occupied given that it is occupied in the field. To ensure an acceptable level for   , we 

require that its complement, the probability of the error event            , to be less than a user-defined 

safety-related threshold parameter  . Equation (15) represents this prediction safety constraint in the 

proposed optimization model.  

                              
       

    
   

            

    
     (15) 

As can be noted, the LHS of the final forms of Equations (14) and (15) can be computed using known 

probability results illustrated in Section 2.2. 

Finally, the non-negativity of   is represented by constraint (16).  

 
    (16)  

Using the objective function (13) along with constraints (14), (15) and (16), and treating the location of 

the APTD   as the decision variable, we obtain the nonlinear optimization model labeled M1.  

     Model M1  

                           Max         
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                          s.t.            
      

    
      

                    
       

    
 

            

    
      

 
      

The user-defined efficiency- and safety-related thresholds   and  , respectively, can be treated as input 

parameters in M1. The traffic engineer (or system operator) may provide these threshold values based on 

the requirements of efficiency and safety for the dilemma zone protection systems at the relevant 

intersection. Another option is to explore different combinations of   and   in M1. The model determines 

the corresponding optimal locations to deploy the ATPD. Then, the system operator can choose the 

desired combination satisfying their requirements related to efficiency and safety. 

 Substituting the expressions for      ,     , and        from Equations (4), (11), and (12), 

respectively, into M1, we obtain model M2. 

     Model M2  

M 
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        and   are random variables;              is the feasible range of        .  

2.4 Solution method 

Model M2 is a nonlinear program with a single variable. As the objective function and the 

constraints are intricate expressions, a customized line search algorithm combined with numerical integral 

techniques is used to derive the local optimal solution. The solution method includes the following four 

main steps. 

First, the distributions of the random variable      and    and the correlations among them are 

identified to obtain the joint density function            in model M2. We use the findings of past 
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studies for the distributions;   is usually considered to follow a log-normal distribution (Zhang et al., 

2007), and speeds    and   are usually treated as normal distributions (Gerlough and Huber, 1975). In a 

deployment context, the parameters of these distributions can be calibrated using field data. By contrast, 

the correlations between     and   at the APTD have not been adequately explored in the literature. In 

this study, we postulate that these correlations are, at best, weak based on the characteristics of high-speed 

isolated intersections in relation to the problem objective of capturing empty dilemma zones for green 

termination, as explained hereafter. The exploration of opportunities for empty dilemma zones in rural 

high-speed isolated intersections for green termination is not typically based on the traffic conditions 

immediately after the initiation of green on the main approach when potentially queued vehicles are being 

discharged. Rather, the period of interest is when vehicles approach the intersection more infrequently as 

the green phase continues. That is, the average headway between vehicles is sufficiently larger than the 

typical headways when car-following type behavior is strong. Under these conditions, the speeds of the 

two consecutive vehicles have little, if any, correlation between them arising from driver psychology, and 

consequently, with their headway as well. The potential dependency between speeds is further weakened 

by the fact that the measurements of the speeds    and    occur at a single spatial point, the APTD 

location, but at a time latency equal to the headway  . Hence, as the headway increases, the dependency 

between speeds measured at different time stamps also reduces. In summary, we assume that 

    and    are weakly correlated and approximate            by the product of their individual 

distributions. This assumption is validated in Section 3 for the field data used in the study experiments. 

However, if the field data at an intersection show that     and    are strongly dependent/correlated, their 

joint probability density function            can be approximated using Copula techniques (Kumar, 

2010). 

Second, the closed-form expression for             
 

  
 

 

  
  , denoted hereafter by   

for expository convenience, is determined. The determination of the expression for   requires the 

distribution of  . As     
     

   , its distribution can be obtained based on the distributions of    
   and 

  
   . To do so, we note that the process to develop Equations (5) and (6) in Section 2.2 indicates that   

   

and   
    may be regarded as independent variables since the underlying prediction processes for   

     and  

  
    are based on different vehicles at different times. Further, in the absence of systematic errors, there is 

no expectation of a bias (or skew) in either a positive or a negative direction for   
    and   

  . Hence, 

without loss of generality, it is reasonable to assume that   
    and   

   follow identical normal 

distributions (that is,   
          ,   

           ). Correspondingly,     
     

    obeys the normal 

distribution with the mean equal to zero and the variance equal to                 . Hence, the 
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determination of the distribution of   requires the calibration of    , the variance of   
   or   

   . Bonneson 

et al. (2002) empirically illustrate that    is closely related to the advance detector location. Thereby,    

can be calibrated using statistical methods based on field data. We use a linear regression function to 

estimate    in the experiments in Section 3. Further, as a closed-form expression does not exist for the 

cumulative probability of a normal distribution, a logistic approximation to the cumulative normal 

distribution (Lin, 1989) is used to represent ψ  in this study.  

Third, the feasible region of M2 is determined as follows. Using the closed-form expressions for 

           and ψ from the previous two steps, the left hand sides of the prediction efficiency and safety 

constraints in Equations (18) and (19) are numerically calculated at each y. The feasible region of each 

constraint is identified by performing these calculations over the entire range of y in small increments. 

The intersection of these feasible regions over the constraints represents the feasible region for model M2. 

The feasible region is a line segment as M2 has a single decision variable y. A key aspect in this context is 

that the left hand sides of the efficiency and safety constraints in Equations (18) and (19) include triple 

integrals. As their integrands are intricate, it is difficult to obtain a closed-form integral solution and 

further calculate the efficiency and safety constraints at each y. This can be addressed by using numerical 

integration techniques such as Monte Carlo algorithms (Press and Farrar, 1990) and Sparse Grids 

algorithms (Gerstner and Griebel, 1998) to compute the triple integral. 

Finally, the local optimal solution of M2 is determined. After the feasible region is determined in 

the previous step, solving the model M2 implies finding the optimal solution for an unconstrained 

nonlinear programming problem on a one-dimensional line segment. Due to the intricate nature of the 

objective function in Equation (17), line search algorithms without derivatives, such as uniform search, 

dichotomous search, and the Golden-Section algorithm (Bazaraa, et al., 1993) can be used to find the 

local optimal solution. We use the Golden-Section algorithm in this study. 

In summary, the solution method for M2 consists of the following steps: 

Step 1: Determine the joint density function           . 

Step 2: Determine the closed-form expression for  . 

Step 3: Identify the feasible region of M2. 

Step 4: Obtain the local optimal solution for M2 using the Golden-Section algorithm.  

Next, we demonstrate the implementation of the proposed solution method in practice.   

3 Numerical experiments 

This section implements the solution method for the optimization model M2 and analyzes its 

performance using field data collected at an isolated high speed intersection in Lincoln, Nebraska. It first 

describes the field data collection setup. Then, it illustrates the steps of the solution method for the field 

http://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
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data, including the calibration of           , the computation of ψ, and the solution search process. 

Finally, the optimal solutions, sensitivity analyses, and associated insights are discussed. 

3.1 Field data collection setup 

As shown in Fig. 3, the high-speed signalized intersection of Highway 2 and 84
th
 Street in 

Lincoln, Nebraska is used as the data collection site for the study experiments. Highway 2 is a major 

thoroughfare in Lincoln, particularly for heavy vehicles. The intersection approach of Highway 2 

analyzed in this study has two through lanes, two left-turn lanes, and a right-turn lane. The site has a 

fusion of three radar-based sensors for monitoring all vehicles within 1,100ft. of the intersection. Two 

video cameras monitor all vehicles in the vicinity of the intersection. The feed from the video is used for 

manual verification of data obtained from the radar sensors. The data from the radar sensor provide 

information on the date, time, identification number, range, and speed for each vehicle approaching the 

intersection. The data from the video is used to identify the vehicle type and lane information. Also, the 

signal phase indications are communicated from the signal cabinet “C” to the pole-cabinet “A3” in Fig. 3, 

and logged in the radar sensor data file. This detection monitoring system is used to collect the trajectory 

data of 100 pairs of consecutive vehicles from 8:00am to12:00pm on a day, which represent the field data 

for the study experiments. 

3.2 Solution method implementation 

This section describes the implementation of the solution method for the collected field data. 

3.2.1 Calibration of            

 As discussed in Section 2.4, the headway at the advance detector usually follows the log-normal 

distribution; let              . Similarly, the vehicle speeds   and     follow the normal 

distribution;            
   and           

  . We calibrate the parameters                 and   of 

the distributions of   ,    and    using the field data. Section 2.2 indicates that the distributions of   ,      

and    depend on  . However, the collected field data suggests that these parameters are relatively stable 

with   in the collected data range 460ft-1100ft. Hence, we use constant distributions for   ,    and    for 

different locations of the ATPD. The parameters of these distributions are taken as the average values of 

the corresponding parameters across the different values of   . Thereby, we have       ,       , 

       50 mph, and        5.86 mph. 

 Next, the correlations between     and   at the APTD are examined. The scatter plot in Fig. 4 

based on the field data does not show evidence of dependency among  ,   and   ; the points in the 

figure are randomly distributed in three-dimensional space with no visibly strong dependency patterns. 

This is reinforced by the Spearman’s rank correlation coefficients in Table 2 which indicate the absence 
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of correlations in most cases. Hence, the field data is consistent with the presumption of independence 

between  ,   and    made in Section 2.4. Accordingly, the joint probability density function            

in model M2 is approximated by the product of the probability density functions of      , and   , which 

are denoted by     ,      , and      , respectively, and have the heretofore calibrated parameters.  

3.2.2 Determination and calibration of closed-form expression for    

Based on the discussion in Section 2.4, to determine the closed-form expression for   and 

calibrate it, first   , the variance of   
   (or   

   ), is calibrated. The field data collected by an APTD 

located at different sites in the range 460ft - 1110ft away from the stop bar is used to generate a linear 

regression model         0.10389 + 0.000863   which is used to estimate    for different values of 

y. Other regression techniques can also be used to fit the relationship between     and  . In Section 3.3.3, 

we additionally analyze the effect of a quadratic regression model for      . 

As discussed in Section 2.4, the approximate formulation (maximum error equal to 0.01) 

developed by Lin (1989) is used to represent the complementary probability of  , as illustrated in 

Equation (20): 

             
 

   
 

  

   
  

 

 
           

  

   
       

  

   
 

 

  (20) 

where         
 

  
 

 

  
  Note that   is calculated in Equation (20) based on the value of y using the 

calibrated regression model. 

3.2.3 Implementation of solution search process 

Substituting the expressions for             and   into M2, we obtain model M3, which is used 

to implement the solution search process. 

M3 

   

Max    

        

     
                       

      
 
  

 
 
  

  

 (21) 

      

                                     
      

 
  

 
 
  

  

                                     
           

       (22) 

 

                                 
      

 
  

 
 
  

  

                                       
           

   (23) 

                            (24) 

 
          are random variables.             represents the feasible range of           
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The key steps of the search process are as follows. Instead of using zero and positive infinity as 

the lower and upper bounds of y, respectively, in model M3, this study first reduces the search range to 

460ft - 1100ft based on the collected data, which is adequate for the numerical experiments. Next, the 

feasible region for M3 is determined using the prediction efficiency and safety constraints in Equations 

(22) and (23), respectively, based on a three-step procedure: (i) Calculate the left hand sides of Equations 

(22) and (23) as y is varied from 460ft to 1100ft in increments of 10ft, using a numerical integral 

technique to determine the triple integral; we use the software Matlab to do so; (ii) Determine if a location 

y is feasible for the prediction efficiency-related threshold   varying from 0.1 to 0.4 with increments of 

0.05, and the prediction safety-related threshold   varying from 0.01 to 0.05 in increments of 0.002; (iii) 

Find the intersections of the feasible regions of the prediction efficiency and safety constraints to identify 

the feasible region of M3 under different prediction efficiency and safety requirements. Note that 

substantially smaller threshold values are assigned to the prediction safety constraint than to the 

prediction efficiency constraint in the experiments as traffic safety usually has significantly higher 

priority in dilemma zone protection systems. However, as stated earlier,   and   can be user-defined, and 

the traffic engineer can choose to reduce   and increase  , if desired, in a field application. Finally, the 

optimal locations to deploy the APTD under different prediction efficiency and safety requirements are 

determined using the Golden-Section algorithm based on the identified feasible regions. The results and 

insights from the experiments are discussed next.  

3.3 Results and insights 

3.3.1 Optimal solutions 

Table 3 illustrates the feasible ranges to deploy the advance detector and the local optimal 

solutions for M3 for different values of the thresholds   and  , under the linear regression model for 

      discussed in Section 3.2.2. These feasible ranges are determined through the trade-offs between the 

prediction efficiency and safety constraints; hence, there are combinations of   and   for which no 

feasible solutions exist as shown in the table. The table indicates that the feasible ranges increase as the 

prediction efficiency and safety requirements are relaxed (that is, as the values of thresholds   and   

increase). Further, in the study experiments, the optimal location to deploy the APTD is at the upper 

bound of the computed feasible range in each case, as shown in Table 3. In summary, the mathematical 

formulation and solution method proposed in Section 2 enable the quantitative evaluation of the 

prediction efficiency and prediction safety, thereby providing the ability to identify the feasible ranges for 

y and its optimal locations, under different thresholds. 

Next, we analyze the observation that the optimal solutions are located at the upper bounds of the 

computed feasible ranges in the study experiments. For the collected field data, the calibrated nonlinear 
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objective function (21) turns out to be a monotonically increasing function of   over the feasible range, 

leading to the optimal solution occurring at the upper bound of the corresponding feasible range. However, 

due to the variability in traffic conditions across different intersections, this monotonicity does not 

necessarily hold in general. Hence, this observation cannot be generalized to other road intersections.   

Table 3 also provides several important insights for practice. Even with the relaxed constraints on 

efficiency (90%; corresponding to   = 0.1), no feasible region exists when we aim to protect 95% percent 

of the time (that is,   = 0.05). The first feasible region starts at about the 70% efficiency level. Even at the 

70% efficiency and 95% safety levels, we can locate the detector at a maximum of 520ft from the stop bar. 

This implies that if the detector at this intersection approach is located 520 ft away, it is expected to not 

terminate the green phase, when it can be safely terminated, close to 30% of the time (that is, after 

factoring that the green phase is terminated unsafely about 5% of the time). In typical field 

implementations of the green termination system, the detector is placed around 750ft -1000ft from the 

stop bar. From Table 3, it can be seen that if the detector is located at 770 ft, we are operating at only 60% 

efficiency and 95% safety, implying that green phase will not be terminated nearly 40% of the time when 

opportunities exist to do so safely.  

3.3.2 Formulation of P(E) 

As discussed in Section 2.2 after the formulation of      through Equation (11), the likelihood 

that a dilemma zone is empty is determined by the unfolding traffic conditions rather than the location of 

the APTD. As stated there, the collected field data is used here to calculate      using Equation (11) for 

different values of y to validate the independence of      from y. Fig. 5 plots the relationship between 

     and y; the mean and variance of the calculated      with respect to y, under the linear regression 

model for      , are 0.25 and 4.38E-05, respectively. The small variance indicates that the      

estimated by Equation (11) is not perceptibly impacted by the location of the APTD. This is consistent 

with reality, and validates that Equation (11) is a reasonable formulation to determine the probability of 

an empty dilemma zone. It also validates the applicability of our assumptions related to the prediction 

error   whose distribution is used to determine      as illustrated by Equations (8)-(11).  

3.3.3 Variance of the prediction error,       

Next, following the discussion in Sections 2.4 and 3.2.2, the effect of the prediction error   on the 

optimal location of the APTD is analyzed by performing sensitivity analyses from two perspectives: (i) 

increasing the variance of  , and (ii) applying different regression models to estimate the variance of  . 

Using the linear regression model discussed in Section 3.2.2, we first explore how the optimal 

location of the APTD changes when the variance of   is artificially increased. This is done by increasing 

the coefficient of   in the model (           3            3 ) by multiplying to it a weight   
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varying from 1.1 to 2.9 in increments of 0.2 or 0.4. Then, the corresponding change in the optimal 

location of the APTD is determined. Fig. 6 illustrates the associated results by plotting the relationship 

between the optimal location of y and  . The prediction safety-related threshold   is limited to the range 

0.064-0.09 as feasible regions do not exist for lower   values in this experiment, and correspondingly, the 

prediction efficiency-related threshold    is in the range 0.3-0.4. In Fig. 6, for each value of  , the optimal 

location is closer to the intersection (that is, the optimal   decreases) as the prediction error increases (that 

is, as   increases). This is consistent with the notion that reducing the optimal y can reduce the 

opportunities for increased prediction error, thereby enhancing the robustness of the green termination 

algorithms. Further, we note that as w increases beyond some value, the largest possible optimal y also 

decreases as indicated by the two sets of graphs in Fig. 6, with the second graph being to the lower right 

side of the other graph, for w = 2.3 and beyond. By contrast, for each given    (that is, when the 

relationship between y and the prediction error is fixed), the optimal location moves further away from 

the intersection (optimal   increases) as the prediction safety requirement is relaxed (that is, as 

  increases). In summary, the optimal location is influenced by the dependency of the prediction error on 

the location of the advance detector.  

Next, using the collected field data set used to generate the linear regression model (used in the 

study experiments heretofore), a quadratic regression model,          33 33        3  

     -    , is generated to analyze whether different models for       to estimate the variance of   

affect the optimal location of y. The corresponding feasible ranges and optimal solutions under different 

prediction efficiency and safety requirements are shown in Table 4.  

The results from Tables 3 and 4 corresponding to the linear and quadratic models, respectively, 

are compared. Both indicate that as the prediction efficiency and safety constraints are relaxed, the 

feasible region to locate the APTD increases and the corresponding optimal solutions are located further 

away from the intersection at the upper bounds of their feasible ranges. However, the linear and quadratic 

models result in different optimal solutions. For example, for   up to 0.044, no feasible solutions exist 

when the quadratic regression model is used to estimate the variance of the prediction error at different 

locations, but some feasible solutions exist under the linear model. Also, for   of 0.046 or larger, the 

optimal location of the APTD under the quadratic regression model is further away from the intersection 

compared to that under the linear model. These observations can be explained using Figs. 7 and 8 which 

illustrate the prediction efficiency    and prediction safety    , respectively, when       is represented 

by linear (labeled L in the figures) and quadratic (labeled Q in the figures) regression models.  

Figs. 7 and 8 illustrate that both    and     deteriorate under the linear model as well as under 

almost all quadratic model cases as the APTD is located further away from the intersection. Fig. 7 further 
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shows that     is almost identical for the linear and quadratic cases over the whole range of y. However, 

Fig. 8 indicates that     in the linear case is larger than that under the quadratic case in the APTD location 

range 460ft-570ft. Correspondingly, when    is greater than 0.955 (that is,        ), the feasible region 

exists for the linear case, but not the quadratic case as seen in Tables 3 and 4. In the APTD location range 

570ft-970ft,    is larger under the quadratic case. Hence, the feasible region is larger under the quadratic 

model, and correspondingly the optimal APTD locations are further away from the intersection. Beyond 

970ft,    is below the acceptable bound for the prediction safety constraint (that is,        ), and hence 

that APTD range is not addressed. 

In summary, the proposed methodology is sensitive to the variance of the prediction error   as 

well as the regression model structure which describes the relationship between the variance of the 

prediction error    and the location of the APTD. When the traffic flow has higher variability, the 

prediction error   may have a larger variance; in such scenarios, the optimal location of the APTD may 

shift closer to the intersection.  

4 Concluding comments 

As dilemma zones exist widely at signalized intersections in the United States, traffic controllers 

deploy an advance detector at an intersection which collects traffic data near the dilemma zone to provide 

support for dilemma zone protection methods such as green termination algorithms. However, currently, 

the deployment of advance detectors is determined mostly based on engineering experience rather than 

rigorous analytical models that provide bounds on the prediction errors to aid the traffic engineer. 

Thereby, the existing approach can entail inefficiencies due to the adoption of conservative dilemma zone 

boundaries. In this context, some prior studies have recognized that the location of the advance detector 

significantly impacts the efficiency of dilemma zone protection systems, but systematic analytical studies 

do not exist that can identify the optimal location of the APTD by factoring the various problem 

characteristics. 

This study proposes a nonlinear optimization model to determine the optimal location of the APTD 

by factoring the need for operational efficiency and safety in the development of green termination 

algorithms for high-speed isolated signalized intersections. The associated objective manifests as the need 

to maximize the expected number of times to predict an empty dilemma zone during a look-ahead time 

period so as to maximize the number of opportunities that the green phase can be terminated both safely 

and efficiently. Due to the problem characteristics, the location of the APTD is constrained by prediction 

efficiency and prediction safety requirements, which serve as constraints in the proposed optimization 

model. The solution method combines a line search algorithm with numerical integration techniques to 

determine the optimal location of the APTD. The practical applicability and the implementation of the 
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proposed approach are illustrated using field data collected at a high-speed isolated signalized intersection 

in Lincoln, Nebraska. Numerical experiments are also used to validate the problem methodology and 

provide insights on the role of user-provided inputs. Thereby, inputs by traffic engineers on efficiency- 

and safety-related thresholds based on the characteristics at an intersection can be seamlessly integrated 

into the proposed analytical methodology. 

The numerical experiments illustrate that when the efficiency- and safety-related thresholds are 

relaxed, the optimal location to deploy the APTD shifts further away from the intersection, and vice versa. 

The optimal solution occurs at the upper bound of the computed feasible region which varies with the 

values of the prediction efficiency and safety thresholds. Further, the optimal solution is affected by the 

relationship between the prediction error   and the location of the APTD. Calibrated linear and quadratic 

regression models for the variance of the prediction error as a function of the APTD location lead to 

different optimal solutions. This highlights the need to robustly calibrate the relationship between the 

prediction error and the location of the ATPD using field data.  

From a practice perspective, the study confirms the potential concerns related to the performance 

efficiency of green termination systems using a point detector, as typical field implementations locate the 

detector 750ft - 1000ft from the stop bar. For the study intersection, it is observed that with the detector 

located at 770 ft, the prediction efficiency is barely 60% under a 95% safety level, implying that the green 

termination system may miss nearly 40% of the potential opportunities to terminate the green due to an 

incorrect prediction that the dilemma zone is occupied. In this context, the proposed methodology not 

only identifies the optimal location, but also provides its feasible range subject to user-specified 

efficiency- and safety-related thresholds. 

In this study, overtaking of vehicles downstream of the APTD location is not considered in the 

modeling. However, overtaking is possible between the time instant a vehicle passes the advance detector 

and the time instant it enters the dilemma zone, especially in multi-lane situations under certain traffic 

conditions. This represents a future research consideration in the determination of the optimal APTD 

location. 
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Tables 

 

Table 1  

Empty dilemma zone prediction and the operation of dilemma zone protection systems 

 Dilemma zone occupied Dilemma zone empty 

Dilemma zone is predicted to be 

occupied 
Correct prediction. 

Error event   . 

Impacts efficiency. 

Dilemma zone is predicted to be 

empty 

Error event   . 

Impacts safety. 
Correct prediction. 
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Table 2  

Results of Correlation Test for     and    

              -test         t-test         t-test 

475 97 -0.0116 -0.1132 0.3402 3.5256 0.2680 2.7108 

500 97 -0.0829 -0.8111 0.1820 1.8044 0.1399 1.3771 

525 97 -0.0702 -0.6856 0.1739 1.7214 0.2175 2.1715 

550 96 0.0137 0.1323 0.1095 1.0676 0.2695 2.7131 

575 89 0.0153 0.1423 0.2292 2.1968 0.121297 1.1398 

600 88 0.0792 0.7366 0.1705 1.6043 0.162675 1.5290 

625 92 0.2271 2.2120 0.1726 1.6621 0.2822 2.7903 

650 96 0.2258 2.2474 0.1508 1.4791 0.1875 1.8511 

675 96 0.1847 1.8218 0.3500 3.6228 0.0399 0.3868 

700 95 0.1490 1.4532 -0.1357 -1.3208 0.1944 1.9112 

725 95 0.1207 1.1729 0.1578 1.5412 -0.0495 -0.4776 

750 94 0.2177 2.1394 0.1337 1.2941 -0.1328 -1.2851 

775 93 0.0997 0.9560 0.1353 1.3027 0.0136 0.1294 

800 90 -0.1168 -1.1035 0.1785 1.7016 -0.0184 -0.1726 

825 86 0.0020 0.0182 0.2430 2.2964 0.0160 0.1462 

850 84 0.1384 1.2655 0.2352 2.1914 0.0895 0.8139 

875 79 0.1447 1.2834 0.0133 0.1166 0.0248 0.2175 

900 76 0.0640 0.5517 0.3931 3.6778 0.0763 0.6586 

925 74 -0.2709 -2.3875 0.1740 1.4993 0.1003 0.8552 

950 68 -0.0843 -0.6875 0.0285 0.2314 -0.0648 -0.5274 

975 64 -0.1676 -1.3389 -0.2142 -1.7266 0.2124 1.7116 

1000 49 -0.1267 -0.8759 0.0615 0.4226 0.0392 0.2688 

1025 43 0.0529 0.3389 -0.0636 -0.4079 0.2241 1.4724 

1050 40 -0.1592 -0.9946 0.0407 0.2512 0.0792 0.4896 

1075 34 0.1117 0.6358 0.2376 1.3836 -0.2382 -1.3874 

1100 32 -0.0235 -0.1285 0.0704 0.3865 0.0304 0.1667 

t-test:  significance level: 0.05; 1.98 <  t (.975, n) < 2 

H0: there is no association between the two variables  

Ha: there is an association between the two variables 

…………… Confirm Ha 

 Confirm H0 

 (*,*): Spearman’s rank correlation coefficient; n: the number of observations at a y. 
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Table 3   

Feasible range and optimal solution (using linear regression model for   ) 

(α, β) 0.01-0.04 0.042 0.044 0.046 0.048 0.05 

0.1-0.25 N N N N N N 

0.3 N [460,490*] [460,520*] [460,520*] [460,520*] [460,520*] 

0.35 N [460,490*] [460,540*] [460,600*] [460,670*] [460,730*] 

0.4 N [460,490*] [460,540*] [460,600*] [460,670*] [460,770*] 

           3          3    

[ ,  *]: feasible range from   to        is the optimal solution; N: no feasible solution. 
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Table 4  

Feasible range and optimal solution (using quadratic regression model for   ) 

(α, β) 0.01-0.04 0.042 0.044 0.046 0.048 0.05 

0.1~0.25 N N N N N N 

0.3 N N N [490,530*] [460,530*] [460,530*] 

0.35 N N N [490,620*] [460,730*] [460,730*] 

0.4 N N N [490,620*] [460,770*] [460,860*] 

         33 33        3                

[ ,  *]: feasible range from   to        is the optimal solution; N: no feasible solution. 
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Figures 

 

Fig. 1 Illustration of green termination logic 
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Fig. 2. Illustration of empty dilemma zone prediction 
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Fig. 3. The Highway 2 and 84
th
 Street intersection testbed, Lincoln, NE 
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Fig. 4. Scatter plots of v1, v2 and H  
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Fig. 5.      for different locations of APTD  
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Fig. 6. The effect of the value of       at study site on the optimal location of the APTD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

400 

500 

600 

700 

800 

900 

1000 

1100 

1200 

y*
(f

t)
 

α 

w=1.1 

w=1.5 

w=1.9 

w=2.3 

w=2.5 

w=2.9 



 

 

32 

 

 

 

Fig. 7. Prediction efficiency             
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Fig. 8. Prediction safety               
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