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ABSTRACT  

 We address a pre-disaster planning problem that seeks to strengthen a highway network 
whose links are subject to random failures due to a disaster. Each link may be either operational or 
non-functional after the disaster. The link failure probabilities are assumed to be known a priori, 
and investment decreases the likelihood of failure. The planning problem seeks connectivity for first 
responders between various origin-destination (O-D) pairs and hence focuses on uncapacitated road 
conditions. The decision-maker’s goal is to select the links to invest in under a limited budget with 
the objective of maximizing the post-disaster connectivity and minimizing traversal costs between 
the origin and destination nodes. The problem is modeled as a two-stage stochastic program in 
which the investment decisions in the first stage alter the survival probabilities of the corresponding 
links. We restructure the objective function into a monotonic non-increasing multilinear function 
and show that using the first order terms of this function leads to a knapsack problem whose 
solution is a local optimum to the original problem. Numerical experiments on real-world data 
related to strengthening Istanbul’s urban highway system against earthquake risk illustrate the 
tractability of the method and provide practical insights for decision-makers. 
Keywords: Networks, random link failures, retrofitting highways, earthquake mitigation, two-stage 
stochastic program, decision-dependent probability distribution.   
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1 INTRODUCTION   
The functionality of civil infrastructure systems, such as transportation, water, energy, and 

communication, can be significantly affected by disasters, either natural or man-made.  These 

infrastructure systems can be characterized as networks whose links are subject to random failure 

due to the disaster.  For effective disaster response, it is vital that these networks remain 

operational, especially the transportation network.  

Disaster management is a multi-stage process that starts with pre-disaster mitigation and 

preparedness that focus on long-term measures for reducing or eliminating risk, and extends to post-

disaster response, recovery and re-construction. Investment in infrastructure systems plays an 

essential role in mitigation activities as it entails the need to strengthen the links of a network to 

enhance their survivability. The strengthening of all links to targeted safety levels may require 

unacceptable or even unaffordable expenditures; hence, a subset of the links should be selected. 

Most decision-makers approach this problem by prioritizing the links using a weighted combination 

of several factors without explicit linkage to the expected network performance. Instead, an 

optimization problem that captures how investments would alter the performance of the post-

disaster network can be posed to provide a system level analysis. Then the objective is to maximize 

expected network performance along the needs of the response agencies, subject to a budget 

restriction.    

 In this study, we address the above investment problem for highway networks affected by 

earthquakes with the objective of maximizing the post-disaster connectivity and minimizing 

traversal costs between multiple origin and destination (O-D) nodes. The links represent the 

highways and the nodes represent junctions. The links are subject to random failures, which are 

assumed to be independent in the earthquake context due to the following reasons. In highway 

networks, investment decisions for earthquake related response planning imply the seismic retrofit 

of the bridges, which tend to be the weakest structural components and require several weeks to 

months or years to restore if they fail. Links without bridges can be made functional relatively 

quickly (in a few hours) even if they have some damage ([25]).  Hence, link failure is typically 

associated with bridge failure under earthquakes. Bridges in the highway network tend to be 

structurally heterogeneous due to their type, design, age, load and maintenance levels. Further, 

geotechnical conditions can vary from one location to another, affecting a bridge’s response based 

on soil characteristics and related elements. Hence bridges may have differential impacts under an 

earthquake; thereby, link failures need not be dependent. 
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In our study, the decision-maker has prior knowledge of link failure probabilities, which can 

be determined through structural analyses ([23]). The survival probability of a link is increased to a 

targeted level by investing in the seismic retrofit of bridges on that link (as discussed in [10]). A 

link will be either functional or non-functional after the earthquake, resulting in a network 

realization of surviving links. Associated with each link is also a traversal cost based on 

uncapacitated traffic conditions. Since the focus of the planning problem is ensuring connectivity 

for the first responders in the immediate aftermath of the earthquake, daily traffic patterns are no 

longer relevant. We seek to allocate a budget to a subset of links for investment so as to minimize 

the expected value of the weighted sum of traversal costs between the origin and destination nodes, 

across post-disaster surviving network realizations. The traversal cost under a realization is the least 

path cost among the surviving paths. If no path exists between an O-D pair in a network realization, 

the associated traversal cost is a fixed penalty cost. The weight of an O-D pair represents the 

importance of connecting it for post-disaster response. The problem is modeled as a two-stage 

stochastic program and an approximate solution approach is proposed.   

The remainder of the paper is organized as follows. In Section 2, we discuss related 

literature and summarize our contributions. In Section 3, we present the two-stage stochastic 

program for a single O-D pair for ease of notation. Then, we extend the results to the multiple O-D 

case. Section 4 derives the structural results for the objective function. In Section 5, we use these 

results to obtain a local optimal solution. In Section 6, results from a computational study are 

presented for the multiple O-D Istanbul transportation network under earthquake risk. Here, 

sampling methods are used for tractability. We present some concluding comments in Section 7.  

 
2 BACKGROUND 
Our focus in this study is on allocating a budget among links of a road network in order to 

strengthen it and enhance its resilience against disasters.  In this section we first review previous 

work on link improvement plans for disaster preparedness. Next, investment problems to increase 

capacity of networks with random demand are discussed. These problems differ from ours in two 

aspects: i) we increase the probability of having link functionality by investment rather than adding 

new capacity, ii) our goal is to provide access for first responders in the aftermath of a disaster and 

thus we do not take into consideration demand and capacity. There exists a considerable amount of 

work on assessing network reliability and functional performance for road networks. Such studies 

are useful in providing a basis to measure benefits of investment to links, but most of them focus on 

link capacity degradation in day-to-day incidents and demand variability. However, for the disaster 

situation, connectivity of short routes becomes the critical issue.  
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 Most studies on developing link improvement plans for disaster response, both in practice 

and in the literature, focus primarily on factors specific to a link such as its physical condition, 

characteristics, and the cost to upgrade it to withstand disasters of specific severities. The links are 

then prioritized with respect to a score that incorporates these factors, as in Sohn et al. [31], Sohn 

[30], as well as Bana et al. [4] with application to Lisbon. Earlier, Basöz and Kiremidjian [5] 

reviewed approaches for prioritizing bridges for seismic retrofitting. Some of these methods were 

implemented in the USA, Japan, and New Zealand. Werner et al. [35], among others, recognize that 

strengthening a link has implications beyond its own survivability. Moghtaderi-Zadeh and Der 

Kiureghian [22] address the need for efficient upgrade of lifelines.  For a given magnitude and 

location of an earthquake, they determine which links will fail and which ones will survive based on 

a distance threshold and calculate the probability that the network is functional, Then, they 

incrementally invest in critical components to increase the system reliability above a target value as 

a heuristic approach.  

 In recent years, formulations that use a systems perspective to address one or more 

objectives (such as response time, network accessibility, path redundancy) are being proposed. 

Viswanath and Peeta [33] formulate the multicommodity maximal covering network design 

problem to identify critical routes for earthquake response in a deterministic setting. Similar to our 

study, Sanchez-Silva et al. [26] optimize the allocation of resources among links in order to 

maximize the operational reliability of a transport network. They use a continuous time Markov 

chain with failure and repair rates for each link, such that the rates can be changed with investment. 

They also consider how network users react to failure of links along a route and the waiting time 

cost of the users until the link is repaired.  However, they assume that only one link fails at a time, 

which makes their approach non-applicable to a disaster situation such as earthquakes, where many 

links may fail simultaneously.   

 Outside the disaster context, several studies exist on investing in the links of a stochastic 

network to improve its performance. Wollmer [36] studied the problem of transporting commodities 

from their source nodes to their demand nodes in a network with random link capacities. The 

objective is to identify an investment policy to add link capacities to minimize the expected total 

cost. The total cost is defined as the sum of the investment expenditure used to increase the 

capacities and the minimum transport cost after the realization of the updated capacities. A two-

stage stochastic program is formulated and a solution procedure based on a cutting plane technique 

that exploits network structure is proposed. Wallace [34] also studied the problem of investing in 

the links of a network with random link capacities. A two-stage stochastic linear program is 

formulated to maximize the expected maximum flow from a source node to a sink node. Bounds for 
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the second stage program are generated. Later, Wollmer [37] studied a variant of this problem with 

the objective of maximizing a linear combination of the expected maximum flow between two 

nodes and the negative of the investment cost. A two-stage linear program under uncertainty is 

formulated and solved using a cutting plane technique.          

  Studies on investing in a stochastic network, such as those discussed above, have primarily 

focused on the changes in the link capacities due to disruptions. The link capacities are considered 

to change with respect to a probability distribution [18,19] or use two possible states as either 

functional or nonfunctional (1 for functional and 0 otherwise) [26]. Chen et al. [8] claimed that 

when the disruption is a huge disaster rather than a simpler congestion, the 0-1 approach is most 

rational. Other than capacity reductions, the effect of disruptions in the network can be explained by 

increases in travel times [9,24]. By contrast, our problem focuses on ensuring connectivity and fast 

response time for first responders following a disaster. Hence, the purpose of investment in our 

study is to increase the link survival probabilities rather than capacity enhancements. 

 Network reliability and functional performance are inter-related objectives that characterize 

the vulnerability of networks subject to random link failures. Ball et al. [3] provide a comprehensive 

discussion on network reliability problems that are commonly characterized in terms of connectivity 

through non-failed links. Performability measures, such as overall or maximum delay, total travel 

time between O-D pairs, and average throughput, aim to measure the network performance when 

the network remains connected after component failures. They are typically tailored to the specific 

application domain. Sanso and Milot [27] define the performance of a transportation network as the 

network’s ability to transport passengers from their origins to their destinations in a reasonable 

amount of time. For road networks, various connectivity, travel time and capacity reliability 

definitions have been proposed to assess network performance (see Chen et al. [8] and Clark and 

Watling [9] for the definitions).  In connectivity reliability, under independent, probabilistic and 

binary mode of operation (functional or not), the probability of connectedness of an O-D pair is 

measured [9]. This also constitutes part of our system performance measure along with travel time 

in the surviving network.  

 A number of articles including [18],[19] have addressed the stochastic degradation of link 

capacity due to day-to-day traffic incidents rather than a disaster situation. These articles focus on 

travel time variability considering travelers' route choice behavior and traffic equilibrium. Along the 

similar lines, Clark and Watling [9] and Sumalee et al. [32] considered the effect of stochastic 

demand on network reliability. Lo et al. [18] considered stochastic demand and link capacity 

degradation simultaneously. Since work in this area remains out of the disaster context, the aim is 

not to reduce the vulnerability of a network to enhance its performance. Similarly, past studies in 
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network reliability have not shown how to make link investment decisions to increase reliability. In 

this study we incorporate reliability and performance in a single framework and seek to enhance 

them through investment decisions.            

 In this paper, we: (i) propose a novel mathematical model for the strategic planning problem 

in disaster management to facilitate link investment decisions to enhance disaster response; (ii) 

derive structural results for the model that characterize system-level benefits of link investments; 

(iii) use the structural properties of the model to generate a locally optimal solution and illustrate the 

quality of the local optimum through computational tests; and (iv) demonstrate the computational 

tractability of the proposed method in a real-world application.  

 

3  MATHEMATICAL MODEL  
In this section we introduce the notation and formulate the investment problem as a two-stage 

stochastic program. We give the model for the single O-D case for ease of notation and 

understanding, without loss of generality.  

We are given a directed network G = (V, E) with node set V and arc set E, where the index i 

denotes a node and the index e denotes an arc in G. A pair of nodes is also specified: let O represent 

the origin node and D the destination node in G. From here on, we use the terms arc and link 

interchangeably without any distinction. We provide a list of the notation used throughout the 

article in the Appendix.  

Let pe (0 < pe < 1) denote the survival probability of link e. This probability can be 

increased to qe by investing an amount equal to ce (>0). We are given a budget B for investment in 

the links to increase their survival probabilities. The investment decision vector is denoted by y = 

(ye), where ye is binary-valued, taking the value 1 if there is an investment in link e, and 0 

otherwise. After the occurrence of a disaster, each link would be either operational or non-

operational. We use a binary-valued random variable [e to denote the state of link e. That is, [e = 1, 

if link e is operational after the disaster, and [e = 0, otherwise. The vector of the random variables [e 

for all links e in E is denoted by [ = ([e ). It represents the network realization, and takes values in 

its support ; � {0, 1}|E| according to the decision-dependent probability distribution, . A 

specific realization of [ is denoted by . A non-negative traversal cost te is specified, for all e 

in E. A unit flow is sent from O to D using the path with the least cost in the realized network. If 

there does not exist a path connecting O to D in this realization, a fixed penalty cost M (< ∞) is 

incurred. This cost may represent the cost of an alternative mode of transportation such as the use of 

a helicopter, or may be used to represent the relative importance of connectivity. The flow vector 
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from O to D is denoted by x(  ) = (xe(  )), where xe( ) is binary-valued, taking the value 1 if there is 

a unit flow through link e in the network realization  , and 0 otherwise.  

We make several assumptions in formulating our problem.  

Assumption 1: Each link in G appears in at least one path from O to D.   

This is without loss of generality since any link which does not appear in any path from O to D can 

be dropped from G as it will not be invested in.  

Assumption 2: Link failures are independent.  

This assumption is often made in the network reliability literature [3]. In our context, as discussed 

in Section 1, due to the differences in the structural properties of the bridges, even links subject to 

the same earthquake magnitude may fail independently.  

Assumption 3: M > Tmax, where we denote the maximum path cost from O to D in G by Tmax. The 

assumption implies that any O-D path in G is preferred over no such path being available. 

 The two-stage stochastic program P is given below.  

   

Program P         

First Stage: 

                       Z =   =                                                                                 (1) 

        subject to: 

             (2) 

                                                  ye = 0 or 1                       � e � E                                              (3) 
 

Second Stage:   

                                                  (4)            

        subject to: 

                                       (5) 

                                                           � e � E                                                                 (6)  

                                                         � e � E                                                                (7) 

 

where the first stage objective function, , is the expectation of  with respect 

to the random vector  for a given investment vector y and can be expanded as:   

. Here, z , if the second stage problem for the realization 

  is feasible, and M, otherwise; thus, its value is equal to the least traversal cost from O to D 

in the network realization if a path exists from O to D, or the penalty cost M, if O-D is 
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disconnected. Note that   is the probability that   is realized given that the investment 

vector is y.  Due to independence assumption of the link failures, this value can be specified as:  

      (8) 
 

This expression illustrates the decision-dependent nature of the probabilities in our model. 

Constraint (2) is the budget restriction on the total investment. Constraint set (3) is the integrality 

restrictions on the first stage decision variables. The second stage objective is given in (4). 

Constraint set (5) is the flow conservation constraint. Constraint set (6) precludes flow in links that 

are non-operational in . Constraint set (7) defines the second stage flow variables which take either 

0 or 1 value.  

The complexity of P is indicated by the fact that even the computation of  for a given y 

vector is #P-Complete [3], the counting analogue of NP-Complete, due to 2|E|  possible network 

realizations. In addition, the need to evaluate the probability in (8) for each investment vector 

further increases complexity.  

Stochastic Integer Programming (SIP) problems are inherently large scale, and 

decomposition methods such as Bender’s decomposition are widely used to solve them [17]. When 

integer variables exist in the second stage, the non-convexity of the value function ([6]), creates 

further computational difficulty but combinations of decomposition and branch and cut methods 

have been used with increasing success [7], [28], [29] (for a survey on structural properties and 

algorithms for SIP models, see [15] and [28]).  

The problem in this paper requires only the first stage variables to be integer but the 

probability distributions of the random parameters depend on these variables. A class of stochastic 

programs with decision-dependent uncertainty in which the optimization decisions influence the 

time of information discovery for a subset of the uncertain parameters was defined in Jonsbraten et 

al. [14] and later in Goel and Grossmann [11]. In [11], a Lagrangean duality based branch and 

bound algorithm is proposed, whereas in [14] an implicit enumeration algorithm is given. However, 

in our problem the decisions alter the probability distribution itself by making one network 

realization more likely than the others. Studies on such problems is very limited; Ahmed [1] 

presents some examples relating to network design, server selection and facility location. Models 

with decision-dependent probabilities are typically known to be quite difficult to solve and one way 

to solve them is by combining a search of the feasible space with sampling. The Sample Average 

Approximation (SAA) method ([2], [16]) approximates the expected objective function of the 

stochastic problem by means of a random sample from the set of scenarios. The resulting problem is 
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then solved by deterministic optimization techniques. Here, we also use sampling to construct an 

approximate feasible solution but we do not utilize an iterative search method.  
 

4 STRUCTURAL RESULTS FOR THE OBJECTIVE FUNCTION  
In this section, we give an equivalent deterministic program of P by a path-based approach. Then 

we derive the multilinear functional form of  and characterize its coefficients. Consequently, 

we prove the monotone non-increasing property of . We also extend these results to the 

multiple O-D case.   

4.1 Equivalent Deterministic Program of P 

Let us first group the network realizations by defining S as the set of realizations that have O-D 

connectivity, and Sc as its complement. Expanding the expectation in  by conditioning it over 

network realizations in S and Sc, we have:       

                                                              (9) 

We next define  as the probability that O is connected to D for a given y, 

and  as its complement. With this notation,  

                                                   (10) 

Let  denote the expected least path cost in case of O-D connectedness. Then, the objective 

function becomes: 

      .                                                   (11) 

The objective function can now be viewed as combining two criteria: reliability and functional 

performance. Here, reliability refers to the probability that O is connected to D, and the functional 

performance is measured by the expected least path cost.  

Let the set K = { S1, S2, …, S|K| } be the set of all paths from O to D in G, where   is 

the traversal cost of the path . For practical purposes, we can identify a subset of paths from K 

using a k-shortest path algorithm to preclude the enumeration of all paths. Let the random variable S 

represent a path from O to D with the least traversal cost when O-D connectivity exist; here S takes 

values from the set K. Given a network realization  , let   be an indicator variable for all 

. If any of the O-D paths in K has survived in this realization, we seek the one with the least 

cost path. Let * be the index of a least cost path in K. If several surviving paths have the least cost, 

then we pick one of them arbitrarily. We set   and for all .   
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The expected least path cost   can now be expressed as    

   ,  

where   is the probability that  is a least cost path given that the 

investment vector is y. Thus, (11) can be rewritten as:  

               .                                                        (12) 

Having this expression for the objective function  obviates the need to solve the second stage 

problem. We now have a single stage equivalent program of the two-stage program P.  

} 

  where   .  

This reformulated program is a 0-1 integer program with a single constraint but the objective 

function complicates its solution. An explicit expression of the objective function is elusive and 

depends on the network structure as both the  need to be derived and   has to be 

calculated (a computationally difficult task in itself, as mentioned earlier).  However, we 

circumvent this difficulty by the following construction. 

4.2 Multilinear Functional Form 

The function  is defined only at the vertices of the unit hypercube, H = { y | 0 ≤ ye ≤ 1,  }. 

Given the discrete nature of the feasible set of P, we relax the integrality restrictions on the 

components of y. This allows  to be continuously differentiable in the domain H, and hence 

enables the consideration of its Taylor series expansion in the neighborhood of some y0 � H:  

   (13) 

Here  = is the first order derivative with respect to investment in link e at y0, 

 =   is the second order derivative with respect to investment in links e1 and 

e2 at y0, and so forth. Next, we have three Lemmas that characterize the derivatives. For 

convenience, let 'pe denote qe – pe, and define ue as the unit vector of dimension |E| having 1 at 

component e and 0 at the remaining components. In Lemma 1, we characterize the first order 

derivative coefficient in (13).     

Lemma 1:  = .  

Proof: Combining (9) and (12), in the path-based approach we have   

                                     (14) 
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Recall from equation (8), where 

                        (15) 

If we rearrange and simplify the above, we obtain  

                                                                  (16) 

Here we see clearly that is linear in  and thus  is multilinear. This in turn 

implies that  is multilinear since it consists of the sum of multilinear terms, as seen in (14).  

 Differentiating  with respect to ye gives  and furthermore,  

                                                     (17) 

Since   we obtain 

                                                          (18) 

                             =  

   � 
 

Next, Lemma 2 characterizes the second order derivative in (13).   

Lemma 2: ,  if e1 ≠  e2  

                                  = 0,   if e1 = e2.    

Proof: In the case when e1 ≠ e2, differentiating , as given in Lemma 1, with respect to , 

and performing algebraic manipulations yields the result. For the case when e1 = e2,  

since is independent of  as seen from (17). �  
 

We now introduce additional notation; let v1, !, vm be vectors of dimension |E|, and ||vi|| be 

the length of the vector vi. This enables us to write 

  = , where each summation is defined 

over the two vectors specified. Next, the result of Lemma 2 is extended to the higher order 

derivatives. 

Lemma 3: For m ≥ 3, 

,  if e1, !, em are 

distinct links, and   = 0,  otherwise.   

Proof: The proof is by induction on m, and is omitted here.�    

Of particular interest is the expansion corresponding to y0 = 0 (the vector of zeros) since it is 

a feasible solution to every instance of P. We denote the value of the expansion at y0 = 0 as . 
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We can interpret  as the marginal system-level benefit of investing in link e alone, and 

 as the marginal system-level benefit of investing simultaneously in links e1 to em. 

Lemmas 1, 2 and 3 lead us to a key result of this paper, which enables the characterization of the 

structure of the objective function.     

Theorem 1: The multilinear function   

coincides with , for all y in {0, 1}|E|.   

Proof:  Setting y0 = 0 in the r.h.s. of (13) gives us the expression: 

. There are m! number of 

 terms due to m! permutations for a given e1, …, em. Hence, the above becomes, 

. Given y, suppose we reindex the links such that the 

set of invested links is W = {1, !, w}, i.e.  y1 ="= yw = 1 and yw+1 ="= y|E| = 0. After applying 

Lemmas 1, 2 and 3, we get  

. 

Simplifying the above expression, all terms vanish except F(u1 + "  + uw) = F(y). � 

Since the multilinear function in Theorem 1 yields the exact value of , for all feasible 

solutions, i.e. � y � Y, we have the following result.   

Corollary 1: Solving program P is equivalent to minimizing the multilinear function over the 

set Y. 

4.3 Extension to the multiple O-D case  

We next consider the investment problem with the objective of minimizing the expected weighted 

sum of traversal costs of multiple O-D pairs. When the connectivity of some O-D pairs is 

considered to be more critical for post-disaster emergency response, different weights can be 

assigned to the pairs. Let N denote the total number of O-D pairs in G and n denote the index of an 

O-D pair. For an O-D pair n, the corresponding penalty cost is Mn and the weight is wn. Let  be 

the traversal cost for the nth O-D pair under realization .  

Let , and  be the corresponding multilinear function specified as:  

. Then, the objective function is: 

 . As shown in Theorem 1, 

 coincides with  for all y in {0,1}|E|. Therefore, for all 

y in {0,1}|E| so that  . Here, 
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 and . Thus, Theorem 1 and Corollary 1 follow for 

the multiple O-D case as well.  

4.4 Monotonic Non-increasing Property of F(y)  
Theorem 2: The function  is monotonic non-increasing with y. 

Proof : The result follows from the proposition proved next. 

Proposition 1:  ≤ 0, for all . In addition, if , then  < 0, . 

Proof : Since the events [e = 0 and [e = 1 are mutually exclusive, by conditioning we obtain:  

               .        (19) 

We let ew�
~ �{e} represent the realization ew�

~ to which link e is added and made operational. We 

then have    

           .  

Due to the independence of link failures,  

. 

Note that  → R+ is a non-increasing set function, that is  ≤  

� � , or equivalently, the addition of a link to  will never worsen the value of the 

traversal cost from O to D. This proves the non-positivity of . To prove the strict inequality, 

we consider two sets. The first set consists of network realizations from  in which  is 

disconnected for the O-D pair and  is connected. Due to Assumption 1, there exists at 

least one  belonging to the first set. In cases where survival probabilities after investment 

become 1, the marginal benefit of an additional investment may become 0. To understand this, let 

S+e be a path that connects the O-D pair when link e is added to  ; if P(S =S+e) > 0, then due to 

Assumption 2,  < 0 for this realization; thus  < 0. However, if P(S 

=S+e) = 0, then  ≤ 0. This is the case when some links have survival probability after 

investment equal to 1 so that investing in such inks may prevent other links from becoming part of a 

shortest path. Note that  if P(S =S+e) = 0 for all such paths, then  = 0. � 

 

5 FIRST ORDER APPROXIMATE SOLUTION PROCEDURE 
The optimization of a multilinear function over the set {0, 1}|E| is NP-hard [21]. Given this 

complexity, we develop an approximate solution procedure for P. We approximate the objective 

function using the first order terms of the function  in Theorem 1. We define 

 and approximate  with . The drawback of this approach is that by 

disregarding the second and subsequent higher order terms, we cannot capture the effect of 
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simultaneous investments in more than one link. However, with the first order approximation we 

gain tractability since  is linear in y. Without the constant term , the approximate 

program is: 

 P-approx         
                                                                                       

      subject to 

                                                                                                                       

                                              ye = 0 or 1               � e � E                                

Here,  can be evaluated from    using Lemma 1 after k-shortest paths are found. 

However, while taking the expectation, the number of network realizations is 2|E|. Therefore, a 

Sample Average Approximation approach can be used to estimate this value when the number of 

links gets large. Once the  are calculated exactly or approximately, P-approx is a 0-1 

knapsack problem that can be solved efficiently either in pseudo-polynomial time using dynamic 

programming (see [20]), or by branch-and-bound using a standard MIP solver. Let  be an optimal 

solution of P-approx when  are calculated exactly. Next, we show that this solution is a strict 

local optimum of the original problem P.    

Theorem 3: An optimal solution to P-approx, , is a local optimum of P. 

Proof: The solution  is an extreme point of the unit hypercube H. On the contrary, assume that 

this solution is not a local optimum of P. Then, there must be a feasible extreme point solution, , 
neighboring , such that  such that the Hamming distance between  and any of its 

neighboring solutions is 1, that is, ||  � || = 1. From Proposition 1, we have , that is, for all 

e � E,  and at least for one component the inequality is strict. Since 0 � e � E, 

. Since P-approx has the same constraint set as P,  is both feasible and 

optimal to P-approx as well. �   

 

6 COMPUTATIONAL STUDY AND INSIGHTS 
 
In this section, we provide computational results using a case study to demonstrate the practical 

applicability of our approach. We also illustrate the quality of the local optimum solution compared 

to the global optimum for instances in which the global optimum could be obtained by enumeration.  

The computational study is based on highway networks from Istanbul, Turkey. Istanbul has 

been affected by two major earthquakes in 1999 with epicenters about 250 km from it that caused 

$10-$25 billion in damage. Parsons et al. [24] report that the probability of a major earthquake 
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epicentered in Istanbul itself in the next few decades is 62.6±15%; such an earthquake would cause 

substantially higher damage than the 1999 ones due to the high population density. The government 

plans to invest $400 million to strengthen critical public infrastructure for earthquake resistance. A 

key element of this plan is to retrofit the highway system to ensure maximum accessibility and 

functionality after an earthquake. This implies the seismic retrofit of bridges/viaducts which tend to 

be the weakest structural elements in the highway system.  Selecting the highway elements to be 

strengthened provides a real setting to analyze the practical use of our model.  

The relevant data is obtained from the 2003 Master Earthquake Plan (MEP) of the Istanbul 

municipality, and focuses on the two main highways TEM and E-5 in the city and the 

bridges/viaducts located on them. The associated map is depicted in Figure 1. It shows the southern 

part of the city which is the most densely populated and seismically risk-prone area.  The city is 

separated into the European and Asian sides by the Strait of Bosphorus and two bridges connect the 

two sides. In our experiments, we consider two networks to analyze our model. The first one 

consists of 25 nodes and 30 links and includes both sides as shown in Figure 2. It is used to analyze 

the performance and the computational scalability of the model. The second network has 8 nodes 

and 9 links (Figure 3) and represents only the Asian side. It is considered because the global 

optimum can be obtained by enumeration, thereby providing a benchmark for the quality of the 

local optimum obtained through our approach. The link traversal costs are proportional to the 

distances between the nodes. 

 The initial link survival probabilities are typically determined by structural engineers using 

domain-specific information. In this study, we use data from the MEP (Figure 1) that classifies 

bridges/viaducts as “less risky” and “very risky”, to determine the probabilities. By identifying the 

numbers of less risky and very risky bridges/viaducts on each link, and determining a weighted 

score which is then translated into the survival probabilities, five initial link survival probability 

levels (ranging from 0.5 to 0.8) are assigned to each link. The link survival probabilities are 

assumed to be 1 after the investment, based on feedback from the structural engineers involved in 

the retrofitting plan. The investment cost for each link is calculated as a weighted score proportional 

to the link length and the number of bridges/viaducts located on it. The traversal costs (lengths), 

survival probabilities and the investment costs are given in Table 1. 

Table 1. Link lengths, investment costs and survival probabilities. 

Link length ce pe          Link length ce pe Link length ce pe 

1 2.46 80 0.8 11 7.11 940 0.55 21 1.80 40 0.8 

2 2.20 80 0.8 12 4.03 160 0.8 22 1.97 160 0.7 

3 8.00 320 0.8 13 5.02 620 0.6 23 1.61 40 0.8 
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4 2.56 260 0.7 14 4.55 1180 0.5 24 8.09 620 0.6 

5 4.57 160 0.8 15 1.36 40 0.8 25 2.87 260 0.7 

6 3.44 420 0.6 16 4.26 940 0.55 26 6.35 780 0.6 

7 4.19 160 0.8 17 3.64 300 0.7 27 2.27 800 0.55 

8 5.60 620 0.6 18 4.19 520 0.6 28 3.91 120 0.8 

9 3.71 120 0.8 19 1.98 40 0.8 29 4.11 220 0.7 

10 4.44 340 0.7 20 2.45 800 0.55 30 2.27 500 0.6 

 

The total budget needed to invest in all links is 11640 units. We consider three budget levels for the 

experiments: B1=1164, B2=2328, and B3=3492, corresponding to strengthening approximately 

10%, 20% and 30% of the links, respectively. 

 The O-D pairs are chosen based on detailed analyses of four most likely earthquake 

scenarios for the region of interest given in the Japan International Cooperation Agency Report, 

2002. In these scenarios, the expected number of collapsed buildings, and the number of fatalities 

and injuries in each district of the region are estimated. The most-damaging earthquake scenario 

provides the basis for the selection of the O-D pairs. The origins correspond to the districts with the 

highest expected number of injured people. The destination nodes are the districts which have a 

large medical support capacity. For the 30-link network, the following O-D pairs are chosen: 

(14,20), (14,7), (12,18), (9,7) and (4,8). For the 9-link network, (17,19) and (15,22) are selected. 

Each O-D pair has up to 6 different paths connecting them. Links belonging to each path are given 

in Table 2 with corresponding traversal costs.  

Table 2. Paths for each O-D pair with corresponding traversal costs (lengths). 
O-D pair 14-20 Links Total length 

   Path 1  21 22 25 
     

6.65 
Path 2 21 22 26 29 30 28 

  
20.41 

Path 3 20 17 18 23 24 26 25 
 

29.20 
Path 4 20 17 18 23 24 29 30 28 30.27 

         
M=31 

O-D pair 14-7 Links Total length 
Path 1  20 16 10 

     
11.14 

Path 2 20 17 14 13 10 
   

20.09 
Path 3 20 17 14 11 12 9 

  
25.48 

Path 4 20 16 13 11 12 9 
  

26.58 
Path 5 20 17 14 11 6 7 9 

 
29.08 

Path 6 20 16 13 11 6 7 9 
 

30.17 

         
M=31 

O-D pair 12-18 Links Total length 
Path 1  17 20 21 22 

    
9.86 

Path 2 14 13 16 20 21 22 
  

20.05 
Path 3 18 23 24 26 

    
20.24 

Path 4 18 23 24 29 30 28 25 
 

27.06 

         
M=28 
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O-D pair 9-7 Links Total length 
Path 1  13 10 

      
9.46 

Path 2 11 12 9 
     

14.85 
Path 3 14 17 16 10 

    
16.88 

Path 4 11 6 7 9 
    

18.45 

         
M=19 

O-D pair 4-8 Links Total length 
Path 1  3 4 6 

     
14.00 

Path 2 5 8 9 12 
    

17.91 
Path 3 3 4 7 12 

    
18.79 

Path 4 5 8 9 7 6 
   

21.51 
Path 5 5 8 10 13 11 

   
26.73 

Path 6 5 8 10 16 17 14 11 
 

34.15 

         
M=35 

O-D pair 17-19 Links Total length 
Path 1  31 22 25 27 

    
13.52 

Path 2 24 26 25 27 
    

19.59 
Path 3 24 29 30 28 27 

   
20.65 

Path 4 31 22 26 29 30 28 27 
 

27.28 

         
M=30 

O-D pair 15-22 Links Total length 
Path 1  22 25 28 

     
8.75 

Path 2 22 26 29 30 
    

14.70 
Path 3 31 24 29 30 

    
20.87 

Path 4 31 24 26 25 28 
   

27.62 

         
M=30 

 

 

6.1 Monte Carlo Sampling-Based Implementation Procedure 

This section describes a Monte Carlo sampling procedure to implement the proposed method in 

practice. It is important to note that while computation time is not a key factor in the deployment 

of this method due to its pre-disaster planning context, we nevertheless need a procedure that is 

efficient for tractability.  

Section 4.3 showed that the objective coefficients  of the approximate integer 

program P-approx are computed as F(ue)-F(0) for a given O-D pair. However, calculating F(y) 

for any y requires exploring an exponential number of possible network realizations. For example, 

for the 30-link network, 30x230 (≈ 32 billion) cases should be explored. As a practical approach to 

overcome this difficulty, Monte Carlo Sampling is used to estimate the F(ue) and F(0) values. 

First, the k-shortest paths are determined in advance for the O-D pair under consideration (as in 

Table 2). To estimate F(ue) for each link e, one million random network realizations are generated 

such that the links are either operational or non-operational according to the probabilities 

determined by the investment vector ue. For each realization, the O-D connectivity of the 

predetermined k-shortest paths is checked in terms of the increasing order of traversal cost to find 
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the minimum cost operational path. If the O-D pair is not connected in that realization, the 

traversal cost is taken as M. The average of these 1 million traversal costs is the estimated F(ue). 

The procedure is repeated for each link with a different set of realizations generated for the 

corresponding post-investment probabilities. Finally, one million random network realizations are 

generated to estimate F(0), and the  estimates are obtained. This computation takes about 

380 seconds of CPU time for one O-D pair in the 30-link network on a PC with 2x2.8 GHz Xeon 

processor and 5 GB RAM using the sampling algorithm implemented in Matlab 7.0. 

Sample Size and Convergence. We investigate the convergence of the estimated F(ue) values 

with increasing sample size of the generated realizations for the 30-link network. Table 3 shows 

estimated F(ue) values, denoted by , for a representative subset of links and O-D pair (14,7), 

for sample sizes varying from 10 to 1,000,000. Results indicate that the estimated values converge 

rapidly as the sample size approaches to 1,000,000.  

Table 3. Convergence of the estimated  values for different sample sizes. 

Confidence Intervals. The estimations are subject to error and a confidence interval is computed 

for each estimated value by the standard formula , where   is taken as , σ 

as the sample standard deviation, n as 1,000,000 and for a desired confidence of 90%, z is taken to 

be 1.645. With these parameters, the Δ values for the O-D pair (14,7) are found to be at most 

0.0677 illustrating that sufficient accuracy is obtained with the selected sample size.  

6.2 Insights on the Solution Method and Parameters 

This section provides insights on the interpretation of the  values and the effect of parameter 

M on the solution using the 30-link network, the five selected O-D pairs and the paths given in 

Table 2.  

 

Sample     

Size 10 100 1000 10,000 100,000 200,000 400,000 600,000 800,000 1,000,000 

e=1 68.5476 99.7284 90.4219 89.2341 89.0514 88.8871 88.915 88.932 89.0732 89.0106 

e=2 87.3419 87.2498 91.5962 89.1253 88.8526 89.0942 88.9732 88.9392 89.0564 89.0394 

e=3 89.7802 87.2862 88.5659 88.8772 88.7807 88.9159 89.1911 89.0184 88.9748 88.9921 

e=29 65.5699 83.5401 88.2562 88.7485 89.0428 89.1445 88.983 89.0426 89.0936 89.0118 

e=30 76.4559 95.9406 88.9307 88.6466 89.0565 88.9696 89.0181 88.9746 88.9642 88.9543 
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Interpretation of the  Values. The  values for the five O-D pairs are summed up to 

form the objective coefficients of the knapsack problem P-approx. These calculated coefficients  
are given in Table 4 for  two cases: high and low M. That is, first M is set to a high value, 120, for 

all O-D pairs to give more importance to connectivity and the first row results are obtained after 

sampling. The second row results are calculated using minimal M values for each O-D, as 

specified in Table 2. Table 5 shows the solutions to the knapsack problems using these objective 

coefficients for the two cases, each one under increasing budget levels, B1, B2 and B3. Solving a 

single knapsack problem takes less than one second on our computing platform.  

Table 4. Objective coefficients of P-approx for the 30-link network cases. 

Link 1 2 3 4 5 6 7 8 9 10 

           

High M 0.4796 0.0909 -7.5522 -12.962 -4.6874 -10.1104 -3.5077 -12.6736 -9.62 -23.4098 

      Low M 0.2411 0.2723 0.2486 0.2546 0.2583 0.2665 0.2172 0.3085 0.0025 -3.0429 

           

Link 11 12 13 14 15 16 17 18 19 20 

           

High M -22.5208 -7.959 -20.1996 -10.7251 -0.2549 -19.1451 -12.0672 -11.7344 0.299 -45.7208 

      Low M -0.5788 0.061 -2.3111 -0.5424 0.2497 -3.0092 -2.8857 -1.1547 0.2678 -9.7512 

           

Link 21 22 23 24 25 26 27 28 29 30 

           

High M -16.122 -27.9923 -4.6131 -12.0463 -16.4982 -9.5883 0.0067 -1.7972 -2.5347 -4.4025 

      Low M -4.0536 -7.1832 -0.2923 -1.1597 -3.4785 -1.3181 0.2753 0.1773 0.1187 0.0333 

 
Table 5. The knapsack problem solutions for the 30-link network cases.  

(a) High M. 
Link 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

B1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 

B2 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 

B3 0 0 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 

 

(b) Low M. 
Link 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

B1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 

B2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 

B3 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 0 0 0 

 

The objective coefficient for a link represents the marginal system-level benefit of investing in that 

link alone; hence links with the most negative objective coefficients are good candidates for 

investment. In Table 4, the objective coefficients with the most negative values appear in links 10, 

11, 13, 16, 20, and 22, for M =120, and links 10, 16, 20, 21, 22, and 25, for M =31. Note that all of 
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the coefficients should be non-negative due to Proposition 1, but Table 4 contains some positive 

values, resulting from the accumulation of the sampling errors; thus, these coefficients should be 

considered as zero. When the solutions are examined in Table 5, we note that links 10, 20, 21, 22, 

23 and 25 have been invested in under most budget levels. Links 11, 14 and 16 have high 

investment costs, while 23 has very low cost. Correspondingly, although 16 has a high negative 

coefficient, it is not invested in; whereas link 23 is invested in despite its very low objective 

coefficient.  

Effect of Parameter M. Table 5 illustrates the effect of M on the solution. As discussed earlier, 

larger M implies greater emphasis on connectivity. In Table 5, we note that link 9 is invested in 

under all budget levels when M is high, and under none when M is low. Similar results are seen for 

link 4. Links 4 and 9 provide key options for connectivity as seen in Figure 2. 

 
6.3 Quality of the Local Optimum Solution 

As stated earlier, the 9-link network was considered primarily to analyze the solution quality as it 

allows for the enumeration of the solution. In order to increase the number of possible paths 

between the O-D pairs, we added a new link, link 31 (Figure 3) that represents the coastal road.  

Tables 6 and 7 report investment vectors, ya, obtained by solving P-approx when its objective 

coefficients are calculated with respect to sample size 50,000, for O-D pairs 17-19 and 15-22, 

respectively. M is set to 30 for both O-D pairs. Results are given for 20 cases with randomly 

generated survival probabilities before and after investment, and costs of investment for each link. 

Cases i and i+1, i=1,3,5,…,19 correspond to the same set of survival probabilities and link 

traversal costs but Case i  allows a budget of 20% and Case i+1, 50% of the total amount needed 

to invest in all the links.  F(ya) is the objective function value of the problem P at the proposed 

approximate solution ya which is obtained by enumerating all network realizations. F(ya) is 

compared to F(yopt), where the optimal solution yopt  is found by enumerating all possible 

investment vectors.    We were able to find exact solutions in 11 cases. In the rest of the cases, 

average deviation from the optimal objective value is  0.5113 which is less than 2% of the optimal 

value on the average, whereas the maximum percentage error is 10%. 
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Table 6. Solution of P-approx and comparison with global optimum for the O-D pair 17-19. 
 

 
     

Link 
     Case 22 24 25 26 27 28 29 30 31 F(ya) F(ya)-�F(yopt) 

1 0 0 1 0 0 0 1 0 0 29.0764 0.5745 

2 1 0 1 0 1 0 0 1 0 28.8807 1.6487 

3 1 0 0 0 0 1 1 0 0 24.1741 0 

4 1 0 0 1 0 0 1 0 1 21.7124 0.1309 

5 0 1 0 0 1 0 0 0 1 19.8715 2.0411 

6 1 1 0 1 1 0 0 1 1 17.2518 0 

7 1 1 0 0 0 0 0 0 1 23.6556 0 

8 1 1 1 0 0 0 1 0 1 22.6957 0.3263 

9 0 1 0 1 1 0 0 0 0 25.7185 0 

10 0 1 1 1 1 0 0 0 1 24.7722 0 
 

Table 7. Solution of P-approx and comparison with global optimum for the O-D pair 15-22. 
 

  
     

Link 
     Case  22 24 25 26 27 28 29 30 31 F(ya) F(ya)-�F(yopt) 

11  0 0 1 0 0 0 0 1 0 15.2981 0 

12  0 0 1 1 0 1 1 1 0 11.6103 0 

13  0 0 1 0 0 1 1 1 0 9.7503 0.264 

14  1 0 1 0 0 1 1 1 0 9.1319 0 

15  0 0 1 0 0 1 0 0 0 16.1811 0 

16  1 1 1 0 0 1 0 1 0 15.814 0.0107 

17  1 1 0 0 0 1 0 0 1 20.9825 0 

18  1 1 1 0 0 0 1 0 1 19.3724 0.0596 

19  0 0 1 0 0 1 1 1 0 26.1578 0 

20  1 0 1 0 0 1 1 1 0 23.5729 0.0574 
 
 
7 CONCLUSIONS 
We addressed a pre-disaster planning problem for earthquake disaster response that aims to 

strengthen the links of a stochastic network through investment. The strength of each link is 

measured by the probability that all of its weak components such as bridges and viaducts, remain 

operational after a possible disaster. The objective is to minimize the expected traversal cost for 

multiple O-D pairs across the post-disaster network realizations. A two-stage stochastic program is 

presented where the first stage identifies which links to invest in and the second stage determines 

the minimum traversal costs between the O-D pairs. By differentiating between connected and 

disconnected realizations, reliability is explicitly considered as part of the objective function. A 

path-based approach was used to reformulate the program as an equivalent deterministic program. 
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By relaxing the integrality of investment variables and applying Taylor series expansion, a 

multilinear function was derived which coincides with the objective function at the feasible integer 

solutions. Coefficients of this function denote the marginal system-level benefits due to 

investment. Using only the first order terms of the multilinear function as an approximation 

yielded a knapsack problem whose optimal solution is shown to be a local optimum to the original 

problem. The proposed approach captures the system-level effects of investment, thereby 

addressing the trade-offs between system-level benefits of investment, the budget limitations, and 

the investment costs. 

 Numerical experiments are illustrated on a real-world case related to strengthening 

Istanbul’s urban highway system against earthquake risk. The problem was solved on a 30-link in 

less than 7 minutes by utilizing Monte Carlo sampling of the network realizations. The 

experiments provided insights on the effects of problem parameters on the solutions. The quality 

of the solutions was investigated on a 9-link network by comparing the approximate solutions with 

those obtained through enumeration. The proposed method found the global optimum in more than 

half of all cases in negligible computation time, and yielded an average percentage error of 2% in 

the remaining cases.  

  The proposed model and the solution approach can be used by local and central 

government agencies to aid investment decisions to upgrade a highway network for disaster 

response.   
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9 APPENDIX: LIST OF NOTATION 
 

)E,V(G     a directed network with node set V and arc set E. 

ep      survival probability of link e without investment. 

eq     survival probability of link e after being invested in, where ep' = ee pq � . 

ec      cost of investing in link e. 

B     budget. 

ey     1, if there is an investment in link e; 0, otherwise. 

)( eyy     the investment decision vector for all links in E. 

e[     1, if link e is operational after the disaster; 0, otherwise. 

)( e[[     the vector of the random variables ξe for all links in E with a specific realization )~(~
e[[     

et     non-negative traversal cost for link e. 

M     a fixed penalty cost. 

m axT     the maximum path cost from O to D in G. 

)~([ex     1, if there is a unit flow through link e in the network realization [~ ; 

  0, otherwise.  

))~(()~( [[ exx   the flow vector for realization[~ . 

)([f     least path cost in the network realization [  if it exists, or the penalty cost M if      

   O-D is not connected. 

)(yF     expectation of )([f with respect to the random variable [  for a given         

   investment vector y.  

S     the set of network realizations that have O-D connectivity. 

cS     the complement set of S . 

)(yFS     expected traversal cost over all realizations with O-D connectivity for the                         

investment vector y. 

S     random variable representing the path with the least cost from O to D when connectivity exists. 

}~,{ [kI    1, if the least cost path in the network realization [
~

is kS ; 0, otherwise. 

)( kT S     traversal cost of path kS . 

m axT     the maximum path cost from O to D in G. 

eu     the unit vector of dimension |E| having 1 at component e and 0 at the  remaining components.  

e�;     the set of network realizations of G-e. 

ew�     a random variable for the network realization of G-e with a specific realization ew�
~

. 
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Figure 1. The network shown on the Istanbul city map with risky bridges and viaducts on major highways. 
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Figure 2.  30-link network of Istanbul. 
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Figure 3.  9-link network of the Asian side of Istanbul. 
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