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Abstract

This paper calibrates on-line the parameters of a controller-estimated driver behavior model 
used in a deployable behavior-consistent approach for real-time route guidance by checking the 
consistency between the time-dependent actual and estimated system states. The behavior model 
has a fuzzy multinomial logit structure where the systematic utility component is obtained using
aggregate behavioral if-then rules. The weights of these rules are calibrated through a fuzzy on-
line calibration model using the unfolding traffic volume measurements. The on-line calibration 
is done within the deployment framework of the behavior-consistent approach where the drivers’ 
likely response is factored in determining the route guidance strategies. The generalized structure 
of the calibration component enables it to simultaneously incorporate other sources of state 
inconsistency such as traffic flow model parameters. The results indicate that the calibration 
model can enhance the accuracy of system state estimation, leading to the increased effectiveness 
of the behavior-consistent route guidance. It provides the ability to more accurately predict 
drivers’ likely route choices by using aggregate if-then rules, and consequently, aggregate level 
data. This is attractive in a deployment context as it implies reduced data needs at a disaggregate 
level, a difficult proposition in the real world.
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1. Introduction

The development of deployable strategies for real-time information-based network control to 
enhance system performance requires simultaneously addressing significant methodological 
problems related to traffic flow dynamics, driver behavior, demand modeling, and information 
processing, typically within a dynamic traffic assignment (DTA) framework. This is because a 
realistic, effective, and anticipatory solution to the problem requires the estimation of traffic 
network states resulting from complex interdependencies among network flow spatio-temporal 
interactions, driver response behavior, supply characteristics (such as the information provided), 
and related sources of randomness. 

A significant body of literature exists for each of the aforementioned methodological 
problems. DTA models have predominantly focused on robustly capturing the traffic flow 
dynamics while seeking to achieve some system-wide objectives. However, they mostly tend to 
pre-specify driver behavior. For example, they categorize driver behavior and/or assume driver 
classes with restrictive pre-specified objectives such as user equilibrium (UE) or system optimal 
(SO). However, such simplicity is not consistent with the real-world and is consequently 
problematic. The traffic network states unfolding over time are fundamentally dependent on 
driver behavior which is a key source of complexity due to the spatio-temporal interactions that 
result from driver route choice decisions. Hence, the incorrect modeling of driver behavior can 
negatively impact the prediction of the traffic network states and the effectiveness of 
information-based control strategies. Peeta and Yu (2004, 2006) highlight realism issues arising 
from the rigid representation of driver behavior under information provision, and the consequent 
barriers to developing effective operational paradigms for information-based traffic network 
management.

In contrast to the emphasis on traffic flow modeling in DTA models, traditional route choice 
models focus primarily on the socio-economic characteristics of drivers and the physical 
attributes of the routes. In addition, route choice models under information provision also 
consider some information-related attributes. However, they typically do not consider the spatio-
temporal interactions resulting from the individual driver route choice decisions. To address this 
aspect, route switching decisions are typically modeled through en-route driver behavior models. 
Mahmassani and Jayakrishnan (1991) seek to capture the network-level traffic flow interactions 
by simulating driver en-route switching decisions assuming boundedly-rational driver behavior 
based only on route travel times. Abdel-Aty (1998) develops a nested logit model to predict en-
route routing decisions for incident-related congestion under real-time information provision. 
Srinivasan and Mahmassani (2000) propose a multinomial probit framework specifing 
compliance and inertia as two factors that influence driver route choices under real-time 
information. While en-route driver behavior models consider spatio-temporal interactions and 
driver behavior to predict traffic network states, they are descriptive and do not address the 
controller objectives of enhancing system performance. Even when controller objectives are 
addressed in conjunction with a behavior model, the control mechanism does not engage them 
interactively and is based on a sequential logic. That is, there is no mechanism to ensure that 
controller-recommended routes are consistent with drivers’ likely route choice decisions.

To illustrate the interdependencies betweeen the network states and the route 
recommendations, Bottom (2000) develops a conceptual framework for the consistent route 
guidance problem. The framework explicitly recognizes the importance of estimating driver 
reaction to the information provided. The solution methods involve solving a fixed point problem 
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formed by three alternative composite maps: (i) route assignment fractions to network states, (ii) 
network states to guidance messages, and (iii) guidance messages to route assignment fractions. 
Although the framework illustrates many of the critical algorithmic and computational aspects of 
the problem, it still models driver behavior using a traditional DTA approach. In addition, the 
proposed solution methods are computationally intensive, precluding real-time deployment.

To ensure consistency between controller objectives and the driver decision-making process, 
Paz and Peeta (2007, 2008a) develop a behavior-consistent traffic routing approach where the 
controller factors the drivers’ likely reactions to the information strategies while determining 
them. The behavior-consistent approach uses a controller-estimated driver behavior model to 
predict the proportion of drivers taking routes under the potential information strategies that the 
controller is iteratively seeking to determine. This implies solving a fixed-point problem where 
the controller-estimated driver behavior depends on the information strategies and vice versa. 
Hence, the behavior-consistent approach enables the simultaneous consideration of the controller 
objectives and driver behavior. Paz and Peeta (2008b) illustrate trade-offs between the controller 
objectives and the driver acceptability of the controller-recommended routes. They suggest that 
higher compliance rates by themselves do not necessarily translate to better performance, and 
that the route quality relative to the controller objectives is as important. Therefore, due to the 
aforementioned fixed-point relationship, the prediction accuracy of the controller-estimated 
driver behavior model is a key aspect of the behavior-consistent approach. This is because an 
incorrect prediction of the drivers’ likely reactions to the information strategies can result in the 
generation of erroneous information strategies, negatively impacting network performance. From 
a deployment standpoint, this implies the need to calibrate the controller-estimated driver 
behavior model and represents the motivation for this research. 

Procedures for the on-line calibration of traffic estimation/prediction systems vis-à-vis route 
guidance typically seek to correct for systematic inconsistencies so as to minimize the gap 
between the predicted and actual (observed) networks states unfolding in real-time. While there 
are several potential sources of inconsistency, the characterization and solution methods for the 
problem have evolved from simple reactive approaches that adjust network-level factors or 
control strategies to consistency-seeking models (Peeta and Yu, 2006) that assign primacy to the 
behavioral aspects. Peeta and Bulusu (1999) propose a generalized singular value decomposition 
based method that adjusts the number of drivers on each route to minimize the error between the 
prediction and observed system states. They view the inconsistencies as arising from the 
incorrect prediction of the unequipped driver routes, time-dependent O-D demand, incident 
characteristics, and route compliance aspects of equipped users. However, these sources are not 
separated in the method, and aggregate link counts are the basis for the route proportion 
adjustments. Thereby, systematic inconsistencies in the associated models or their parameters are 
not addressed.

Initial efforts to calibrate DTA model parameters have concentrated mostly on the supply or 
demand aspects whereby the traffic flow modeling parameters or the origin-destination (O-D) 
demand are adjusted on-line based on unfolding system states. Mahmassani et al., (1998) 
calibrate a DTA model using a proportional-integral-derivative feedback control strategy that 
reacts to any observed on-line deviations in traffic conditions. The procedure uses a real-time 
module to adjust the parameters of the travel time function and the flow propagation equations 
using real-time data on traffic measures such as average speed, inflow, and outflow. Further, an 
off-line module is used to update the parameters using full information on past conditions so as 
to improve the real-time adjustments. 
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Recent efforts seek to develop generalized frameworks to simultaneously calibrate supply 
and demand parameters to capture the critical interactions between these elements. Balakrishna
et al., (2007) and Antoniou (2004) propose state-space frameworks to address the off-line and 
on-line calibration of DTA models, respectively. In the experimental analysis, they consider 
parameters associated with speed-density relationships, segment capacities, and the time-
dependent O-D demand. 

Driver behavior is a fundamental determinant of the network state evolution. Hence, a natural 
next step towards the accurate prediction of traffic network states is the incorporation of 
behavioral aspects in the consistency-checking procedures. In this context, Peeta and Yu (2006) 
propose a behavior-based consistency-seeking approach that considers traffic flow dynamics in 
conjunction with a hybrid probabilistic-possibilistic driver behavior model (Peeta and Yu, 2005) 
to consistently address driver learning processes so as to predict the time-dependent network 
states. The associated consistency-seeking problem updates the driver class fractions in the 
ambient traffic stream based on link traffic counts to reduce the state consistency gap. However, 
it does not adjust the underlying driver behavior models or their parameters.

In this study, the on-line calibration problem seeks to update the behavior model parameters.
It focuses on ensuring a meaningful prediction of driver behavior under information provision, 
and consequently, on evolving network states. A fuzzy on-line calibration model is proposed to 
address the problem where the controller seeks to minimize the difference between the actual and 
the estimated network states by updating the controller-estimated driver behavior model 
parameters using the link traffic counts unfolding over time. As discussed earlier, the calibration 
of the controller-estimated driver behavior model enhances system performance by enabling 
more effective information-based network control strategies.

The remainder of this paper is organized as follows. Section 2 summarizes the behavior-
consistent approach and discusses the associated on-line calibration problem. Section 3 describes 
the controller-estimated driver behavior model. Section 4 presents the fuzzy on-line calibration 
model used to address the on-line calibration problem as part of the deployment framework for 
the behavior-consistent approach. Section 5 discusses experiments and analyzes their results. 
Section 6 provides some concluding comments.

2. Problem background and description

Section 2.1 defines some terms relevant to the behavior-consistent approach. Section 2.2 
summarizes the solution framework for the behavior-consistent approach. It provides the 
background for the on-line calibration problem discussed in Section 2.3. The notion that the 
behavior-consistent routing problem and the associated on-line calibration problem are addressed 
in a single on-line deployment framework is conceptually illustrated in Fig. 1, where the shaded 
boxes correspond to the solution logic for the behavior-consistent approach alone (Paz and Peeta, 
2007). The non-shaded boxes correspond to new components developed in this paper to enable 
the on-line calibration of the controller-estimated driver-behavior model.

2.1. Definition of terms

The behavior-consistent approach categorizes routes based on their relevance to the 
controller and the drivers. Three types or routes are defined as follows. 

Controller-desired routes (DK): These are routes that the controller would like the drivers to 
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choose. Depending on the controller objective, they can, for example, be the time-dependent SO 
or UE DTA routes. They are obtained by solving a deterministic DTA problem using current 
network conditions and projected demand for the appropriate time duration (represented by the 
stage length in this paper).

Driver-preferred routes (PK): These routes correspond to the choice set of the drivers. They 
are preferred by the drivers and are likely to be accepted by them. The estimation of the driver-
preferred route set is a key step for any route choice model. From a technological standpoint, 
these route sets could possibly be obtained by the controller through two-way communication 
with drivers equipped with personalized information/communication devices. More generally, 
they are estimated (Bekhor et al., 2006) based on historical data collected through travel surveys 
and/or technologies such as two-way communication systems and global position systems.

Controllable routes (CK): These routes belong to both the controller-desired and driver-
preferred route sets. In the behavior-consistent approach discussed next, they represent the set of 
routes used by the controller to recommend routes to drivers so as to influence system 
performance.

2.2. Solution framework for the behavior-consistent approach

The solution framework for the behavior-consistent approach enables the real-time 
deployment of behavior-consistent information strategies. As stated earlier, it is represented by 
the shaded boxes in Fig. 1. Paz and Peeta (2007) provide a comprehensive description of this 
framework. Here, a relevant summary is provided as background for the associated on-line 
calibration problem. 

The solution framework includes as components an iterative search procedure and a 
deterministic DTA model within a rolling horizon stage-based framework. The planning horizon
of interest is divided into stages, and each stage consists of a roll period and a tail period as seen 
in Fig. 1. At some point towards the end of the current stage σ, the controller computes the 
behavior-consistent information strategies for the next stage. First, it uses the deterministic DTA 
model to project traffic conditions and determine the SO DTA solution for the next stage (σ+1) 
based on the field traffic conditions for the current roll period and the forecasts of the origin-
destination (O-D) demand for the next stage. An iterative search based optimization procedure 
(shaded box with dashed borders in the middle of Fig. 1) is then used to determine the 
information strategies that minimize the difference between the SO proportions for controllable 
routes and the corresponding estimated proportion of drivers taking those routes in the next roll 
period (Paz and Peeta, 2008a). It consists of a fuzzy control model that determines the search 
direction and step size to update the information strategies, and a controller-estimated driver 
behavior model that predicts the likely driver route decisions in light of these updated 
information strategies. That is, the controller seeks to direct the traffic system as close as 
possible to the time-dependent SO system state in a behavior-consistent manner using SO routes 
that are also preferred by the drivers. Hence, at convergence, the iterative search procedure 
determines the behavior-consistent proportions of drivers that should be recommended to take 
specific routes in the next roll period so as to achieve close to SO proportions for those routes. At 
the end of the current roll period, the stage counter is incremented by one. In the next roll period,
routes are recommended to a subset of drivers based on the behavior-consistent route 
proportions. The actual driver behavior and the network flow dynamics determine the field 
conditions for that roll period. If the end of this roll period does not represent the end of the 
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planning horizon, field network conditions are measured towards the end of it and the entire 
stage-based procedure is repeated. Otherwise, the rolling horizon framework is terminated.

In the above framework, the SO solution and the corresponding routes represent the ideal 
system states.  However, without loss of generality, they can be replaced by other states based on 
objectives such as the UE solution. Elsewhere (Paz and Peeta, 2008b), the authors study the 
effects of directing the system towards different objectives. In addition, they develop different 
deployment paradigms to enable recommending driver-preferred routes that partially overlap 
with the controller-desired routes. The corresponding results illustrate the flexibility of the 
behavior-consistent approach in the deployment context. They show how the controller can 
enhance system performance using different objectives and sets of routes to provide information.  

2.3. On-line calibration problem

Fig. 1 explicitly illustrates the on-line calibration problem in the context of the broader 
behavior-consistent traffic routing problem addressed by the controller. As stated earlier, the 
non-shaded boxes represent components to address the calibration problem. The controller-
estimated driver behavior model is used to estimate the driver routing decisions in the current
roll period in light of the controller-recommended routes. A traffic flow simulator is used to 
obtain the controller-estimated traffic network states for the current roll period based on the 
estimated driver decisions. In this study, the traffic flow simulator is assumed to be accurate, and 
the calibration is focused on the behavior parameters. Thereby, if gaps exist between the 
controller-estimated and actual network states in terms of link traffic counts, a fuzzy on-line 
calibration model is used to calibrate the controller-estimated driver behavior model parameters. 
If state consistency issues do not exist, the field conditions for the current roll period are used to 
repeat the behavior-consistent approach by calculating the SO DTA solution for the next roll 
period.

While this study addresses state inconsistency by adjusting behavior parameters alone, the 
proposed fuzzy on-line calibration methodology provides a generalized approach to handle 
multiple sources of inconsistency through the use of aggregate if-then rules. Thereby, for 
example, rules associated with traffic flow modeling inconsistency can be seamlessly 
incorporated along with rules for behavior model inconsistency without any change to the 
structure of the fuzzy methodology. Another advantage of the methodology is that aggregate 
level sensor data can be used for addressing the calibration problem. This circumvents the need 
for disaggregate data (such as individual driver level data), enhancing the ability to practically 
deploy the methodology.

3. Controller-estimated traffic network states

Section 3.1 describes the controller-estimated driver behavior model used in this study. The 
output from the model is the set of time-dependent driver routing decisions. Section 3.2
illustrates how these drivers are loaded onto the network in the traffic flow simulator to estimate 
the time-dependent network states for the calibration problem.

3.1. Controller-estimated driver behavior model

Over the past two decades, a body of literature has been developed for the on-line estimation 
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and prediction of driver route choice behavior under information provision. Existing models 
range from econometric (probabilistic) to hybrid (probabilistic-possibilistic) models (Peeta and 
Yu, 2005). To handle the uncertainty associated with driver behavior, econometric models 
assume well-defined probability distributions while possibilistic models used fuzzy frameworks 
that can handle linguistic/qualitative and/or difficult-to-measure variables (Peeta and Yu, 2004).
The current study proposes a fuzzy multinomial logit model as the controller-estimated driver 
behavior model. It uses simple aggregate-level behavioral if-then rules to determine the 
systematic component of the utilities of the various routes (alternatives). Akin to standard
discrete choice logit models, an i.i.d extreme value error component is added to each utility to 
account for the randomness in driver behavior. Akin to models proposed by Lotan and 
Koutsopoulos (1993, 1999) for route choice behavior, the decision process is modeled as a non-
linear combination of behavioral rules where each rule deals with a different aspect of the overall 
choice process. The controller-estimated driver behavior model is described hereafter.

3.1.1. Behavioral if-then rules

While the route choice process is time-dependent, its associated time dimension is ignored in 
Section 3.1.1 without loss of generality to simplify the notation. The driver routing decisions are 
based on a set of behavioral if-then rules that relate the decisions to the route characteristics (of 
the associated driver-preferred routes), the driver attributes in terms of information availability,
and level of responsiveness to the information strategies. It is reasonable to expect that drivers do 
not use very sophisticated rules and/or many factors to make on-line routing decisions due to the 
associated time constraints. Hence, simple and straightforward rules consisting of one-
dimensional left hand side (LHS) and right hand side (RHS) components are proposed here. In 
our experiments, it is assumed that travel time, route complexity, and the controller-
recommended routes, are the key factors that influence the route choice decision-making process. 
However, additional factors can easily be added by creating the corresponding behavioral if-then

rules.
The LHS (antecedent) of the rules deal with travel time, route complexity, and the controller-

recommended routes. The RHS (consequent) deals with the propensity to choose a route, but 
does not represent the route choice itself. Rather, it is used to model the attractiveness of a
driver-preferred route based on the conditions described by the LHS. In general, the rules used 
here are defined as:

“If h

k
A , Then h

k
B ”, h = 1,…, BR and k�PKij

where h

k
A  is the LHS component of the hth rule that corresponds to a characteristic of route k

connecting O-D pair ij, h

k
B  is the RHS component of the h

th rule that deals with the 
attractiveness of route k, and BR is the total number of rules. Here, k belongs to the set of driver-
preferred routes (PKij).

Table 1 summarizes rules grouped using their LHS. Different sets of rules are used to model 
different levels of responsiveness to the information strategies. The LHS of the rules associated 
with the controller-estimated expected route travel times TT is characterized by the following 
five fuzzy sets: “Very Low (VL)”, “Low (L)”, “Medium (M)”, “High (H)”, and “Very High
(VH)” travel times. The controller can estimate these expected travel times using historical data.
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The number of nodes NN for each route is used to estimate the effect of route complexity on the 
route choice decisions. Here, the LHS is characterized by the following five fuzzy sets: “Very 
Low (VL)”, “Low (L)”, “Medium (M)”, “High (H)”, and “Very High (VH)” number of nodes. 
For controller-recommended routes, the LHS corresponding to a route recommendation Y is
characterized by the following three fuzzy sets: “the Route is Recommended (RR)”, “the Route 
is Not Recommended (RNR)”, and the “Route Was Recommended (RWR)” in the previous roll 
period.

The RHS of the rules characterizes the attractiveness V of a route in terms of the following 
five fuzzy sets: “the driver will not choose this route (N)”, “the driver will probably not choose 
this route (PN)”, “the driver is indifferent to choosing this route (I)”, “the driver will probably 
choose this route (PO)”, and “the driver will choose this route (O)”.

The rules used in this study to capture driver behavior are based on the findings from 
previous studies and field observations. For example, routes with short travel time are preferred 
over those with higher travel times. Consistent with fuzzy logic, it is important to note that the 
inputs for the rules may not necessarily coincide with one of the LHS fuzzy sets described above. 
Rather, each input belongs to these fuzzy sets with different degrees of membership, and 
consequently will likely trigger the firing of more than one rule. The degree of membership is 
determined using membership functions.

3.1.2. Membership functions

Triangular membership functions are used to define the fuzzy sets associated with the 
behavioral if-then rules. The triangular shape is motivated by mathematical convenience. Only 
three parameters are required to deal with triangular membership functions. The controller’s
expectation of driver route perception can be modeled through the shape, range, and amount of 
overlap between adjacent sets of the membership functions. For example, if the controller has 
poor knowledge (high ambiguity) or the expected route travel times vary widely among the 
drivers, wide membership functions can be used to represent that aspect. By contrast, narrow 
membership functions imply that the controller has good estimates or that the expected travel 
times are similar among the drivers. Although the shape of the membership function and its 
parameter values contribute to prediction accuracy, the behavioral if-then rules used and their 
associated weights in the fuzzy aggregation process are more critical for accurate route choice 
estimation. This is because the behavioral if-then rules define which membership functions are
used, and their weights affect their contribution to the route attractiveness. Hence, this study uses
simple membership functions and focuses on calibrating the weights of the if-then rules.

The membership functions are used to capture the expected degree of mapping μ between the 
controller’s expectation for an attribute and the LHS fuzzy sets. For controller-estimated 
expected travel times, the controller estimates that drivers have a range (MinTTk, MaxTTk) of 
possible travel times for each preferred route k. The degree of mapping for TTk is represented by 
μT(TTk). Five membership functions are defined to cover the range of the controller-estimated 
travel time. Given the range for each driver-preferred route, a super range covering all routes is 
defined (Min TT = 

kPKk
MinTT

ij�min , Max TT = 
kPKk

MaxTT
ij�max ). This super range is

covered evenly using five membership functions, as shown in Fig. 2. The same approach is used 
for number of nodes (route complexity) as well.

Fig. 2 also shows the three functions used to represent the membership functions for the LHS 
of the rules associated with route recommendations. There is no overlap among them because a
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route is either recommended or not recommended. Hence, the membership functions associated 
with the RHS of these rules are directly used by the procedure; the degree of membership is 
either 1 or 0 based on whether that route is recommended or not recommended.

For the RHS of the behavioral rules, five membership functions corresponding to five fuzzy 
sets are used to characterize the route attractiveness. A range (-1, 1) is used to model the relative 
attractiveness of the routes, and the fuzzy logic decision process discussed hereafter uses only 
the relative difference in attractiveness over the set of driver-preferred routes to generate the 
controller-estimated driver route choice.

3.1.3. The fuzzy logic decision process

Fig. 3 summarizes the fuzzy logic decision process used to obtain the controller-estimated 
driver route choice. The inputs, TTk, NNk, and Yk, are matched against the BR behavioral if-then

rules to determine the activated (fired) rules and their corresponding fuzzy consequents *

hk
V . The 

membership functions μ of the consequents of the behavioral if-then rules are multiplied by their
weights W. A fuzzy inference and aggregation mechanism is used to combine the consequences 
of all rules that are fired, and a defuzzification scheme is used to determine the controller-
estimated attractiveness of each route. In this study, the max-min composition operator and 
Larsen product implication operator are used for fuzzy inference, and the center of gravity 
method (CGM) is used for defuzzification (Tsoukalas and Uhrig, 1997). The CGM is given by:

¦ �

¦ ��
 

 

 
BR

h
Vh

BR

h
Vhkh

k

*
hk

*
hk

μw

μVw

V

1

1

)S(

)S(
� k�PKij (1)

where S(.) determines the area of the fuzzy sets *

hk
V  whose centroids are defined by 

hk
V , and Vk

represents the attractiveness of route k. This process is repeated for all driver-preferred routes to 
generate the route attractiveness vector V. Since the controller-estimated driver behavior model 
needs to identify a discrete route for each driver, a mechanism is developed to select a route 
based on the vector V in which the attractiveness of an alternative Vk is treated as the systematic 
component of a random utility model. The utility of alternative k for driver r is given by: 

r

k

r

k

r

k
εVU � � r, k�PKij (2)

where r

k
ε is assumed to be an i.i.d. extreme value random component. Thereby, alternative k is 

chosen by driver r using the resultant fuzzy multinomial logit model with probability:

Pr(k) = P( r

l

r

l

r

k

r

k
VεV H�t� ,� l ≠ k) � r, k�PKij (3)

The route choice probabilities are converted to discrete route choices using the following 
approach. First, a uniform random number generator is used to generate values between 0 and 1. 
Second, the probability range between 0 and 1 is demarcated into smaller ranges according to the
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controller-estimated probabilities of a driver choosing driver-preferred routes. For example, if 
there are three routes with estimated choice probabilities 0.2, 0.3, and 0.5, the ranges associated 
with them are 0.0-0.2, 0.2-0.5, and 0.5-1.0, respectively. Third, if the random number generated 
falls in the range of choosing a specific route, the controller assumes that the driver chooses that 
route. 

3.2. Network loading mechanism

Fig. 4 illustrates the network loading mechanism for roll period ρ(σ) of stage V using the 
controller-estimated driver behavior model to determine the initial and en-route controller-
estimated driver route choices. The roll period is divided into discrete time intervals of length ', 
denoted by t. The initial routes for the new drivers in interval t are determined based on the 
dynamic inputs for t in terms of information provision and the current route characteristics. 
Driver en-route route choices in interval t are considered for those drivers who did not reach their 
destination in interval t-1 and who are located at an intermediate node (on their existing route) at 
the beginning of interval t. Intermediate nodes are viewed as potential decision nodes. These 
drivers are loaded onto the network at the beginning of t based on their en-route route choices 
using the dynamic inputs. If a driver who did not reach his/her destination at the end of the 
previous roll period ρ(σ-1) is located on a link rather than at an intermediate node at the 
beginning of the first interval t of ρ(σ), he/she is loaded onto the network at the beginning of t
using his/her existing route. 

A traffic flow simulator is used to generate the controller-estimated network state for interval 
t using the controller-estimated route choices. If t represents the last interval of ρ(σ), the network 
loading for this roll period is terminated. Otherwise, the procedure is repeated until the end of 
ρ(σ).

4. On-line parameter calibration

Section 4.1 discusses the formulation for the on-line calibration of the behavioral parameters. 
Section 4.2 describes the fuzzy on-line calibration model to calibrate the weights of the if-then

rules in the controller-estimated driver behavior model.

4.1. Calibration of behavioral parameters

Several factors can contribute to the inconsistency between the controller-estimated network 
states and the actual conditions unfolding in real-time. Peeta and Bulusu (1999) list the following 
factors: (i) incorrect estimation of the time-dependent O-D demand, (ii) unexpected traffic 
incidents, (iii) incorrect traffic flow modeling, (iv) incorrect driver behavior modeling, (v) 
incorrect assumptions on system-related parameters, (vi) noise/sparsity in measurements, and 
(vii) failure of advance traveler information systems (ATIS) components.

The fuzzy on-line calibration model proposed in this paper can handle inconsistencies due to 
modeling errors (related to O-D demand, traffic flow, and behavior). As stated earlier, this study 
focuses on state inconsistency arising due to inaccurate values for the parameters of the 
controller-estimated driver behavior model. It assumes that the traffic flow modeling, the O-D 
demand predictions, and the data used here are accurate. This is done to derive insights on the 
controller-estimated driver behavior modeling aspects by isolating its effects.
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The calibration problem seeks to update the weights of behavioral if-then rules of the 
controller-estimated driver behavior model so as to minimize the difference between the 
controller-estimated and actual (observed) network states. The associated formulation for roll 
period ρ(σ) of stage σ is as follows.

Minimize: [ )(ˆ VUY – )(VUY ]2 (4)

Subject to:

)(ˆ VUY  = )(ˆ VUY
*

+ 6t (MKuC
tu tĜ )  (5)

tĜ  = )]);(,(F̂g[ )()( VUVUT WYX
rtrt

Rr
t¦ � (6)

where,

)(ˆ VUY is the estimated vector of link traffic counts for roll period ρ(σ) of stage σ
)(VUY is the observed vector of link traffic counts for roll period ρ(σ) of stage σ
)(ˆ VUY

*

is the estimated vector of link traffic counts for roll period ρ(σ) of stage σ for drivers who
do not reach their destinations during roll period ρ(σ-1) of stage σ-1  

MK is the estimated link-route incidence matrix for the driver-preferred routes
C

t is the estimated link-route incidence adjustment matrix for time interval t
tĜ

is the estimated vector of the number of new O-D desires for interval t taking driver-
preferred routes

F̂
is the controller-estimated driver behavior model which is used to estimate driver route
choices

 R
t is the vector of O-D desires in time interval t

 X
rt is the estimated vector of route characteristics excluding information that influences the 

route choice decision of driver r in time interval t
rt

Y is the route recommended by the controller to driver r in time interval t

θρ(σ) is the prescriptive information defined as the proportion of drivers that must be 
recommended to take specific routes in roll period ρ(σ) of stage σ

W
ρ(σ) is the vector of rule weights (parameters) of the controller-estimated driver behavior

model for roll period ρ(σ) of stage σ

The controller objective (4) is to minimize the square of the difference between the estimated 
and observed vectors of link traffic counts for roll period ρ(σ). The estimated vector of link 
traffic counts is determined using the network loading mechanism discussed in Section 3.2. It is 
expressed here by Equation (5) as the summation of the vectors of link counts for existing drivers 
who did not reach their destinations at the end of ρ(σ-1) and the new O-D desires. MKuC

tu tĜ
represents the estimated vector of link count contributions from the new O-D desires entering the 
network in time interval t. The link-route incidence matrix MK is defined by the driver-preferred 
route sets. This matrix is used here only to generate the initial set of route alternatives for interval 
t. Unlike for DTA models, it does not define the entire driver route trajectory using a time-
dependent link-path incidence matrix. Drivers make pre-trip route choices, and can change these 
choices en-route at decision nodes based on the ambient driving conditions and the information 
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provided to them. Ct denotes the adjustment to MK to ensure consistency between the observed 
and estimated link count contributions due to the new O-D desires entering the network in time 
interval t. Equation (6) defines the estimated vector of the number of new O-D desires for 
interval t taking driver-preferred routes in terms of the number of times that these routes are 
chosen by the O-D desires. Here, function g counts the number of times that a driver-preferred 
route is estimated to be chosen by new drivers. In the study experiments, X consists of the 
controller-estimated expected travel times and the number of nodes for the driver-preferred route 
sets. 

The on-line calibration is done towards the end of ρ(σ), at which time the observed link 
counts for all time intervals in this roll period are available. However, it needs to be done before 
the computation begins (Fig. 1) for the behavior-consistent strategies for the next roll-period. 
The unknown variables in the formulation (4)-(6) are the weights W

ρ(σ) of the controller-
estimated driver behavior model F̂ . Link traffic counts averaged across all time intervals in the
roll period ρ(σ) for stage σ (up to the point where behavior-consistent strategy computations 
begin for the next stage) serve as the network state data points to estimate the weights using the
fuzzy calibration model described in the next section.

4.2. Fuzzy on-line calibration model

Fig. 5 illustrates the fuzzy on-line calibration model which consists of an input step (non-
shaded box with dotted borders), a decision-processing step (non-shaded boxes with solid 
borders), and an output step (non-shaded box with dashed borders).
4.2.1. Input

The inputs are the vectors of error )(VU
Ye and change in error )(VU

Y'e defined by:

)(VU
Ye = )(VUY – )(ˆ VUY  and   1)()()(Δ �� VU

Y
VU

Y
VU

Y eee (7)

where )(VU
Y'e  is the difference between the current error )(VU

Ye  and the error in the previous stage 
)1( �VU

Ye .

4.2.2. Decision-processing component

Akin to the fuzzy logic decision process summarized in Section 3.1.3, the decision 
processing step uses calibration control rules, their associated membership functions, and a fuzzy 
aggregation, inference, and defuzzification scheme to determine the adjustment to the weights of
the behavioral if-then rules. 

4.2.2.1. Calibration control rules

The control if-then rules used by the fuzzy calibration model are two-dimensional rules (two 
inputs) obtained from observed patterns and problem characteristics. Three sets of control if-then

rules are used to calibrate the behavioral if-then rules, one each for the behavioral rule 
consequent (RHS) implying an increase, decrease or neutrality related to route attractiveness. 
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Hence, for the same route, the weights of some behavioral rules may need to be increased while 
those of others may need to be decreased. For example, if the error associated with a route is 
positive, the number of drivers taking this route should be increased. This implies an increase in 
the weights associated with the behavioral rules that correspond to an increase in the 
attractiveness of this route. Hence, the calibration model determines how to calibrate the 
behavioral rule weights using a set of control rules such as: 

If  [e is NL and Δe is  PL],  Then  [Δw  is NS] 

In this example, if the error e is negative large (NL) and the change in error Δe is positive large 
(PL), then the weight w is decreased by a negative small (NS) quantity Δw. Here, the consequent 
implies a decrease in the attractiveness of a route.

The LHS and RHS of the control rules are characterized by the following five fuzzy sets: 
“Negative Large (NL)”, “Negative Small (NS)”, “Zero (ZR)”, “Positive Small (PS)”, and 
“Positive Large (PL)” for error and change in error. Hence, e, Δe, and Δw �[NL, NS, Z, PS, PL]. 
Table 2 shows the set of control if-then rules used by the fuzzy calibration model based on these 
five fuzzy sets. The total number of control rules is denoted as CR.  

4.2.2.2. Membership functions

Corresponding to the five fuzzy sets, there are five triangular membership functions each for 
e, Δe, and Δw. Three membership functions, one for each of the two inputs and one for the 
output, are associated with each control if-then rule. The membership functions evenly cover the 
range of the domains for the inputs and output. The membership function parameters require off-
line calibration to enable consistent on-line calibration of the parameters of the controller-
estimated driver behavior model. In the study experiments, the off-line calibration of the 
membership function parameters was conducted using several iterations of the solution 
framework shown in Fig. 1.

4.2.2.3. Decision process

The max-min composition operator and Larsen product implication operator are used for 
fuzzy inference to determine the membership function μ of the RHS of control rule l of the 
weight *l

h
w

)(VU for all behavioral rules h for roll period ρ(σ) of stage σ. The center of gravity 
method is then used for defuzzification to determine the adjustments to the weights:

¦

¦ �
 

 

 
CR

l
w

CR

l
w

h

h

*l

h

*l

h

μ

μw

w

1

1)(

)S(

))S(

)(

)(

VU

VU
VU' � h = 1,…, BR (8)

where S(.) determines the area of the fuzzy sets *l

h
w

)(VU  whose centroids are defined by 
h

w . 
)(VU'

h
w  represents the adjustment to the weight of behavioral rule h. The process needs to be 

repeated for all behavioral rules and data points (link traffic counts) resulting in a vector of 
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weight adjustments )(VU'w .

4.2.3. Output

The calibrated weights used to determine the information strategies for the roll period of the 
next stage (σ+1) are defined as:

1)( �VU
w  = )(VU

w + )(VU'w (9)

5. Experiments

Simulation experiments are conducted using the framework of Fig. 1 to evaluate the 
performance of the fuzzy on-line calibration model in the context of the broader problem of the
on-line deployment of the behavior-consistent information-based network control strategies. 

5.1. Experimental setup

5.1.1. Network characteristics

Simulation experiments are conducted using the Borman expressway corridor network shown 
in Fig. 6. It is located in northwest Indiana and consists of a sixteen-mile section of the Borman 
expressway (I-80/94), I-90 toll freeway, I-65, and the surrounding arterials and streets. It has 197 
nodes, 460 links, and 43 zones (with centroids that represent origins/destinations). Depending on 
the destination, different numbers of alternative routes exist to divert traffic. Fig. 6 also shows 4 
driver-preferred routes and 4 controller-desired routes associated with an O-D pair. The 
calibration of the weights of the 4 preferred routes and the behavioral if-then rule 11a (in Table 
1) is illustrated in the experiments. 

5.1.2. Driver-preferred routes and their controller-estimated expected travel times 

A two-step off-line approach is used to estimate the driver-preferred route sets and their 
corresponding time-dependent controller-estimated expected travel times. The first step involves 
the solution to a UE DTA problem for the entire planning horizon using an average time-
dependent demand. This solution provides an initial set of UE routes as input for the next step. 
The second step involves conducting several simulation runs using the controller-estimated 
driver behavior model to determine up to five routes for an O-D pair. These routes and their 
corresponding time-dependent travel times represent, the driver-preferred route sets and the time-
dependent controller-estimated expected travel times, respectively. 

5.1.3. Actual driver behavior model

In the absence of field data, the actual behavior of the drivers is represented here by a random 
coefficients path-size multinomial logit model. This model includes travel time, number of 
nodes, a path-size component used to capture the overlap between routes, and the route 
recommendation provided by the controller, as the explanatory variables. Details of this model 
are provided in Paz and Peeta (2007).
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It should be noted here that the actual behavior at the individual driver level is currently an 
inferred quantity in the real-world, though technologies such as global positioning systems can 
substantially aid in modeling it. That is, in the future, when these technologies are adequately 
deployed and privacy-related policies are developed, the ability to track individual drivers can 
provide robust models of actual behavior as well as controller-estimated behavior. In this study, 
the actual behavior model is deliberately assumed to have a different structure compared to the 
controller-estimated model. This is to ensure that the study insights are based on conservative 
analyses and to imply that the actual behavior model is unknown to the controller. However, the 
controller can estimate the linkages between various factors and aggregate level behavior using 
past studies and historical data.

5.1.4. Level of responsiveness

The performance of the behavior-consistent approach and the fuzzy on-line calibration model 
is analyzed under two levels of responsiveness to the information strategies. The first level 
corresponds to the “less responsive” drivers who are influenced moderately by the provided 
information. They rely more on past experience and behavioral tendencies to make route choice 
decisions than on the traffic information. The second level corresponds to the “more responsive” 
drivers who are significantly influenced by the information. They are more likely to accept the 
route recommended by the controller. The details of these driver types for the controller-
estimated and actual behavior models are provided in Paz and Peeta (2007).

5.1.5. Calibration cases

The 1st day case: this is the case where the controller does not have any information to 
determine the weight to assign to each behavioral rule used by the controller-estimated driver 
behavior model. It is the situation faced by the controller on the first day of deploying the
behavior-consistent information-based network control strategies. Hence, the controller initially 
assigns the same weight to all rules. Therefore, the results obtained under this case are 
conservative and are affected by the initial values adopted for the weights.

The 2nd day case: this represents the case where there is information on the prior values for
the weights associated with the controller-estimated driver behavior model. The information on 
the values of the weights is available after the first day. Here, the controller initially assigns the 
values computed at the end of the previous day using the on-line calibration model for the 
behavioral rule weights. This aids computational efficiency as the relative values that drivers 
assign to the different choice attributes are likely to be the same under normal conditions. 

5.1.6. Scenarios

Two scenarios each are evaluated for each level of responsiveness and day case. In the “BC-
info-CS” scenario, the system controller uses the full framework of Fig. 1 to determine the 
information strategies. That is, the information strategies are determined using the behavior-
consistent approach, and the calibration model is used to calibrate the parameters of the 
controller-estimated driver behavior model during each stage. In the “BC-info” scenario, the 
system controller uses only the shaded boxes in Fig. 1 to determine the information strategies. 
That is, the calibration model is not used to update the parameters of the controller-estimated 
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driver behavior model. Hence, the two scenarios differ only in terms of whether the calibration is 
performed or not.

5.1.7. Performance measures

The effectiveness of the calibration model is measured in terms of its ability to accurately 
estimate the traffic pattern unfolding over time. The performance measure used here is the 
average percentage difference between the observed and estimated link traffic counts:
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where )(σρ

a
χ is the observed count on link a in roll period ρ(σ), )(σρ

a
y is the estimated count on link 

a in roll period ρ(σ), and Γ is the set of links for which real-time measurements are obtained. 
In Fig. 1, Eq. (10) is also used to determine whether the calibration model needs to be 

activated in each roll period. In the study experiments, the calibration model is activated if a 
threshold value of 5% is exceeded for this performance measure.

A second performance measure, the difference between the observed and corresponding SO 
states, can be computed by replacing )(σρ

a
y in Eq. (10) with the counts obtained from the SO 

DTA traffic assignment.

5.1.8. Network States

In the study experiments, the “observed” network states are assumed to be the outcome of the 
actual driver behavior model (Section 5.1.3) in conjunction with the traffic flow simulator. The 
“estimated” network states are obtained using network loading mechanism described in Section 
3.2.

5.1.9. Assumptions

In all scenarios, it is assumed that: (i) the estimated and actual demand are the same, (ii) all 
drivers with the same O-D pair have the same set of driver-preferred routes, and (iii) the 
controller-estimated and the actual driver-preferred route sets are the same. Consistent with the 
study objectives, this is designed to isolate and analyze the effects of the information strategies 
and the calibration model. 

5.2. Results and analysis

5.2.1. The 1st
day case

Fig. 7 shows the average percentage differences between observed and estimated traffic 
counts for the first day on which the calibration model is implemented. Initially, these 
differences are significant as the behavioral rules are arbitrarily assigned equal weights. 
However, as the calibration model starts using information from more stages, it is able to 
significantly reduce these differences. This suggests that the fuzzy calibration model can 
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calibrate the controller-estimated driver behavior model by reducing the estimation errors. As 
seen in the figure, the information strategies determined using the calibrated parameters are also 
able to move the system closer to the SO states. This is because the information strategies based 
on the calibrated parameters are able to generate better field behavior consistency, implying 
improved observed system performance. However, the calibration lowers the gap more for the 
behavior-consistent approach as it focuses on ensuring behavioral realism unlike the idealized 
SO states by updating the weights for all behavioral rules and all routes.

Fig. 7 also shows that better state consistency is achieved for the “more responsive” drivers
when the observed states are compared to the SO DTA states. However, as illustrated in Fig. 8,
the system travel time savings are larger for the “less responsive” drivers. Since the behavioral 
parameters are not calibrated before the first day, the calibration model needs a few stages during 
the first day to adapt the controller-estimated driver behavior model to the unfolding actual 
behavior. During these initial stages, the system performance may deteriorate. Since, drivers are 
more likely to accept route recommendations under the “more responsive” scenario, the negative 
performance effects can be amplified for the “more responsive” drivers. Consequently, though
the calibration is enhanced over time, the initial negative effects cannot be compensated for 
adequately by the “more responsive” behavior. However, if the initially allocated values for the 
behavioral parameters are more representative of the actual behavior, the “more responsive” 
scenario could perform better than the “less responsive” one. Fig. 8 also shows that the BC-info 
scenario performs worse than the BC-info-CS scenario for both levels of responsiveness. This 
highlights the importance of calibrating the behavioral parameters. It also reinforces the notion 
that the determination of information strategies requires a meaningful estimation of driver 
behavior (Paz and Peeta, 2007).

Fig. 9 shows the weights of the information behavioral if-then rule 11a (in Table 1) over time 
for the O-D pair illustrated in Fig. 6. It indicates that the weights are continuously updated 
without reaching convergence except for few routes. However, as illustrated in Fig. 7, the 
calibration model is able to reduce the estimation error though the weights do not converge. 
Figure 7 also indicates that the percentage difference has lower variability after about stage 15, 
suggesting the likelihood of multiple solutions for the weights of the behavioral if-then rules in 
Fig. 9. This result is intuitive as only the relative differences in attractiveness (utility) of the 
alternative routes matters for the controller-estimated driver behavior model. That is, different 
combination of values for the weights can result in the same route choice probabilities in Eq. (3). 

  The rule 11a in Fig. 9 increases the attractiveness of a route if that route is recommended. 
The figure shows that route 1 has higher weights compared to other routes. This implies that a 
large number of drivers are choosing this route based on the behavior-consistent information. 
Fig. 10 indicates that route 1 is significantly recommended to drivers by the controller under the 
behavior-consistent approach. This suggests that the calibration model consistently adapts the 
controller-estimated driver behavior model to the observed network states.

5.2.2. The 2
nd

 day case

Fig. 11 shows the percentage differences for the second day on which the calibration model 
is implemented. Their initial values are lower than those for the first day as the controller uses
the calibrated parameters from the 1st day at the beginning of the second day. As before, the 
calibration model can reduce these differences over time. However, the relative improvement is 
not as significant as on the first day because the initial differences on the second day are smaller. 
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Fig. 12 shows that the initial negative effects that existed for the first day are no longer present 
because calibrated parameters from the first day are used. Consequently, as expected, it is 
observed that the “more responsive” case performs better.

A comparison of Figs. 10 and 13 indicates that the weights are more stable for the 2nd day. 
This implies that the initial values for the weights can influence their variability. However, our 
experiments assume that the actual driver behavior is not modified from day 1 to day 2. But, 
such modification is possible under driver learning processes. Hence, it is possible that there is 
variability in the values of weights on the second day if that effect were captured. Fig. 10 also 
illustrates that fewer drivers are recommended to take route 1 for the second day according to the
behavior-consistent approach compared to the first day. This is because using calibrated 
parameters (obtained at the end of the first day) allows the controller to determine more 
consistent proportions to recommend routes, without the need to over-recommend or under-
recommend significantly. For example, the initial negative effects in Fig. 8 are due to over- and 
under-recommendations of various routes. This is illustrated further in Fig. 10 where route 1 is 
recommended consistently more for the first day compared to the second day.

6. Concluding comments

This paper develops a fuzzy on-line calibration model to calibrate the parameters of a 
controller-estimated driver behavior model to enhance system state consistency in an operational 
context. The controller-estimated driver behavior model is a key component in the determination 
of behavior-consistent information-based network control strategies. The proposed calibration 
model fits seamlessly within a rolling horizon framework to deploy the behavior-consistent 
approach. Thereby, the framework determines the information strategies and updates the 
parameters associated to the controller-estimated driver behavior model.

The calibration model minimizes the difference between the observed and estimated network 
states in terms of link traffic counts. The practical deployment of the associated calibration 
model is aided by the structure of the controller-estimated driver behavior model which uses 
aggregate level if-then rules. This circumvents the need for data at the individual driver level, 
and the calibration can be based on measurable traffic data. In the context of broader route 
guidance related calibration problem, the proposed model provides a generalized approach to 
seamlessly incorporate modeling parameters associated with several components such as O-D 
demand, traffic flow, and driver response behavior. It implies adding calibration control rules for 
each parameter type and various data sources. 

The study results are based on conservative analyses performed by deliberately having 
different structures for the controller-estimated driver behavior model and the actual driver 
behavior model. They suggest that the fuzzy on-line calibration model can effectively update the 
parameters of the controller-estimated driver behavior model, resulting in significant 
improvements in terms of the accuracy of the controller-estimated network states. Further, there 
are substantial benefits in terms of system travel time savings with respect to the no-information
scenario when the calibration is performed in conjunction with the behavior-consistent approach.
The calibration problem is important for the effective deployment of the behavior-consistent 
information-based network control strategies. If calibration is not performed, negative effects 
due to inconsistent driver behavior estimation can be magnified under high levels of driver 
responsiveness.
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In general, the behavior-consistent approach in conjunction with the fuzzy on-line calibration 
model provides an alternative methodological perspective to address the complex deployment 
problem associated with the real-time information-based control of vehicular traffic systems. 
While the study experiment address only behavior model related inconsistencies, it is useful to 
analyze simultaneously the state inconsistency effects related to traffic flow and O-D demand 
parameters.
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Table 1 
Behavioral if-then rules for the controller-estimated driver behavior model

Category Rule # LHS RHS

1 If TT is Very Low (VL) Driver will choose the alternative (O)

2 If TT is Low (L) Driver will probably choose the alternative (PO)

3 If TT is Medium (M) Driver is indifferent to the alternative (I)

4 If TT is High (H) Driver will probably not choose the alternative (PN)

Controller-
estimated 

driver-
expected 

travel time 
(TT)

5 If TT is Very High (VH) Driver will not choose the alternative (N)

6 If NN is Very Low (VL) Driver will choose the alternative (O)

7 If NN is Low (L) Driver will probably choose the alternative (PO)

8 If NN is Medium (M) Driver is indifferent to the alternative (I)

9 If NN is High (H) Driver will probably not choose the alternative (PN)

Route 
complexity

(NN)

10 If NN is Very High (VH) Driver will not choose the alternative (N)

11a If Y is “Route is Recommended” (RR) Driver will choose the alternative (O)

12a If Y is “Route Was Recommended”
(RWR) Driver will probably choose the alternative (PO)

Prescriptive
information

(Y)
for more 

responsive 
drivers 13a If Y is “Route is Not Recommended”

(RNR) Driver will not choose the alternative (N)

11b If Y is “Route is Recommended” (RR) Driver will probably choose the alternative (PO)

12b If Y is “Route Was Recommended”
(RWR) Driver is indifferent to the alternative (I)

Prescriptive
information

(Y)
for less 

responsive 
drivers 13b If Y is “Route is Not Recommended”

(RNR) Driver will probably not choose the alternative (PN)
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Table 2 
Calibration control if-then rules

Rules for weights 1, 2, 6, 7, 11a, 11b, 
12a (in Table 1) Error (e)

The consequent (RHS) is O or PO NL NS ZR PS PL
NL NL NS NS ZR PS

Change NS NL NS ZR ZR PS
in Error ZR NS NS ZR PS PS

(Δe) PS NS NS ZR PS PL
PL NS ZR ZR PS PL

Rules for weights 3, 8, 12b
(in Table 1) Error (e)

The consequent (RHS) is I NL NS ZR PS PL
NL NS NS ZR NS NS

Change NS NS NS ZR NS NS
in Error ZR NS NS ZR NS NS

(Δe) PS NS NS ZR NS NS
PL NS NS ZR NS NS

Rules for weight 4, 5, 9, 10, 13a, 13b
(in Table 1) Error (e)

The consequent (RHS) is N or PN  NL NS ZR PS PL
NL PS PS ZR NS NS

Change NS PS PS ZR NS NS
in Error ZR PS PS ZR ZR NS

(Δe) PS PS ZR ZR NS NS
PL PS ZR NS NS NS

where:
NL = Negative large
NS = Negative small
ZR = Zero
PS = Positive small
PL = Positive large
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Fig. 1. Conceptual framework for the behavior-consistent real-time traffic routing and calibration
problem.
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Fig. 2. Membership functions for the controller-estimated driver behavior model.
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Fig. 3. Conceptual framework for the controller-estimated driver behavior model.



28           

Fig. 4. Network loading for roll period of stage σ using the controller-estimated driver behavior 
model.
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Fig. 6. Borman network showing sets of driver-preferred routes (zigzag lines) and controller-
desired routes (dashed lines) for an O-D pair.
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Fig. 7. Average percentage difference between the observed and estimated/SO traffic counts for 
the 1st day for the BC-info-CS scenario.
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Fig. 8. Cumulative system travel time savings benchmarked against the no-information case 
(base-case) for the 1st day.
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Fig. 9. Weights for behavioral if-then rule 11a for the 1st day.
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Fig. 10. Proportion of drivers that must be recommended to take specific routes for “less 
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Fig. 11. Average percentage difference between the observed and estimated/SO traffic counts for 
the 2nd day for the BC-info-CS scenario.
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Fig. 12. Cumulative system travel time savings benchmarked against the no-information case 
(base-case) for the 2nd day.
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Fig. 13. Weights for behavioral if-then rule 11a for the 2nd day.


