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Abstract

This study proposes a fuzzy control based methodology to determine information-based 
network control strategies that are consistent with the controller’s objectives and its estimation of 
driver response behavior. It is the core of the broader problem where the objective is to enhance
the performance of a vehicular traffic system through real-time information-based network
control strategies. The controller seeks behavior consistency by solving a fixed-point problem
that estimates drivers’ likely reactions to the controller-proposed information strategies while 
determining them. Experiments are performed to evaluate the effectiveness of the proposed 
methodology. The results suggest the importance of using a behavior-consistent approach to 
determine the information-based network control strategies. That is, the effects of driver 
response behavior to information provision may require more meaningful strategies than those 
provided under the traditional dynamic traffic assignment models to reliably estimate or control
system performance. Information strategies that are not behavior-consistent can potentially 
deteriorate system performance. 
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1. Introduction

Deployment effectiveness of information-based network control strategies in congested 
vehicular traffic networks entails the robust modeling of traffic flow dynamics and driver 
behavior. Existing approaches, broadly addressed under the umbrella of dynamic traffic 
assignment (DTA), primarily focus on robustly capturing traffic flow dynamics (Peeta and 
Ziliaskopoulos, 2001). However, their driver behavioral assumptions can be restrictive for real-
time deployment (Peeta and Yu, 2006). This motivates the development of a route guidance
paradigm that integrates information-based network control strategies and realistic driver 
behavior representation.

Driver behavior is a fundamental factor and a key source of complexity in predicting traffic 
network states unfolding over time. However, most DTA models are based on a rigid framework;
they either pre-specify behavior of drivers and/or assume rigid compliance characteristics. Few 
DTA models consider heterogeneity among drivers. Even these models assume that driver 
behavior classes can be pre-specified. In addition, they assume a priori knowledge of the driver 
behavior class fractions in the ambient traffic stream. This rigidity raises issues related to the
realistic modeling of the driver behavior and consequently, of the effectiveness of the 
information-based network control strategies. A detailed discussion of the behavioral limitations
of DTA models is presented in Peeta and Yu, (2006).

Incorrect prediction of traffic system states based on the aforementioned assumptions can 
negatively impact the validity and effectiveness of the information-based network control
strategies and potentially deteriorate system performance. In reality, driver route choice 
decisions, even under information provision, are based on the driver’s innate behavioral 
tendencies, past experience, situational factors (such as time-of-day, weather conditions, and trip 
purpose), and the ambient traffic conditions encountered (Peeta and Yu, 2004). This is true 
irrespective of the type of information, the strategy used to deploy it, or whether drivers receive
no information.

While information provision and content can be used as control variables to influence system 
performance, they cannot imply perfect or pre-specified rates of compliance by the drivers to the 
supplied information, as is predominantly done in the DTA arena. From the traffic controller 
perspective, providing personalized, generic or class-specific information based on a better 
understanding of driver response tendencies and ambient traffic conditions could generate a more 
effective control paradigm. It would determine what information to provide to whom, based on 
the system controller objectives and the controller’s estimation of the driver behavior.

This study is motivated by the issues raised heretofore that reflect a practical need: how do 
we bridge the realism gap between existing DTA models proposed for network-level deployment 
and the need to incorporate driver response behavior adequately while reconciling them with 
reasonable expectations in terms of data availability? We propose to address this through a 
conceptual extension of the traditional DTA-based approach, labeled behavior-consistent real-
time traffic routing. Behavior-consistent information-based control strategies imply that the 
likely (controller-estimated) response behavior of drivers to these strategies is explicitly factored 
in determining them. The use of a controller-estimated driver response behavior model in this 
study is a formal recognition of the limitations on data availability in a deployment context. 
Ideally, the controller would like to have full knowledge of each driver’s behavior. But, this may 
not be practically possible for a variety of reasons. However, the controller can construct an 
estimated model of driver behavior based on historical data, field sensor data, surveys, and 
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insights from past behavioral studies. Such a model can further be fine-tuned over time.
Existing DTA models solve for some controller objective(s) under pre-specified driver 

response behavior characteristics and use the resulting route assignment proportions directly as 
the information-based control strategies to be deployed (Bottom, 2000; Peeta and Yu, 2006). By 
contrast, since the behavior-consistent approach accounts for the likely driver response in 
determining the control strategies, the associated route assignment proportions recommended to 
drivers are different than those based on the specific DTA objective. For example, the DTA 
approach for a system optimal (SO) objective will use the SO route proportions “as is” to provide 
route recommendations to drivers. Under the behavior-consistent approach, the SO route 
proportions tend to become the controller’s goal, and the controller recommends, based on an 
estimated driver behavior model, more or less proportions of drivers to take specific routes so as 
to approach as close as possible to the SO proportions. This implies a fixed-point problem where 
the information-based control strategies depend on the estimated driver response and vice versa.
Fig. 1 conceptually shows the traditional DTA-based and the proposed behavior-consistent 
approaches. Fig. 1(a) indicates that the traditional DTA-based approaches use the DTA solutions 
directly as information-based network control strategies (for example, Peeta and Mahmassani, 
1995; Lo et al., 1996; Nakayama et al., 1999). As discussed earlier, this approach has behavioral 
limitations in the deployment context. Fig. 1(b) illustrates that the proposed approach uses a 
fuzzy control mechanism to determine the behavior-consistent information-based network 
control strategies based on a DTA solution and the controller’s estimation of driver behavior. 
This enables the controller to ensure consistency between its objectives, the information 
strategies, and the drivers’ likely reactions to the information provision. Hence, unlike the 
traditional DTA deployment strategy, the proposed approach prevents the under- or over-
recommendation of routes, or the recommendation of routes that are not considered by the 
drivers. This is because the controller factors the drivers’ likely reactions to the information 
strategies while determining them. It should be noted here that the controller could use other 
objectives, such as the user equilibrium (UE) solution, as the desired goal instead of the SO 
objective within this framework.

The remainder of this paper is organized as follows. Section 2 summarizes some 
characteristics of information strategies and uses them to define driver information classes. 
Section 3 describes the problem and Section 4 formulates it. Section 5 presents the solution 
concept used to determine the behavior-consistent information-based control strategies. Section 6
discusses experiments and analyzes their results. Section 7 presents some concluding comments.

2. Modeling of information characteristics

2.1. Information type

From the information type perspective, information can be categorized as: (i) descriptive 
information where instantaneous or projected traffic conditions are provided, and (ii) prescriptive 
information where specific routes are recommended to the drivers, typically UE or SO routes 
based on instantaneous or projected travel times. In this context, information can also be 
categorized as: (a) quantitative information which consists of numeric information related to the 
network and/or route conditions such as expected travel times, and (b) qualitative information 
which consists of linguistic labels describing route conditions. Therefore, we could consider 
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information-based control strategies in terms of descriptive quantitative information, descriptive 
qualitative information, and prescriptive information.

Most DTA models view and/or pre-specify driver behavior in terms of objectives such as 
UE, SO, stochastic user equilibrium (SUE), or bounded rationality (BR) under the descriptive 
information type, and in terms of compliance characteristics under the prescriptive information 
type. As discussed in Section 1, such a modeling approach is restrictive in depicting realistically 
both information characteristics and driver response behavior. In addition, these models are 
unable to adequately handle and process linguistic variables (Peeta and Yu, 2004). In our study,
behavior is not pre-specified or restrictive, and the information-based network control strategies 
are modeled to be consistent with the real-world information types.

DTA models typically provide link/route travel times from a descriptive perspective or the 
recommended route in a prescriptive context. The study approach provides more realistic 
information content. That is, the models used to determine information strategies and estimate 
the driver’s likely response behavior enable the determination and processing of linguistic 
messages such as “heavy traffic ahead” under the descriptive qualitative information type, 
specific route recommendations under the prescriptive information type, or both simultaneously.
Hence, we focus on personalized information that can be descriptive qualitative and/or 
prescriptive. Both these information types are simultaneously determined by the behavior-
consistent approach, as discussed in Section 3 and later. Descriptive qualitative information 
implies linguistic messages describing traffic conditions downstream of the current location for 
the current set of routes that a driver is considering to his/her destination. Prescriptive 
information implies the specific route recommended to the driver.

2.2. Information class modeling

In our study, only drivers with suitably-equipped devices can receive personalized 
information; other drivers receive no information. The personalized information received by the 
equipped drivers is viewed as being part of an information service market which provides 
prescriptive information, descriptive linguistic information, or both as three different subscribed 
products. If a driver subscribes to prescriptive information, he/she may or may not be provided a 
route at various decision points by the behavior-consistent approach as discussed in Section 1. 
By contrast, a driver subscribing to descriptive linguistic information always receives it at 
various decision points though it is also determined by the behavior-consistent approach. In this 
context, the behavior-consistent approach determines whether a stronger or weaker linguistic 
message achieves the desired proportions. Based on the above discussion, we define four driver 
information classes.

The first class of drivers (u = 1) subscribe to prescriptive information only. These drivers 
may receive specific routes at times and no information at other times during their trip depending 
on the time-dependent behavior-consistent network control strategy used. In a pre-trip context, a 
subset of these drivers is recommended to take specific routes based on the proportions 
suggested by the behavior-consistent strategy. The remaining prescriptive class drivers are 
recommended pre-trip routes based on the controller-estimated driver behavior model.

The second class of drivers (u = 2) subscribe to descriptive linguistic information only. 
Drivers in this class receive time-dependent linguistic information about downstream conditions 
for their current sets of alternative routes. The third class of drivers (u = 3) subscribe to both 
prescriptive and descriptive linguistic information, and can process both types of information 
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simultaneously. As in class 1, prescriptive information may or may not be provided to specific 
drivers depending on the behavior-consistent strategy. However, as in class 2, these drivers 
always receive linguistic information. The fourth class of drivers (u = 4) do not receive
information implying that these drivers have not subscribed to an information service. 

3. Problem description

The behavior-consistent information-based control strategies problem is defined as follows. 
A system controller (or information service provider) seeks to determine information-based 
network control strategies that are consistent with driver behavior while addressing its objective 
of enhancing system performance. The approach used by the controller is to influence driver 
route choice decisions by providing routing information (both linguistic and prescriptive) in such 
a way that the proportions of drivers taking specific routes are close to the corresponding 
proportions under a system-wide objective, the SO solution. Thereby, the SO routes are defined 
as the controller-desired routes, and the corresponding route assignment proportions are labeled 
controller-desired proportions. To achieve this consistency, the controller estimates the driver
route choice decisions using an estimated driver route choice behavior model, and uses it to 
determine the appropriate behavior-consistent information-based network control strategies. The 
methodology to obtain these strategies is the focus of this paper. Hence, this study addresses a 
key sub-problem of the broader problem that seeks to minimize system travel time while
minimizing the difference between the controller-desired and actual proportions of drivers 
choosing routes.

This study adopts a perspective that by directing the system, to the extent possible, to a time-
dependent SO state, the objective of the controller to enhance system performance can be 
achieved in a behaviorally more realistic manner than that under the traditional DTA approaches. 
It should be reiterated here that behavior-consistent route proportions that move the system 
closer to the SO state are provided through our approach, and not the standard SO solution route 
proportions obtained by solving the DTA problem itself. It is well-known in the literature that the 
SO solution is not behaviorally sustainable. Hence, SO routes that are not considered by the 
drivers are not used by the controller to determine the information strategies and therefore are 
not recommended to the drivers. The validity of the proposed perspective has been successfully 
tested by Paz and Peeta (2007), where the authors expand the approach to capture the network 
level interactions in time and space for the real-time information-based control of a vehicular 
traffic network. Those results illustrated the importance of incorporating driver behavior realism 
in the determination of the information-based network control strategies. Significant differences 
in terms of system travel time savings were obtained when the behavior-consistent approach was 
compared to the traditional approaches (UE, SO, etc.).

Fig. 2 shows the flowchart of the proposed approach for the broader traffic routing problem 
in the context of real-world deployment. It is addressed in Paz and Peeta (2007), where a rolling 
horizon stage-based approach is used to deploy the information-based control strategies in real-
time to enhance system performance for a pre-determined planning horizon. In stage number σ of 
the rolling horizon, the SO DTA solution for the next stage σ+1 is generated based on the current 
network conditions and the corresponding projected O-D demand. An iterative search based 
optimization procedure involving the controller-estimated driver behavior model and a fuzzy 
control model is then used to solve the fixed-point problem described in Section 1, to determine
the behavior-consistent information-based control strategies (θ, I) to provide route guidance to 
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drivers in the roll period of the next stage. In the next stage, the controller uses these strategies to 
provide routes and/or descriptive information to adequately equipped drivers. The drivers use the 
available information and their innate behavioral tendencies to make route choice decisions. The 
current network conditions resulting from the actual driver decisions and the associated traffic 
flow interactions are then measured through sensors to complete the loop.

The iterative search based optimization procedure, which is used to solve the behavior-
consistent information strategies sub-problem of the broader problem, is the focus of this paper. 
It is represented by the non-shaded box located in the middle of the flowchart in Fig. 2. The sub-
problem, addressed by the system controller, is the determination of the proportions of drivers 
that should be recommended specific routes and/or the set of linguistic messages describing 
route conditions so that when drivers make their decisions according to the controller-estimated 
driver behavior model, close to SO route proportions are obtained during the roll period of the 
next stage.

Fig. 3 provides the details of the implementation of the rolling horizon approach. Each stage 
is divided into discrete time intervals of length Δ time units, and consists of h such units. From
an implementation perspective for computational efficiency, a stage is also divided into discrete 
assignment intervals w in which the route assignment proportions are constant. The first 
assignment interval constitutes the roll period of the stage, and consists of l time units of length 
Δ. Hence, the stage length is a multiple of the roll period length. This is designed, without loss of
generality, to simplify the formulation and solution implementation. The SO DTA solution is 
computed for the length of the next stage resulting in different SO proportions for each 
assignment interval of that stage. However, the information strategies for only the next roll 
period are determined using the corresponding SO assignment proportions. The computation of 
the SO DTA solution for the entire stage captures the effects of the projected O-D demand and 
the network level interactions on the information strategies for the roll period. This is because the 
SO proportions corresponding to the roll period of the next stage are affected by the projected 
conditions and/or assignments for the rest of the stage. The next section presents the formulation 
of the problem using this approach.

4. Problem formulation

4.1. Notation and terms

4.1.1. Notation

Variable Description
N Set of nodes in the network
A Set of links in the network
a Subscript for a link in the network, a� A

ω Subscript for a linguistic message
I Set of origins in the network
J Set of destinations in the network
i Subscript for an origin node, i�I

j Subscript for a destination node, j�J

ρ(σ) Roll period of stage σ; corresponds to W = (σ-1)·l+1,…,σ·l
W Superscript for a departure time interval in stage roll period ρ(σ+1)
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φ Number of time units (in terms of ∆) required to compute the SO solution and 
information strategies for ρ(σ+1)

υ Superscript for the time interval in which the computation of the SO solution and 
information strategies for the next roll period begins, υ = (σ·l – φ)

Kij Set of routes connecting O-D pair ij
k Subscript for a route in the network, k�Kij

U Set of driver classes in terms of information availability, U ≡ {1, 2, 3, 4}
u Superscript for driver information class, u�U

Wu

ij
R̂

Forecasted O-D demand for the next roll period, expressed as the set of drivers of class 
u who wish to depart from i to j in time interval W, W = σ·l+1,…,σ·l+l

uτ
ij

S

O-D demand in the next roll period representing the set of drivers of class u that 
departed in time interval W = 1,…,σ·l and did not reached their destinations at the end 
of the current roll period, and are departing from the first intermediated node i to 
destination j at some time interval in the next roll period W = σ·l+1,…,σ·l+l

r Superscript for an individual driver in the network, r�{ Wu 

ij
R̂ ∪ uτ

ij
S }

r

ij
PK The set of preferred routes connecting O-D pair ij for driver r, r

ij
PK ⊆Kij

PKij Driver-preferred routes connecting O-D pair ij, PKij =
¿
¾
½

¯
®
­*

r

r

ij
PK ⊆Kij

)(VU
ij

DK

Set of controller-desired (SO) routes connecting O-D pair ij in roll period ρ(σ) of stage 
σ, )(VU

ij
DK ⊆Kij

)(VU
ij

CK
Set of controllable routes connecting O-D pair ij in roll period ρ(σ) of stage σ, 

)(VU
ij

CK ≡ { )(VU
ij

DK ∩PKij}
Ωur Driver-information class relationship; 1 if driver r belongs to class u, and 0 otherwise

)(VU
ijk

OS SO proportion of drivers assigned to route k in roll period ρ(σ) of stage σ, k� )(VU
ij

DK

τr

ijk
Ĝ

Controller-estimated route choice dummy; 1 if driver r leaving from i to j in time 
interval W is estimated to take route k, and 0 otherwise, k� r

ij
PK

XG r

ijk

Dummy variable for current route of driver; 1 if driver r is traveling on route k from i 
to j in time interval υ, and 0 otherwise, k� r

ij
PK

)(VU
ijk

E
Controller-estimated behavior-consistent proportion of drivers taking route k in roll 
period ρ(σ) of stage σ, k�PKij

)(VUI
ijk

Descriptive qualitative information defined as the linguistic message describing traffic 
conditions for route k in roll period ρ(σ) of stage σ, k� )(VU

ij
CK

)(VUT
ijk

Prescriptive information defined as the proportion of drivers that must be 
recommended to take route k in roll period ρ(σ) of stage σ, k� )(VU

ij
CK

)ω
  Linguistic message; “Very Light Traffic” if ω = 1, “Light Traffic” if ω = 2, “Moderate 
Traffic” if ω = 3, “Heavy Traffic” if ω = 4, and “Very Heavy Traffic” if ω = 5

)   Set of linguistic messages, )�≡ { )1, )2, )3, )4, )5 }
Wr

ijk
Y

  Dummy variable for route recommendation for driver r leaving from i to j in time 
interval W; 1 if route k is recommended, and 0 otherwise, k� r

ij
PK



          

         8

Xr
ijk

Y
  Dummy variable for route recommended to driver r as of time interval υ; 1 if route k
was recommended, and 0 otherwise, k� r

ij
PK

Wr
ijk

Z
Linguistic message related to route k provided to driver r leaving from i to j in time 
interval W, k� r

ij
PK

Wr
ijk

X
Controller-estimated vector of attributes for route k, excluding information, that 
influence the route choice decision of driver r in time interval W, k� r

ij
PK

  F Function to denote the controller-estimated driver behavior model used to estimate the 
route choices of the individual drivers

4.1.2. Definition of terms

Controller-Desired Routes (DK): These are routes that the controller would like the drivers to 
choose. They are the time-dependent SO routes obtained by solving the SO DTA problem for a 
stage.

Driver-Preferred Routes (PK): These routes are preferred by the drivers and are likely to be 
accepted by them. The controller can generate this route set (Bekhor, et al., 2006) using
historical data, travel surveys and/or technologies such as two-way communication systems and 
global position systems.

Controllable Routes (CK): These routes belong to both controller-desired and driver-
preferred route sets. From the controller perspective, providing drivers these routes increases 
their likelihood of being accepted by drivers, thereby enabling the controller to better influence 
system performance.

Behavior-Consistency Gap: The behavior-consistency gap for controllable route k connecting 
O-D pair ij is defined as the difference between the controller-desired proportion of drivers

)(VU
ijk

OS  that should choose route k and the proportion of drivers )(VUT
ijk

that must be 
recommended route k in order to achieve the controller-desired proportion. Hence, more/less 
proportions of drivers may have to be recommended controllable routes to achieve the controller-
desired proportions depending on the traffic system dynamics and driver behavior.

4.2. Problem definition

Consider a traffic network represented by a directed graph G(N,A) where N is the set of 
nodes and A the set of directed arcs. A node can represent a trip origin, a destination and/or just a 
junction of physical links. A network with multiple origins i�I and destinations j�J is 
considered for generality. We are given the SO solution for the next roll period, the time-
dependent O-D demand forecasts for the next roll period, the number of previously assigned 
drivers who are present in the network at the beginning of the next stage and their current routes, 
the set of driver-preferred routes and their controller-estimated vector of attributes, the 
information class of each driver, and the controller-estimated driver behavior model. We seek the 
behavior-consistent information-based network control strategies )1( �VUT

ijk
 and )1( �VUI

ijk
for the 

next roll period that minimize the absolute difference between the SO proportions )1( �VU
ijk

OS and 

the controller-estimated proportions )1( �VU
ijk

E , � i, j, k� )1( �VU
ij

CK .
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4.3. Formulation

This section formulates the sub-problem described in Section 3 and defined in Section 4.2.
The formulation is also a representation of the non-shaded box in the Fig. 2 flowchart.

Given: 
(i) G(N,A)
(ii) )1( �VU

ij
DK ; � i, j

(iii) )1( �VU
ijk

OS ; � i, j, k� )1( �VU
ij

DK

(iv) uτ
ij

R̂ ; � i, j, u, W = σ·l+1,...,σ·l+l

(v) uτ
ij

S ; � i, j, u, W = σ·l+1,...,σ·l+l

(vi) r

ij
PK ; � i, j,  r�{ uτ

ij
R̂ ∪ uτ

ij
S }

(vii) Wr
ijk

X ; � i, j, k� r

ij
PK , r�{ uτ

ij
R̂ ∪ uτ

ij
S }, W = σ·l+1,...,σ·l+l

(viii) Xr
ijk

Y ; � i,  j, k� r

ij
PK , r� uτ

ij
S

(ix) XG r

ijk
; � i,  j, k� r

ij
PK , r� uτ

ij
S

(x) Ωur � u, r�{ uτ
ij

R̂ ∪ uτ
ij

S }
(xi) F

Objective function (controller objective):

Min. ¦ ¦ ¦ �
��

����

i j CKk

ijkijk

ij

ijkijk
ESO

)1(
|),(| )1()1()1()1(

VU

VUVUVUVU IT (1)

Subject to:

Controller-estimated driver behavior

);),,((Fˆ r

ij

r

ijk

r

ijk

r

ijk

τr

ijk
PKkZYX �� WWWG ; � i, j, k� r

ij
PK , r�{ uτ

ij
R̂ ∪ uτ

ij
S }, W = σ·l+1,..,σ·l+l (2)

¦ ¦ ¦

¦ ¦
 

��

�� �

��

�� �
ll

l r PKk

τr

ijk

ll

l r

τr

ijk

ijk

r
ij

E V

VW

V

VWVU

G

G

1

1)1(

ˆ

ˆ
; � i, j, k� )1( �VU

ij
CK (3)

Demand conservation constraints

¦ ¦ :�
� �W

G
u
ij

r
ijSr PKk

ruτr

ijk
]ˆ[ =| Wu

ij
S |; � i, j, u, W = σ·l+1,...,σ·l+l (4)

¦ ¦ :�
� �W

G
u
ij

r
ijRr PKk

ruτr

ijk
ˆ

]ˆ[ =| uτ
ij

R̂ |; � i, j, u, W = σ·l+1,...,σ·l+l (5)

Information-based network control constraints

{ )1( �VUT
ijk

, )1( �VUI
ijk

} = gθI�� ),(, )1()1()1()1( ���� VUVUVUVU IT
ijkijkijkijk

EOS ) ; � i, j, k� )1( �VU
ij

CK
   

(6)
),,,,(g )1()1( urr

ijk

r

ijkijkijkY

r

ijk
YθY : �� XXVUVUW GI ; � i, j, k� r

ij
PK , r�{ uτ

ij
R̂ ∪ uτ

ij
S }, W = σ·l+1,...,σ·l+l (7)
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d¦
�� )1(VU

W

ij
CKk

r

ijk
Y 1;

� i, j, r�{ uτ
ij

R̂ ∪ τu

ij
S }, W = σ·l+1,...,σ·l+l (8)

d¦
��

�

)1(

)1(

VU

VU

ij
CKk

ijk
θ 1;

� i, j (9)

)1( �VUT
ijk

= 0; � i, j, k� )1( �VU
ij

CK (10)

Wr
ijk

Z = )1( �VUI
ijk

⇔ [ ¦:
 

3

2u

ur = 1 ]

Wr
ijk

Z = { }, otherwise

  

       
� i, j, k� )1( �VU

ij
CK , r� uτ

ij
R̂{ ∪ }uτ

ij
S , 

   W = σ·l+1,...,σ·l+l

(11)

k� PKij ⇔k�
¿
¾
½

¯
®
­*

r

r

ij
PK ;      � i, j (12)

k� )1( �VU
ij

CK ⇔k� )(

ij
DK{

1�VU ∩PKij};      � i, j (13)

0-1 variable constraints

τr

ijk
Ĝ = 0 or 1; � i, j, k� r

ij
PK , r�{ uτ

ij
R̂ ∪ uτ

ij
S }, W = σ·l+1,...,σ·l+l (14)

XG r

ijk
= 0 or 1; � i, j, k� r

ij
PK , r� uτ

ij
S (15)

 Ωur = 0 or 1; � u, r�{ uτ
ij

R̂ ∪ uτ
ij

S } (16)
Wr

ijk
Y = 0 or 1; � i, j, k� r

ij
PK , r�{ uτ

ij
R̂ ∪ uτ

ij
S }, W = σ·l+1,...,σ·l+l (17)

Xr
ijk

Y = 0 or 1; � i, j, k� r

ij
PK , r� uτ

ij
S (18)

Linguistic variable constraints

)1( �VUI
ijk

��); � i, j, k� )1( �VU
ij

CK (19)

Non-negativity constraints

all quantitative variables ≥ 0 (20)

The above formulation is a non-linear mixed integer model with some stochastic ( τr

ijk
Ĝ ) and

linguistic ( )(VUI
ijk

) variables. It has several contributions to the route guidance literature. A 
primary contribution is that the formulation explicitly estimates drivers’ likely reactions to the 
information-based network control strategies while determining them, thereby circumventing 
realism issues with existing models that pre-specify driver response behavior. Another key 
contribution is the concept of route classification based on the relevance of routes to the drivers 
and the controller. It leads to the definition of controllable routes, which provides a realistic 
deployment mechanism to enhance driver compliance in a behavior-consistent manner. These 
two aspects enable the development of the behavior-consistent approach for information-based 
network control. Another contribution is the simultaneous determination of prescriptive and 
linguistic information that are consistent with each other. Finally, the approach enables the 
identification of priorities to determine whom to provide information, a significant deployment 
issue.

;
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The decision variables are the set of information-based network control strategies )1( �VUT
ijk

and )1( �VUI
ijk

, � i, j, k� )1( �VU
ij

CK . The formulation explicitly recognizes that the set of controller-

desired routes )1( �VU
ij

DK may differ from the set of driver-preferred routes r

ij
PK , � i, j, 

r�{ uτ
ij

R̂ ∪ uτ
ij

S }, leading to the concept of controllable routes.

4.3.1. Objective function

The controller objective (1) is to minimize the absolute difference between the SO
proportions )1( �VU

ijk
OS  for the next roll period and the corresponding controller-estimated 

proportion of drivers taking routes, )1( �VU
ijk

E , � i, j, k� )1( �VU
ij

CK . The controller achieves its 

objective by influencing )1( �VU
ijk

E through information provision to approach )1( �VU
ijk

OS , � i, j, 

k� )1( �VU
ij

CK .

4.3.2. Controller-estimated driver behavior constraints

Function F in Constraint (2) denotes the controller-estimated driver behavior model used to 
estimate individual driver route choices. The controller-estimated route choice for driver r

(represented through dummy τr

ijk
Ĝ ) is a function of the route attributes Wr

ijk
X , the route 

recommendation dummy Wr
ijk

Y , and the linguistic message Wr
ijk

Z , � i, j, k� r

ij
PK , r�{ uτ

ij
R̂ ∪ uτ

ij
S }, W

= σ·l+1,...,σ·l+l. Since Wr
ijk

Y is a function of )1( �VUT
ijk

and Wr
ijk

Z depends on )1( �VUI
ijk

, the constraint 

also implies that )1( �VUT
ijk

 and )1( �VUI
ijk

simultaneously influence )1( �VU
ijk

E . F can denote any model 
structure, such as econometric, rule-based, or hybrid. Hence, the proposed approach is 
independent of the behavior model structure.

This study uses a hybrid multinomial logit model as part of the controller-estimated driver 
behavior model, where the systematic component of the utility is determined using simple
behavioral if-then rules. The systematic component of the utility for a route is obtained using a 
fuzzy logic procedure which aggregates the contribution of each route attribute to the utility. The 
resulting route choice probabilities/proportions are translated into the individual route choices of 
drivers using Monte Carlo simulation. Hence, F represents the combination of the hybrid 
multinomial logit model and the Monte Carlo simulation. Table 1 shows the set of the behavioral
if-then rules used in this study. Here, the route attributes X are its expected travel time T and 
number of nodes NN. 

Constraint (3) is a definitional constraint denoting that the controller-estimated proportion of 
drivers )1( �VU

ijk
E taking controllable route k connecting O-D pair ij during the next roll period is 

equal to the controller-estimated number of drivers taking this route divided by the total 
controller-estimated number of drivers making route choice decisions over all of their 
corresponding preferred routes k� r

ij
PK , for that roll period, � i, j, k� )1( �VU

ij
CK .

4.3.3. Demand conservation constraints
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Constraints (4) and (5) represent the conservation of the O-D demand for the next roll period. 
As discussed earlier, this demand is the sum of the numbers of previously assigned drivers that 
are still in the network (| Wu

ij
S |) and the newly forecasted O-D demand (| uτ

ij
R̂ |). Constraint (4) 

indicates that the summation, over all drivers in uτ
ij

S and the set of driver-preferred routes r

ij
PK , 

of the product of the controller-estimated route choice dummy rτ
ijk

Ĝ  and the driver-information 

class relationship ru: , � i, j, u, W = σ·l+1,...,σ·l+l, should equal the cardinality of uτ
ij

S . Here, the 

product rurτ
ijk

:�Ĝ takes value 1 if driver r belongs to class u and the controller estimates that 

he/she takes route k in time interval W, and 0 otherwise. Similarly, Constraint (5) indicates that 
the summation, over all drivers in uτ

ij
R̂ and the set of driver-preferred routes r

ij
PK , of the product 

of the controller-estimated route choice dummy rτ
ijk

Ĝ  and the driver-information class relationship 
ru: , � i, j, u, W = σ·l+1,...,σ·l+l, should equal the cardinality of uτ

ij
R̂ .

4.3.4. Information-based network control constraints

Constraints (6)-(13) represent the information-based network control constraints. Constraint 
(6) has a fixed point structure and denotes that the information strategies )1( �VUT

ijk
 and )1( �VUI

ijk
are 

the outcome of a procedure gθI that relates them to the SO proportions )1( �VU
ijk

OS and the 

controller-estimated proportions (obtained using F) of drivers taking routes )1( �VU
ijk

E , � i, j,

k� )1( �VU
ij

CK . Constraints (2), (3), (7), and (11) together indicate that )1( �VU
ijk

E is a function of 
)1( �VUT

ijk
 and )1( �VUI

ijk
, implying the fixed point structure of (6). Constraint (6) also indicates that

)1( �VUT
ijk

 and )1( �VUI
ijk

are interdependent. Hence, different combinations of )1( �VUT
ijk

 and )1( �VUI
ijk

may minimize the objective function, implying the potential for multiple solutions.
In our study, the fuzzy control model in Fig. 2 represents gθI. An advantage of the fuzzy logic 

methodology in this context is that it facilitates the simultaneous determination of prescriptive 
)1( �VUT

ijk
 and descriptive )1( �VUI

ijk
 information strategies. This is because it can enable a many-to-

many mapping from the SO solution, the controller-estimated driver behavior, and the 
information provided to the drivers, to the information strategies.

Constraint (7) states that the value of the dummy variable Wr
ijk

Y for the route recommended by 
the controller to driver r is the result of the discretization of the aggregate proportions 

)1( �VUT
ijk

through the procedure gY. It is also dependent on )1( �VUI
ijk

because the recommended 
proportions for a route should be consistent with the linguistic message provided for it. It further 
depends on the past route recommendation (up to interval υ) for a driver Xr

ijk
Y and the route taken 

by that driver XG r

ijk
as these characteristics can be used to devise a behavior-consistent priority 

scheme for the future route recommendation. For example, drivers who subscribe to a premium 
information provision service and request information in the next roll period from the controller 
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can receive the highest priority. Given that these drivers are requesting information, they are 
more likely to accept the provided controllable routes. 

In the priority scheme used in this study, drivers considered to receive recommendation for 
route k are categorized in priority subgroups based on their existing routes, prior route 
recommendations, and their responses to these recommendations. The first sub-group consists of
drivers that were recommended to take route k in the previous stage and are currently traveling 
on it ( Xr

ijk
Y =1, XG r

ijk
=1). This is because the controller seeks to prevent route switching, if 

possible, to enhance driver valuation of information; frequent switch recommendations may 
cause drivers to increasingly ignore the recommendations as time progresses. The second priority 
sub-group consists of drivers that were not recommended to take route k in the previous stage 
and are not currently traveling on it ( Xr

ijk
Y =0, XG r

ijk
=0). This is designed to attract drivers who are 

currently traveling on one of their preferred routes which are not controllable. The drivers of the 
third sub-group are those that were not recommended to take route k in the previous stage but are 
traveling on it ( Xr

ijk
Y =0, XG r

ijk
=1). Akin to first sub-group, this is to prevent route switching if 

possible. Within a sub-group, the selection of drivers is performed randomly. Finally, for drivers 
not belonging to any of these sub-groups, this selection is randomly done.

Constraint (8) ensures that no more than one route is recommended to a driver, as per the 
strategy employed in this study. That is, Wr

ijk
Y  can only take value 1 for at most one route in 

)1( �VU
ij

CK , depending on whether the controller chooses to recommend a route to that driver 
based on the behavior-consistent approach.

Consistent with Constraint (8), Constraint (9) indicates that the total proportion of drivers 
receiving route recommendations cannot exceed 1. That is, the controller cannot recommend 
routes to more than hundred percent of the drivers.

Constraint (10) states that routes that do not belong to the set of controllable routes 
(k� )1( �VU

ij
CK ) are not recommended to drivers.

Constraint (11) indicates that the linguistic message Wr
ijk

Z for route k provided to driver r in 

time interval W is equal to the descriptive information )1( �VUI
ijk

for route k if and only if the driver 
has access to such information (u = 2 or 3). If the driver does not have access to descriptive 
information, Wr

ijk
Z  is defined by the null set { }. 

Constraint (12) states that route k belongs to the set of driver-preferred routes PKij if and only 
if it belongs to the set represented by the union of the preferred route sets of all individual drivers 
going from i to j. Constraint (13) states that route k belongs to the set of controllable routes 

)1( �VU
ij

CK  if and only if it belongs to both the controller-desired and driver-preferred route sets.
Constraints (2), (3), (12) and (13) together enable the control of a system where the set of driver-
preferred routes may vary over the population of drivers. That is, the set of controllable routes 
and the corresponding controller-estimated proportion of drivers taking routes are defined 
considering the entire set of driver-preferred routes.

4.3.5. 0-1, qualitative, and non-negativity variable constraints

Constraints (14)-(18) restrict specific variables to take a value 0 or 1. Constraint (19) 
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indicates that the descriptive information )1( �VUI
ijk

for controllable route k must belong to the set 
of available linguistic messages. Constraint (20) is the non-negativity constraint for all 
quantitative variables.

5. Problem solution

It is difficult to solve the formulation described in Section 4 using traditional hard computing 
techniques such as non-linear optimization or traditional control theory. A key issue is their 
limited ability to handle the imprecision, uncertainty and subjectivity associated with incomplete 
data and/or qualitative/linguistic variables (I�. Linguistic variables are important in this problem 
context because they enable the modeling of information provision strategies used in the real 
world; qualitative messages such as “heavy traffic ahead” or “minor delays.”

In this study, the formulation is solved using a fuzzy logic based optimization framework. 
Fuzzy logic allows some tolerance to imprecision, uncertainty and/or partial truth, while enabling
a more tractable and computationally efficient solution mechanism (Tsoukalas and Uhrig, 1997).
Computational efficiency is important in the deployment context as the control strategies are 
needed in sub-real time. Other advantages of using a fuzzy logic framework in this problem 
context include: (i) the knowledge/experience of traffic control personnel can be incorporated in 
the control if-then rules, and (ii) the framework enables the simultaneous 
processing/determination of quantitative and qualitative traffic information.

An iterative search based optimization procedure, briefly mentioned in Section 3 and 
illustrated by the non-shaded box in Fig. 2, is used to solve the formulation (1)-(20). It is shown 
in detail in Fig. 4 and consists of the controller-estimated driver behavior model and a fuzzy 
control model in an iterative search process for an O-D pair. It seeks to determine the 
information-based control strategies that minimize the difference between the SO proportions 
and the corresponding controller-estimated proportions of drivers taking routes.

First, the controller-estimated driver behavior model (Fig. 4) is used to forecast driver route 
choice decisions using an initial set of information-based control strategies (described in Section 
5.2.1), and the prioritization scheme (described in Constraint (7)) and driver information class. If 
these controller-estimated proportions in relation to their corresponding SO proportions satisfy a 
convergence criterion (illustrated in Section 5.2.3), the search procedure terminates. If 
convergence is not yet achieved, the fuzzy control model (illustrated by the non-shaded boxes in 
Fig. 4 and described in Section 5.1) is used to update the information-based control strategies (θ, 
I) for the next iteration so as to further reduce the difference between the SO and controller-
estimated proportions. Hence, the fuzzy control model represents the update mechanism 
(direction-finding and step-size) for the optimization framework. The iteration counter is updated 
and the current information-based control strategies are used to determine the controller-
estimated route proportions to close the loop. This iterative search procedure is summarized in 
Section 5.2.

Although the search procedure is conducted for all O-D pairs within a rolling horizon stage 
as shown in Fig. 2, the time and O-D pair dimensions (superscript ρ(·) and subscripts ij) are 
ignored hereafter without loss of generality to simplify the notation.

5.1. Fuzzy control model
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The fuzzy control model consists of three components, as shown by the non-shaded boxes in 
Fig. 4. The first component is the input (denoted by the dotted box). The second component 
represents the decision processing steps (denoted by the three solid boxes) and consists of the 
control if-then rules based inference step, the aggregation step, and the defuzzification step. The 
third component is the output (denoted by the dashed box). The model is described in detail 
hereafter. 

5.1.1. Variables and notation

Additional variables used in the iterative search based optimization procedure are:

Variable Description
K̂ Number of iterations in the iterative search procedure
η Superscript to denote the iteration number, η =1,…,K̂

RP Number of control if-then rules for prescriptive information
RD Number of control if-then rules for descriptive information
R Total number of control if-then rules, R = RP + RD

α Superscript to denote a control if-then rule, α = 1,…,R
K
k

E Controller-estimated proportion of drivers taking route k in iteration η, k�PK

K
k

e Error in iteration η defined as the difference between SOk and K
k

E , k�CK

K
k

eΔ
Change in error in iteration η, defined as the difference between the current iteration 
error K

k
e  and the previous iteration error 1�K

k
e , k�CK

K
k

θ Proportion of drivers that must be recommended (prescriptive information) to take
route k in iteration η, k�CK

KI
k

Linguistic descriptive information for route k in iteration η, k�CK, KI
k
��)

KI
k

~ Crisp value associated with descriptive information for route k in iteration η, k�CK

K
k

θΔ Change in the proportion of drivers that must be recommended (prescriptive 
information) to take route k in iteration η, k�CK

KI
k

~Δ Change in the crisp value associated with descriptive information for route k in
iteration η, k�CK

*

k
θDKΔ Fuzzy outcome for change in prescriptive information for route k in iteration η

obtained by fuzzyfing the inputs using rule α, k�CK, α = 1,…,RP

*

k

DKI~Δ Fuzzy outcome for change in descriptive information for route k in iteration η
obtained by fuzzyfing the inputs using rule α, k�CK, α = RP+1,…,R

*

k
θKΔ

Fuzzy outcome for change in prescriptive information for route k at iteration η
resulting from the aggregation of  the fuzzy outcomes of all the rules (α = 1,…,RP), 
k�CK

*

k

KI~Δ
Fuzzy outcome for change in descriptive information for route k at iteration η
resulting from the aggregation of the fuzzy outcomes of all the rules (α = RP+1,…,R), 
k�CK

DK
k

γ Degree at which rule α for route k is activated in iteration η, k�CK

μ Membership function for a fuzzy set



          

         16

S(·) Function to calculate the area of the membership function for a fuzzy set
Dθ Centroid of the fuzzy set for prescriptive information given by the consequent (right 

hand side) of rule α, α = 1,..,RP

DI Centroid of the fuzzy set for descriptive information given by the consequent (right 
hand side) of rule α, α = RP+1,..,R

5.1.2. Input

The vectors of inputs for iteration η are defined by:

KK
kkk

ESOe �  and   1

kkk
eee

�� KKKΔ � k�CK (21)

They are used to determine the update (Δθ, ΔI) to the current solution. The role of K
k

eΔ is to 
smoothen the search process by precluding potential oscillatory behavior in the decision 
variables (θ, I) that can occasionally arise by considering only the current error K

k
e in the update 

mechanism.

5.1.3. Decision processing component

The processing component can be summarized as follows. In the first step, the inputs are 
mapped to appropriate membership functions to obtain the fuzzy outcomes according to the 
control if-then rules. The second step aggregates the outcomes of all fired (used) rules. In the 
final step, a defuzzification scheme is used to determine updates to the decision variables.
Sections 5.1.3.1 and 5.1.3.2 describe the if-then rules and the corresponding membership 
functions, respectively. The three steps of the decision process are described in Section 5.1.3.3.

5.1.3.1. Control if-then rules  

If-then rules are logical statements where the if part is called the "antecedent" and the then

part is called the "consequent". They can entail multiple dimensions to enable the mapping of 
many inputs to many outputs. In this study, these rules are simple two-dimensional rules 
obtained from observed patterns and problem characteristics. For example, if the error is positive 
for a given route (antecedent), the number of drivers taking this route should increase implying 
that the route must be recommended to more drivers (consequent). Since the controller does not
know the ideal level of response (Δθ, ΔI) in relation to the magnitude of the inputs (e, Δe), there 
is uncertainty on the response magnitudes based on the inputs. Hence, multiple rules are defined 
to account for the various input-response possibilities. The fuzzy control logic is used to identify 
the rules which are fired and the degree of their contribution so as to elicit the best response 
through the iterative search based optimization procedure. The relative magnitudes (positive 
small, negative large, etc.) of the inputs and outputs are handled using membership functions 
whose parameters can be field-calibrated through optimization (Paz and Peeta, 2008a). However, 
as discussed in Section 5.1.3.2, these parameters need not be calibrated as they only influence 
computational efficiency and not the update magnitudes (Δθ, ΔI). 

An example of a control if-then rule is as follows: 
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if  [e is NS and Δe is PL]  then  [Δθ  is PS] 

In this rule (also shown in Fig. 4), if the error e is negative small (NS) and the change in error Δe

is positive large (PL), then the information strategy θ is increased by a positive small (PS) 
quantity Δθ. This outcome is aggregated along with the outcomes of all other rules to generate 
the crisp composite output.

The antecedents or left hand side (LHS) of the rules correspond to the inputs and the 
consequents or right hand side (RHS) to the outputs. The LHS and RHS are characterized by the 
following five fuzzy sets: “Negative Large (NL)”, “Negative Small (NS)”, “Zero (Z)”, “Positive 
Small (PS)” and “Positive Large (PL)” error and change in error. Thus, K

k
e , K

k
eΔ , K

k
θΔ and KI

k

~Δ
� [“NL”, “NS”, “Z”, “PS”, “PL”]. Table 2 presents the set of control if-then rules used by the 
fuzzy control model in our study. 

5.1.3.2. Membership functions

The membership functions (μ) are used to handle the imprecision, uncertainty and/or partial 
truth of inputs and their associated consequences on the outputs. Fuzzy logic uses membership 
functions to enable reasoning with variables that are vague in nature, such as language-based 
descriptors (e.g. congestion ahead, the error is NL). Corresponding to the five fuzzy sets, there 
are five triangular membership functions each for e, Δe, Δθ, and ΔI as indicated in Fig. 5; these 
functions are independent of η and k. In addition, there are five membership functions associated 
with the five messages for the descriptive information I. Based on this, there are three 
membership functions associated with each control if-then rule, one each for the inputs ek and 
Δek, and one for the output (either Δθk or 

k
I~Δ ).

The set of membership functions associated with an input/output are designed to cover the 
range of its domain as illustrated in Fig. 5; in this study, their parameters evenly cover the range. 
For e, Δe, and Δθ, the corresponding domains [-1,1] have direct physical interpretations based on 
the values they can take. For ΔI, the domain is divided into five equal parts, each of which 
corresponds to a linguistic message. The advantage of using a triangular shape is its simplicity 
which aids computational efficiency as the membership function can be fully defined using only 
three parameters, its modal point, and its lower and upper half-widths. Paz and Peeta (2008a) use 
an off-line H-infinity filter based approach to optimize the membership function parameters 
specifically to enhance on-line computational efficiency. That is, the optimized parameters 
provide the same solution as the default parameters but in lesser computational time.

5.1.3.3. Decision process  

For each iteration η, the max-min composition operator and Larsen product implication 
operator are used for the fuzzy inference step, and the center of gravity method is used for the
defuzzification step (see Tsoukalas and Uhrig, 1997). The current inputs, K

k
e and K

k
eΔ , are 

matched against the R control if-then rules to determine the corresponding degrees of activation. 
The degree at which each rule is activated is obtained using the relevant components of K

k
e and 

K
k

eΔ , and the max-min operator:
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))(),(min(max zμzμγ
eeZzk

DDDK
'� � k�CK, α (22)

where Z represents the universe of the domains of the fuzzy sets n

k
e and n

k
eΔ . The membership 

functions of the fuzzy outcomes *

k
θDKΔ  and *

k

DKI~Δ for each rule are then obtained using the 
Larsen product implication operator as:

D
T

DK
T DK ''

� μγμ
k*

k

� k� CK, α= 1,…,RP (23)

and

D
I

DK
I DK

~* ''
� μγμ

k

k

� k� CK, α= RP+1,…,R (24)

To aggregate the outcomes from all rules for each route k, the following scheme (Zadeh, 
1996) is used:

¦ 
 

RP

1
θθ *

k

*

k

μμ
D

DKK ΔΔ � k� CK (25)

and

¦ 
� 

R

1PR

*

k

*

k

μμ
D II DKK ~Δ

~Δ � k� CK (26)

The center of gravity method is then used to defuzzify the fuzzy aggregate outcomes *

k
θKΔ

and *

k

KI~Δ represented by the membership functions in (25) and (26), respectively, to generate
the crisp outcomes of the decision variables as follows.

¦

¦ �
 

 

 
RP

1
θ

RP

1
θ

k

*

k

*

k

μS

μSθ
θ

D

D

D

K

DK

DK

)(

)(
Δ

Δ

Δ
� k� CK (27)

and

¦

¦ �
 

� 

� 
R

1RP

R

1RP

k

*

k

*

k

μS

μS

D I

D I
D

K

DK

DKI
I

)(

)(~Δ
~Δ

~Δ
� k� CK (28)

5.1.4. Output

The crisp results, K
k

θΔ  and KI
k

~Δ , are used to update the information-based traffic control 
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strategies in iteration η:

KKK
k

1

kk
θθθ Δ� � � k� CK (29)

and

KKK III
k

1

kk

~Δ~~
� � � k� CK (30)

where 1

k
θ �K and 1

k

�KI~ are the crisp values for the information strategies in the previous iteration (η
– 1). Hence, K

k
θΔ  and KI

k

~Δ  represent the combined search direction and step size of the iterative 
search based optimization procedure.

For prescriptive information, K
k

θ is directly used as output from the fuzzy control model. 
However, since descriptive information is linguistic, an additional step is required to transform 
the continuous crisp value KI

k

~  to a discrete message:  

 KI
k

{)ω  | |
~

|min
k Z
K

Z I Φ( � � ω = 1,…,5)} � k� CK (31)

It corresponds to selecting the fuzzy set (linguistic message) with the largest mapping with KI
k

~

(degree of membership) among the possible fuzzy sets; it implies that the selected fuzzy set has 
the closest centroid ( ZΦ ) to KI

k

~ . Here, the use of the continuous variables KI
k

~  in the fuzzy 
control model rather than the direct use of the discrete linguistic messages is to achieve smooth 
convergence by reducing jumps in the objective function that can result from the use of the 
discrete variables. Hence, the descriptive information variable is viewed in our approach as the 
outcome of continuous crisp values.

As indicated in the decision process, both types of information strategies are computed 
simultaneously and for all controllable routes as they are mutually dependent. This is necessary 
and adds several dimensions of complexity to the problem. Some drivers may have access to 
both types of information and use them to make their routes choice decisions. Therefore, the 
effect of one strategy influences the effect of the other on the entire set of drivers choosing 
routes. Further, information on a route directly affects the proportion of drivers taking that route 
as well as the other routes because the information results in driver switching from some routes 
to others. These interdependencies are illustrated through the experiment results presented in 
Section 6.

5.2. Iterative search based optimization procedure

First, the set of controllable routes for each O-D pair for the next roll period are determined. 
It is possible that no controllable routes exist for some O-D pairs, in which case no search is 
conducted for them. For the next roll period ρ(σ+1) and for an O-D pair ij with controllable 
routes, the algorithmic steps of the iterative search based optimization procedure (represented by 
Fig. 4) for the next roll period are as follows.
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5.2.1. Step zero: initialization

Set the iteration counter, η = 1. If the set of controllable routes for the next roll period (based 
on )1( �VU

ijk
OS ) are identical to those in the current roll period, initialize the information strategies 

( K
k

θ , KI
k

) for them to the ones in the current roll period. If these controllable route sets are 

different, set K
k

θ = 0 and KI
k

= )3, � k� )1( �VU
ij

CK .

5.2.2. Step one: controller-estimated behavior-consistent proportions

Use the controller-estimated driver behavior model F to compute the controller-estimated 
behavior-consistent proportions of drivers taken routes K

k
E  based on the information-based 

network control strategies K
k

θ and KI
k

, � k� )1( �VU
ij

CK .

5.2.3. Step two: convergence check

Check for convergence using (32).  F is the number of iterations used for averaging to check 
for convergence. First, compute the difference between the )1( �VU

ijk
OS  and K

k
E  to generate K

k
e . 

Then, use it along with K
k

e
~ , the average value of the error over the last F�iterations for route k in 

iteration η, and the errors for the last F�iterations ( m

k
e  is the error in iteration m for route k), to 

determine the value to compare with Y , a pre-specified small constant indicating the required 
accuracy. If the number of iterations at convergence is less than F, the corresponding number of 
iterations is used for the averaging. 

� � Y
F

K

FK

K �¸̧
¹

·
¨̈
©

§
�¦

�� 

2

1

1
m

k

m

k
e
~

e � k� )1( �VU
ij

CK    (32)

Terminate the iterative search procedure if the inequality in (32) is satisfied for all 
controllable routes for O-D pair ij. Otherwise, go to Step three.

5.2.4. Step three: update the information strategies

Use the fuzzy control model to update the information strategies K
k

θ and KI
k

based on the SO 

proportions )1( �VU
ijk

OS  and the corresponding controller-estimated behavior-consistent 

proportions K
k

E , � k� )1( �VU
ij

CK . Update the iteration counter, η = η +1, and go to Step one.

6. Experiments

Experiments are designed to evaluate the performance of the fuzzy control model and 
illustrate the significance of behaviorally-consistent approaches to determine information-based 
network control strategies. Three sets of experiments are conducted to evaluate the performance 
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of the fuzzy control model under various driver classes (in terms of information type,
information access, and their level of responsiveness to information). 

6.1. General experimental setup

The Borman expressway corridor network shown in Fig. 6 is used to conduct the 
experiments. Located in northwest Indiana, it consists of a sixteen-mile section of interstate I-
80/94 (called the Borman expressway), I-90 toll freeway, I-65, and the surrounding arterials and 
streets. It has 197 nodes and 460 links. While the proposed methodology can be used to 
determine the information strategies for multiple O-D pairs where different drivers have different 
sets of preferred routes, a single O-D pair and a single set of driver-preferred routes (all driver 
have the same set of preferred routes) are used here to illustrate the key methodological insights
associated with the behavior-consistent approach. As shown in Fig. 6, there are four driver-
preferred routes (zigzag lines) and four controller-desired routes (dashed lines) connecting the 
selected O-D pair, but only three of them fully overlap. The controller seeks to achieve the SO 
proportions only on the set of controllable routes (the three routes that fully overlap). Thus, 
controller-desired routes 1, 2 and 3 are defined as the controllable routes in these experiments. 
The SO proportions are 49%, 26% and 10% for routes 1, 2 and 3, respectively.

As shown in Table 1, two types of drivers are considered in the controller-estimated driver 
behavior model based on their level of responsiveness to information provided. The first type of 
drivers, labeled as “more responsive” to the information strategies, are more likely to be 
influenced by the information provided. The second type of drivers, categorized as “less 
responsive”, are less likely to be influenced by the information provided. They rely more on their 
past experience and perceptions to make route choice decisions. Drivers that are not influenced
at all by the information are viewed here as drivers without information.

Note that the actual driver behavior may be different. However, as discussed earlier and 
illustrated in Fig. 2, the actual driver behavior is addressed only in the overall framework of Fig.
2, and not in the sub-problem addressed in this paper. Paz and Peeta (2007) analyze the 
performance of the overall framework.

In terms of drivers’ access to prescriptive and/or descriptive information, four driver classes
are considered as discussed in Section 2.2. For the experiments involving descriptive
information, ω = 1,…,5 is used to represent the linguistic messages defined in Section 4.1.1.

The experiments are conducted for only the first stage of the rolling horizon; this is based on 
the objectives of this paper of investigating the effectiveness of the behavior-consistent approach 
rather than a network-level analysis. In the figures illustrating the results, which correspond to 
the first iteration of the first stage, the points on the y-axis are based on the initial information-
based control strategies ( K

k
θ = 0 and KI

k
= )3, � k� )1( �VU

ij
CK ).

6.2. Experiments: prescriptive information only

6.2.1. Specific objectives and design

The objective of these experiments is to evaluate the ability of the fuzzy control model to 
generate effective prescriptive information strategies under the two classes of driver 
responsiveness to information. To illustrate insights, it is assumed that all drivers have access to
prescriptive information, but only a subset of them receive route recommendations depending on 
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the behavior-consistent strategy used (and the priority scheme discussed in Constraint (7)). The 
remaining drivers do not receive information, and hence, their route choice decisions are 
assumed to be without the influence of information for the roll period of that stage. The decision 
variable is the vector θ that represents the proportions of drivers that must be recommended to 
take specific routes.

6.2.2. Experiment results and analysis

Fig. 7 presents the results of these experiments. Fig. 7(a) shows the controller-estimated 
proportion (fraction) of drivers taking routes in each iteration of the search procedure under the 
currently calculated vector of information strategies. It can be noticed that the controller can 
achieve close to the SO proportions (shown by the three horizontal lines in the figure for the 
three routes) through its information provision strategies. However, it achieves a faster 
convergence when all drivers are more responsive to the information strategies. This is because 
when drivers are more likely to make route choice decisions consistent with the 
recommendation, the controller can achieve its objective with fewer recommendations.

Fig. 7(b) shows the proportion of drivers that must be recommended to take each route in 
order to achieve the desired (SO) proportions. The values of the information strategies at 
convergence indicate that more recommendations are required for one of the three routes under 
the more responsive behavior scenario when compared to the less responsive behavior scenario. 
This may seem counterintuitive since it is expected that fewer recommendations are necessary to 
achieve the desired proportions under more responsive behavior. However, note that under this 
type of behavior (more responsive), the iterative search procedure achieves its objective in fewer 
(about 5) iterations. After 5 iterations in Fig. 7(a), the estimated proportions are almost constant, 
but the recommended proportions in Fig. 7(b) still have substantial variability. This implies the 
existence of multiple solutions, due to the interdependencies discussed in Section 5.1.4. For 
example, in Fig. 7(b), in the neighborhood of 6 iterations (when the desired proportions are 
achieved for the more responsive case), the controller still needs to provide less information 
under the more responsive case compared to the less responsive case for route 1, which is the 
route that requires more recommendations around iteration 50 for the more responsive behavior.

The results from Fig. 7(b) indicate that there are significant behavior-consistency gaps in all 
cases. That is, there are significant differences between the controller-desired proportion of 
drivers choosing routes and the proportions of drivers that must be recommended to take the 
routes in order to achieve the desired proportions. Some of the behavior-consistency gaps are 
negative, while others are positive. Hence, the experiment results highlight the importance of 
using a behavior-consistent approach to determine the information-based network control 
strategies to achieve the controller-desired proportions.

6.3. Experiments: descriptive information only

6.3.1. Specific objectives and design

The objective of these experiments is to evaluate the ability of the fuzzy control model to 
generate effective descriptive information under the two classes of driver responsiveness to 
information. Here, all drivers receive descriptive information only. The decision variable here is 
the vector I that represents linguistic labels describing route conditions.
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6.3.2. Experiment results and analysis

Fig. 8 shows the experiment results. Fig. 8(a) shows the controller-estimated proportion of 
drivers choosing routes for each iteration of the search procedure under the currently calculated 
vector of information strategies. As indicated in this figure, the controller can achieve close to 
the desired proportions. The model achieves a faster rate of convergence and values slightly 
closer to the desired proportions when all drivers are less responsive. This is because when all 
drivers receive information, the change from one message to another produces a larger discrete 
effect in the proportion of drivers choosing routes under the more responsive case. Therefore, 
typically the controller has reduced ability to get closer to the desired proportion due to the large 
effects of information provision under more responsive behavior.

Fig. 8(b) shows the vector of information values I, the set of messages that the controller
provides to the drivers. As illustrated, the procedure converges to a stable set of messages. The 
messages at convergence indicate that stronger messages are required under less responsive 
behavior compared to those under the more responsive case. This result is intuitive because 
stronger messages are needed to compensate the fact that drivers are less influenced by the 
messages in the less responsive behavior case. 

It is not possible to define behavior-consistency gaps for linguistic information because each 
message represents an unknown proportion of drivers choosing routes. This is another important 
reason to use a behavior-consistent approach to determine the information-based network control 
strategies. Traditional approaches cannot incorporate the linguistic nature of information 
strategies.

6.4. Experiments: prescriptive, descriptive, prescriptive and descriptive, and no information

6.4.1. Specific objectives and design

The objective of these experiments is to evaluate the ability of the fuzzy control model to 
simultaneously generate effective prescriptive and descriptive information under the two classes 
of driver responsiveness to information. In these experiments, 25% of the drivers can only access
prescriptive information; 25% of the drivers only receive descriptive information; 25% of the 
drivers have access to prescriptive information and receive descriptive information; and the 
remaining 25% of the drivers cannot access prescriptive information and do not receive 
descriptive information. Hence, the information-based traffic control strategies here are the 
vector I of messages describing routes conditions and the vector θ of proportions of drivers that 
must be recommended to take routes.

6.4.2. Experiment results and analysis

Fig. 9 shows the controller-estimated proportion of drivers taking routes for each iteration of 
the search procedure under the currently calculated vectors of information strategies. For both 
levels of responsiveness, the controller achieves close to the desired proportions. However, it 
achieves a smoother convergence when all drivers are less responsive to the information 
strategies. This is because the linguistic messages have a weaker switching effect for these 
drivers, reducing jumps in the objective function.
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Fig. 10(a) shows the results of these experiments for the prescriptive vector of information 
strategies θ, the proportion of drivers that must be recommended to take specific routes. For both 
levels of responsiveness, the procedure converges to a relative stable set of values. The vector of 
prescriptive information strategies at convergence indicates that more recommendations are 
required for two of the three routes under the more responsive behavior case when compared to 
the less responsive case. The reasons for this are the same as in the first set of experiments 
because as shown in Fig. 9, the estimated vector of drivers taking routes reaches the SO 
proportions in the early iterations of the search procedure with fewer recommendations than the 
ones around iteration 50 for the more responsive behavior.

Fig. 10(b) shows the results of these experiments for the descriptive vector of information 
strategies I, the set of messages that the controller provides to the drivers. In both cases, the 
procedure converges to a stable set of messages, and the set of messages is almost identical. 
However, the trajectories to achieve the final messages are different; a stronger message is 
required for route 2 under the less responsive behavior.

The information strategies are the outcome of complex processes resulting from the mutual 
dependency of prescriptive and descriptive information, as well as the presence of multiple 
driver classes in terms of information accessibility. These experiments highlight the complexity 
of the problem faced by the controller and show the effectiveness and robustness of the fuzzy 
control modeling approach to address the multidimensionality and nonlinearity of the problem.

7. Concluding comments

This study is the first in the literature to propose a methodology to determine behavior-
consistent information-based network control strategies, by factoring the controller’s estimation 
of driver route choice behavior in generating these strategies. It proposes the concept of 
behavior-consistency gap to illustrate the need for such strategies and to highlight the behavioral 
inadequacies of existing DTA modeling approaches and the consequent deployment paradigms. 
Existing deployment mechanisms are primarily categorized as reactive (Hawas and Mahmassani,
1997; Pavlis and Papageorgiou, 1999) or anticipatory (Peeta and Mahmassani, 1995; Peeta and 
Zhou, 2002). While reactive approaches do not suffice for capturing the dynamics of network 
spatio-temporal interactions, existing anticipatory mechanisms mostly focus on the effects of 
high-fidelity traffic flow dynamics combined with rudimentary behavior dynamics (see Peeta 
and Yu, 2004, 2006). The proposed behavior-consistent approach represents an anticipatory 
mechanism that is robust in terms of both the traffic flow and behavioral aspects. The study also 
proposes the concept of controllable routes to formally incorporate driver route consideration 
behavioral preferences under information provision. Further, the controllable routes approach 
circumvents a key deployment concern expressed for traditional DTA models, the possibility that 
travelers are “lied to” by the traffic control center (due to its system-level objectives) and 
provided sub-optimal routes thereby affecting their level of trust and credibility in relation to the 
provided information.

The use of a fuzzy logic methodology based on simple if-then rules has key implications for 
modeling realism, deployment convenience, and computational efficiency. It simplifies the 
controller design and results in a computational efficient approach which is a desirable 
characteristic for real-time operations. The adequacy of aggregate level generic if-then rules 
based on system observation and problem characteristics for both the controller-estimated 
behavior modeling and the generation of control strategies circumvents many data needs that 
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would otherwise be required at the level of the individual driver. A synergistic advantage is that 
the calibration of the associated membership function parameters is not required for solution 
accuracy; such calibration only affects computational efficiency in terms of convergence rate. 
This characteristic is confirmed by Paz and Peeta (2008a) who propose an off-line H-infinity 
filtering methodology to optimize the membership function parameters of the fuzzy control 
model leading to significant computational savings. The fuzzy control model also enables the 
simultaneous consideration of quantitative and qualitative variables, an important characteristic 
of information-based route guidance. Peeta and Yu (2004) show that such a fuzzy logic based 
framework can also capture information-related behavioral phenomena over multiple timescales 
in a unified manner.

The study results highlight the complexity of the problem faced by the controller and show 
the effectiveness of the fuzzy control modeling approach to address the multidimensionality and 
nonlinearity of the problem. They also indicate the importance of using a behavior-consistent 
approach to determine the information-based control strategies. The iterative search procedure 
was found to converge always to a stable solution in terms of the proportions of drivers that must 
be recommended to choose routes and/or the linguistic message to provide. A detailed analysis 
of the experiment results suggests that many driver-preferred routes tend to have large behavior-
consistency gaps because large numbers of drivers take these routes independent of information 
provision. This implies that to direct the system towards desired proportions of drivers choosing 
routes, the controller may have to recommend more or less drivers to take some routes depending 
on the network dynamics and driver behavior tendencies. That is, the effects of driver response 
behavior to information provision may require more meaningful strategies than those provided 
under the traditional DTA models to have a reliable estimate/control of system performance. The 
direct use of the solutions from traditional DTA models (proportions of drivers to be assigned to 
various routes) may not result in the controller-desired solutions due to the behavior-consistency 
gap, and can possibly worsen conditions compared to the “no information” scenario.

The problem addressed in this paper is a conceptual sub-problem of the broader traffic 
routing problem that seeks to minimize system travel time in congested traffic networks. Paz and 
Peeta (2007) illustrate the effectiveness of the proposed behavior-consistent approach in a rolling 
horizon based deployment context that captures the network-level interactions in terms of traffic 
flow and driver behavior. They suggest that behavior-consistent information-based control 
strategies are superior and entail greater compliance compared to standard DTA-based UE or SO 
strategies. The current study requires controllable routes to have a full overlap between the 
controller-desired and driver-preferred routes. Paz and Peeta (2008b) propose alternative 
paradigms to relax this requirement to provide more flexibility in developing practical 
information-based control strategies. They also explore insights on directing the system towards 
the UE state rather than the SO state as UE routes are more likely to overlap with driver-
preferred routes.

The proposed approach requires an adequate estimation of driver behavior under information 
provision. In this paper, the controller-estimated driver behavior model is assumed to provide 
reasonable estimates. In other work (Paz and Peeta, 2008c), the authors propose an on-line 
calibration procedure that enables the simultaneous on-line determination of behavior-consistent 
information strategies and the calibration of the controller-estimated model parameters.

The behavior-consistent framework focuses on personalized information. As generic 
information is a popular information dissemination mechanism, it would be useful to extend the 
framework to disseminate multiple types of information. An advantage of the proposed fuzzy 
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logic based methodology is its amenability to incorporating personalized and generic information 
simultaneously.
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Table 1 
Behavioral if-then rules for the rule-based controller-estimated driver behavior model

Category LHS RHS

If T is Very Low (VL) Driver will choose the alternative (O)

If T is Low (L) Driver will probably choose the alternative (PO)

If T is Medium (M) Driver is indifferent to the alternative (I)

If T is High (H) Driver probably will not choose the alternative (PN)

Controller-
estimated 

driver-
expected 

travel time 
(T)

If T is Very High (VH) Driver will not choose the alternative (N)

If NN is Very Low (VL) Driver will choose the alternative (O)

If NN is Low (L) Driver will probably choose the alternative (PY)

If NN is Medium (M) Driver is indifferent to the alternative (I)

If NN is High (H) Driver probably will not choose the alternative (PN)

Route 
complexity

(NN)

If NN is Very High (VH) Driver will not choose the alternative (N)

If Z is “Very Light Traffic” (VLT) Driver will choose the alternative (Y)

If Z is “Light Traffic” (LT) Driver will probably choose the alternative (PO)

If Z is “Moderate Traffic” (MT) Driver is indifferent to the alternative (I)

If Z is “Heavy Traffic” (HT) Driver probably will not choose the alternative (PN)

Descriptive
information

(Z)
For more 

responsive 
drivers

If Z is “Very Heavy Traffic” (VHT) Driver will not choose the alternative (N)

If Z is “Very Light Traffic” (VLT) Driver will probably choose the alternative (PO)

If Z is “Light Traffic” (LT) Driver is indifferent to the alternative (I)

If Z is “Moderate Traffic” (MT) Driver is indifferent to the alternative (I)

If Z is “Heavy Traffic” (HT) Driver is indifferent to the alternative (I)

Descriptive
information

(Z) 
for less 

responsive 
drivers

If Z is “Very Heavy Traffic” (VHT) Driver probably will not choose the alternative (PN)

If Y is Route is Recommended (RR) Driver will choose the alternative (O)
If Y is Route Was Recommended 
(RWR) Driver will probably choose the alternative (PO)

Prescriptive
information

(Y)
for more 

responsive 
drivers

If Y is Route is Not Recommended
(RNR) Driver will not choose the alternative (N)

If Y is Route is Recommended (RR) Driver will probably choose the alternative (PO)
If Y is Route Was Recommended 
(RWR) Driver is indifferent to the alternative (I)

Prescriptive
information

(Y)
for less 

responsive 
drivers

If Y is Route is Not Recommended 
(RNR) Driver probably will not choose the alternative (PN)
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Table 2 
Control if-then rules used by the fuzzy control model to determine prescriptive and/or descriptive
information

Error (e)
NL NS ZR PS PL

NL NL NL NS NS NS
Change NS NL NS ZR ZR ZR
in Error ZR NL NS ZR PS PL

(Δe) PS ZR ZR ZR PS PL
PL PS PS PS PL PL

where:
NL = Negative large
NS = Negative small
ZR = Zero
PS = Positive small
PL = Positive large
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Fig. 1. Conceptual framework: (a) traditional DTA-based approach, (b) proposed behavior-
consistent approach.
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Fig. 2. Conceptual framework for the behavior-consistent real-time traffic routing problem under 
information provision.
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Fig. 3. Rolling horizon deployment approach.

Estimates of O-D demand from τ = σ·l+1 to τ = σ·l +h required in time 
interval υ = (σ·l – φ), so that the SO solution and the information 
strategies )1( �VU

ijk
θ can be computed before the start of stage σ+1
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Fig. 4. Iterative search procedure and fuzzy control model for the determination of the behavior-
consistent information-based control strategies.
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I~Δ

Fig. 5. Membership functions used by the fuzzy control model to determine prescriptive and 
descriptive information.
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Fig. 6. Borman network showing the sets of driver-preferred routes (zigzag lines) and controller-
desired routes (dashed lines) for a single O-D pair.
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Fig. 7. Results for 100% prescriptive information case: (a) controller-estimated proportion of 
drivers taking routes, (b) proportion of drivers that must be recommended to take specific routes.
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Fig. 8. Results for 100% descriptive information case: (a) controller-estimated proportion of 
drivers taking routes, (b) messages to provide to drivers.
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Fig. 10. Results for 25% prescriptive, 25% descriptive, 25% descriptive and prescriptive, and 
25% no information case: (a) proportion of drivers that must be recommended to take routes, (b) 

messages to provide to drivers.
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