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Abstract A behavior-consistent information-based network control approach determines real-

time traffic routing strategies by explicitly accounting for drivers’ likely response to the

controller-recommended routes while generating these strategies. This paper proposes paradigms

to deploy a behavior-consistent approach developed by the authors (Paz and Peeta, 2007). These

paradigms seek to enhance deployment effectiveness by analyzing the effects of alternative

controller objectives and driver-preferred route sets used to recommend routes. Experiments are

conducted using a test network. They analyze: (i) the performance of the behavior-consistent

approach under commonly-used controller objectives, (ii) the deployment flexibility enabled by

increasing the number of driver-preferred routes considered by the controller for routing, and (iii)

the effects of augmenting the driver-preferred route choice set through various paradigms. The

results suggest that the behavior-consistent approach can perform better than standard dynamic

traffic assignment models while directing the system towards the desired state. They also

illustrate the effectiveness of considering more driver-preferred routes in developing the

information strategies. Further, they suggest that driver-preferred route choice set augmentation

and the associated route types can have differential impacts on performance. Also, performance
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is influenced by trade-offs between the number of driver-preferred routes considered by the

controller for routing and the quality of routes relative to the controller objective. The results

suggest that higher compliance rates may not translate to better performance and question the

justification of user equilibrium solutions for route guidance on the ground that a system optimal

strategy is not behaviorally sustainable.

Keywords Traffic routing · Behavior-consistent strategies· Degree of overlap · Driver route

choice · Deployment paradigms

1 Introduction

The benefits of real-time traffic network control through information provision using Advanced

Traveler Information Systems (ATIS) hinge on the controller’s ability to identify effective

routing strategies that entail high levels of acceptability by drivers. Current efforts to deploy

information provision strategies are primarily concentrated under the umbrella of Dynamic

Traffic Assignment (DTA). However, the behavioral foundations of most DTA models are

idealistic and insufficient to address real-world driver behavior (Peeta and Ziliaskopoulos, 2001).

This is primarily because existing DTA models are not behavior-consistent; they do not

realistically factor the drivers’ likely response towards information while generating these

strategies. They mostly pre-specify driver behavior. Some assume artificial compliance rates to

predict traffic conditions or generate control strategies. Others use the DTA solution route

assignment proportions “as is” for route guidance, and use a feedback loop or a consistency-

checking procedure to correct for prediction errors. Thereby, most approaches do not have

interactive linkages between route recommendations and driver response. Peeta and Yu (2006)

propose a consistency-seeking procedure that updates behavior model parameters in an

operational context based on unfolding field conditions. However, it is also reactive and does not

entail a behavior-consistent paradigm. In summary, DTA models do not simultaneously consider

network flow interactions and behavior realism to develop meaningful information-based

network control strategies.

To address the behavior realism gap of traditional DTA models vis-à-vis determining the

time-dependent traffic flow patterns, Paz and Peeta (2007, 2008a) propose a behavior-consistent
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approach to determine and deploy real-time information-based network control strategies. It

determines the information strategies by explicitly accounting for the drivers’ likely response to

these strategies while determining them. That is, “behavior-consistent” implies that the

information provided to the drivers is determined in such a way that the drivers are likely to

follow the route recommendations because the information is based on an explicit estimation of

the drivers’ likely route choices under the provided information. This implies solving a fixed-

point problem that arises because the information strategies depend on driver behavior and vice

versa. The proposed approach enhances system performance while being consistent with driver

behavior. It also has reduced sensitivity to data needs as it is based on aggregate if-then rules that

preclude the need for information at the individual driver level. These rules relate the route

choice decisions to the routes characteristics, the driver attributes in terms of information

availability, and level of responsiveness to the information strategies. As drivers are likely to use

simple rules and/or a few factors (Nakayama and Kitamura, 2000; Peeta and Yu, 2005) to make

on-line routing decisions due to the associated time constraints, the aggregate if-then rules

consist of simple and straightforward one-dimensional left- and right- hand side components

(Paz and Peeta, 2008b).

The behavior-consistent approach proposed by Paz and Peeta (2007, 2008a) implements a

control mechanism that continuously directs the traffic system towards a desired system state

through information provision. That is, the controller directs the system towards a particular

objective such as the time-dependent system optimal (SO) state. Thereby, the controller may

need to recommend routes for an origin-destination (O-D) pair to more or less drivers than

suggested by the SO DTA solution so as to achieve close to SO route proportions. This is done

using a controller-estimated if-then rules based driver behavior model. Further, the approach uses

the concept of controllable routes to enhance behavior consistency whereby the route

recommended to a driver belongs to the controller’s SO (desired) route set and the preferred

route set for that driver. This increases the likelihood of the recommended route being accepted

by the driver. It also circumvents a key practical concern that potentially arises for ATIS-based

information provision. That is, while some researchers have advocated that drivers could be

persuaded to use SO routes, others (such as Hall, 1996) stress the value of “honest” information,

and that in the long run drivers will resist SO routes that are not user optimal.

While the notion of controllable routes enhances behavior consistency, it may entail practical
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limitations. For example, it is possible that an O-D pair may not have a controllable route as no

controller-determined SO route coincides with a driver-preferred route. This motivates the

consideration of alternative definitions for controllable routes to enable the deployment

effectiveness of the behavior-consistent approach. In this paper, alternative controllable route

paradigms are proposed that entail significant overlap of the controller-determined SO routes

with the driver-preferred routes, but do not require perfect match. This enables the controller to

recommend driver-preferred routes that are not necessarily SO routes, as well as target drivers

who do not consider SO routes. At a more basic level, such a study can shed light on the

interplay between route quality relative to controller objectives and driver real-time route choice

decisions.

By definition, the SO solution entails some long routes which may imply fewer common

routes with the driver-preferred set. While the alternative overlap paradigms represent one

mechanism to increase the controllable route set, another strategy is to use the user equilibrium

(UE) solution as the controller’s objective. This is because UE routes have a more defensible

behavioral rationale, possibly having a greater degree of commonality with the driver-preferred

route set. In this study, we compare the performance of the behavior-consistent approach under

the UE and SO objectives. It should be noted here that the commonly cited advantages of the UE

paradigm over the SO benchmark for standard DTA models do not necessarily apply for the

behavior-consistent approach. Since the behavior-consistent approach provides a trajectory to

approach the desired system state in a manner consistent with individual driver routing decisions,

the limitations arising from the behavioral underpinnings of the standard SO strategy relative to

the UE strategy are obviated. That is, the compliance rates under the behavior-consistent

approach are perceptibly higher than under the standard DTA paradigms (Paz and Peeta, 2007).

Further, the relative gap in compliance rates between UE and SO under the behavior-consistent

approach tends to be smaller than under the standard DTA approach. It suggests that focusing on

the SO paradigm can represent a legitimate deployment alternative with better behavior-

consistent performance, rather than the UE centric focus of the current literature based on the

behavior rationale. This aspect is analyzed in depth in this paper.

A long-term phenomenon vis-à-vis driver behavior under information-based traffic routing is

the influence of learning effects on driver response. Peeta and Yu (2005) show that several

information-related phenomena can manifest over time based on past driving experience and the
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experience with the provided information. These include familiarity, trust in information, inertia,

delusion, freezing, etc. Vaughn et al. (1993) and Bonsall and Joint (1991) present evidence that

drivers may not comply with information perceived to be inaccurate. Over time, these effects and

experiences can lead to changes in the set of routes preferred by a driver. Nakayama and

Kitamura (2000) show that drivers may ignore routes associated with poor travel experience and

remove them from their preferred route sets. By contrast, it is also possible that a driver may add

new alternatives to his/her preferred route set based on positive experiences with a controller-

recommended or a newly-explored route. Hence, the driver-preferred route set can potentially

change over time. The number of routes in the driver-preferred route set is significantly

influenced by the driver’s network familiarity. Familiar drivers are likely to have larger preferred

route sets compared to unfamiliar drivers. While this paper does not consider a day-to-day

learning framework, we explore the effect of increasing the driver-preferred route set with

alternative route type paradigms, and compare the performance of these paradigms from a

deployment perspective.

The remainder of this paper is organized as follows. Section 2 summarizes the solution

framework for the behavior-consistent approach and defines relevant terms. Section 3 describes

the alternative controllable route paradigms proposed in this study. Section 4 discusses

experiments and analyzes their results. Section 5 presents some concluding comments.

2 Behavior-consistent approach

2.1 Solution framework

Fig. 1 depicts the proposed solution framework for the real-world deployment of the behavior-

consistent approach used to influence system performance through information provision. A

comprehensive description of this framework is provided in Paz and Peeta (2007). It illustrates

the case where the controller seeks to direct the system towards the time-dependent SO DTA

state. However, it applies to the UE DTA state or any other controller objective without loss of

generality. It uses a rolling horizon stage-based procedure for a pre-determined planning horizon.

The planning horizon is divided into stages, and a stage is divided into a roll period and a tail

period. In each stage σ, the traffic network field conditions for the current roll period and the
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projected time-dependent O-D demand for the next stage (σ+1) are used to generate the SO DTA

solution for the next stage. This SO DTA solution and an iterative search optimization procedure

are then used to determine the behavior-consistent information-based network control strategies

to provide route guidance to drivers, so that the actual driver decisions in the next roll period

result in close to SO route proportions for the controllable routes. The non-shaded box located in

the middle of the flowchart in Fig. 1 represents the iterative search optimization procedure (Paz

and Peeta, 2008a). It consists of a controller-estimated driver behavior model and a fuzzy control

model. The controller-estimated driver behavior model provides the estimated proportion of

drivers taking routes under the information strategies. It is a fuzzy multinomial logit model with

the systematic component obtained using aggregate if-then rules. The fuzzy control model

represents the search mechanism which includes the determination of the step size and move

direction. At convergence, the iterative search optimization procedure generates the behavior-

consistent proportions of drivers that should be recommended to take specific routes in the next

roll period so as to achieve close to SO proportions. Convergence is achieved when the estimated

proportions of drivers choosing routes do not vary beyond a threshold value across successive

iterations for all controllable routes (Paz and Peeta, 2008a). The stage counter is incremented by

one at the end of the current roll period. In the next roll period, routing information is provided to

a subset of drivers based on the behavior-consistent route proportions. The network performance

for the roll period is obtained using a traffic simulator. If the end of the planning horizon is not

reached at the end of the current roll period, the controller measures the field network conditions

and repeats the entire procedure for the next roll period. Otherwise, the rolling horizon

framework is terminated.

2.2 Definition of terms

While the behavior-consistent approach addresses a real-time problem using a stage-based

procedure, the time dimension is ignored hereafter without loss of generality to simplify the

notation.

Controller-Desired Routes (DK): These are routes that the controller would like the drivers to

choose. Depending on the controller objective, they are the time-dependent SO or UE DTA

routes, which are obtained using current network conditions and projected demand by solving a
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deterministic DTA problem for the appropriate time duration (represented by the stage length in

this paper).

Driver-Preferred Routes (PK): These routes are preferred by the drivers and are likely to be

accepted by them. The estimation of the driver-preferred route set is a key step for any route

choice model. From a technological standpoint, these route sets can be obtained in a

straightforward manner for drivers with personalized information/communication devices

through two-way communication. More generally, they are estimated (Bekhor et al., 2006) based

on historical data collected through travel surveys and/or technologies such as two-way

communication systems and global position systems.

Controllable Routes (CK): These routes belong to both controller-desired and driver-

preferred route sets. In the behavior-consistent approach, they represent the set of routes used by

the controller to influence system performance.

Degree of Overlap (DOV): The degree of overlap DOVijk for a driver-preferred route k

(kPKij) from origin i to destination j, is a fraction defined by the maximum amount of common

link length between that route and any controller-desired route m (mDKij) divided by the length

of the driver-preferred route (k):














 


 aijm
Γa
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ijk
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ij

l
L

DOV max
1

;  i, j, kPKij (1)

where

Γijk set of links on route k connecting O-D pair ij, kPKij

la length of link a

Lijk length of route k, kPKij

Θaijm

link-route incidence dummy; 1 if route m connecting O-D pair ij includes link a, and 0

otherwise

Threshold degree of overlap (λ): Minimum degree of overlap at which a driver-preferred

route (kPK) is accepted as a controllable route (kCK).
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3 Control and controllable route paradigms

As stated in Section 1, this study focuses on identifying mechanisms to increase the controllable

route set to enhance deployment effectiveness of the behavior-consistent approach. Another

positive outcome of increasing the controllable route set is that it diffuses the effects of errors in

estimating the driver-preferred route sets. This is because the controller has more options to

recommend and the likelihood of recommending a route that does not belong to the actual driver-

preferred set decreases. The paradigms discussed hereafter seek to increase the controllable route

sets relative to the SO-based behavior-consistent approach.

3.1 SO and UE control paradigms

Under the SO paradigm developed in previous work (Paz and Peeta, 2007, 2008a), the controller

seeks to direct the system towards the SO DTA state. Hence, for O-D pair ij, the controller-

desired route set is its time-dependent SO route set SOKij, and the controllable route set is the

subset of driver-preferred routes for that O-D pair across all drivers that perfectly match routes in

SOKij. This paradigm, labeled as BC-SO-info, is expressed as follows:

kCKij ⇔ k{SOKij∩ PKij } (2)

Paz and Peeta (2007) show that the behavior-consistent approach using the SO control paradigm

results in better performance than traditional DTA-based approaches while being behaviorally

realistic.

Under the UE control paradigm, the controller seeks to direct the system towards the UE

DTA state. In this case, for O-D pair ij, the controller-desired route set is its time-dependent UE

route set UEKij. The controllable route set is the subset of driver-preferred routes for that O-D

pair across all drivers that perfectly coincide with routes in UEKij. This paradigm, labeled as BC-

UE-info, is expressed as follows:

kCKij ⇔ k{UEKij∩ PKij } (3)

As stated in Section 1, the behavioral underpinnings of UE routes typically make them more



Deployment Paradigms for Behavior-consistent Real-time Traffic Routing Under Information Provision 9

likely to overlap with driver-preferred routes, leading to a potential increase in the controllable

route set compared to the SO control paradigm. However, as illustrated in Section 4, this does

not necessarily translate into better system performance. Hence, the controllable route paradigms

proposed in Section 3.2 are based on the SO control paradigm.

3.2 Controllable route paradigms

3.2.1 Degree of overlap paradigms

These paradigms use the DOV to define the controllable route sets.

3.2.1.1 1st DOV paradigm

The 1st DOV paradigm is called the “full overlap paradigm”. This is an all-or-nothing approach

where only driver-preferred routes that fully overlap (match) with controller-desired routes are

classified as controllable routes. That is, only driver-preferred routes with a degree of overlap

equal to 1 are classified as controllable. This paradigm is expressed as follows:

kCKij ⇔ DOVijk = 1 (4)

As discussed in Section 1, Paz and Peeta (2007, 2008a) use this paradigm to analyze the

performance of the behavior-consistent approach. However, the strict match requirement can

preclude the consideration of “good” route alternatives in the driver-preferred route sets that

significantly overlap with the controller-desired routes, potentially limiting deployment

effectiveness. This represents the motivation for the 2nd and 3rd DOV paradigms. Under these

paradigms, the controller uses threshold DOV related rules to treat appropriate driver-preferred

routes as controller-desired routes, and consequently as controllable routes.

3.2.1.2 2nd DOV paradigm
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The 2nd DOV paradigm is labeled the “threshold degree of overlap paradigm”. Here, a threshold

DOV value is pre-specified and only driver-preferred routes with DOV values greater than or

equal to this threshold are classified as controllable. This paradigm can be represented as

follows:

kCKij ⇔ DOVijk ≥  (5)

where  is an external parameter specified by the user to evaluate the effect of increasing or

decreasing the DOV required for a route to become controllable. This paradigm potentially

provides more deployment options to the controller when compared to the 1st DOV paradigm.

However, it precludes the consideration of the effects of alternative combinations of controllable

routes beyond the combination that satisfies the pre-specified threshold. Presumably, other

combinations could result in a more favorable performance. This motivates the next DOV

paradigm.

3.2.1.3 3rd DOV paradigm

The 3rd DOV paradigm is called the “combination degree of overlap paradigm”. It uses various

threshold DOV values and an error function to identify the set of controllable routes. The error

function computes the total error TEij for O-D pair ij, defined as the summation over the set of

controllable routes CKij of the absolute difference between the controller-desired proportion of

drivers SOijk (kCKij) taking those routes and the corresponding controller-estimated proportion

of drivers choosing those routes Eijk (kCKij) obtained at the convergence of the iterative search

procedure. In the iterative search procedure described in Section 2.1, the controller-estimated

driver behavior model is used to compute Eijk for each iteration. Hence, Eijk is the result of

estimating individual route choices over the set of driver-preferred routes. TEij can be expressed

as:

ijTE =  
 ijCKk

ijkijk ESO || (6)
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Under this paradigm, two threshold DOV values, L and U are pre-defined. L is a lower

threshold value and U is an upper threshold value. These threshold values and the total error are

used as part of a systematic three-step procedure to identify the controllable route set:

Step 1: Driver-preferred routes that perfectly match (DOV=1) controller-desired routes are

classified as controllable, and represent the initial set of controllable routes 1
ijCK for O-D pair ij.

This is equivalent to the 1st DOV paradigm:

k 1
ijCK ⇔ DOVijk = 1 (7)

Step 2: In this step, at most one additional driver-preferred route is identified as controllable

using the heuristic rules of Eq. (8). That is, 2
ijCK , an updated set of controllable routes has at most

one route more than 1
ijCK . This additional route, if it exists, is the one with the lowest TEij

among all driver-preferred routes not in 1
ijCK which also has a DOV value greater than or equal

to U. In Eq. (8), 1
ijCK ’ denotes the complement of the set 1

ijCK .

k 2
ijCK ⇔ (k 1

ijCK ) U { k | (DOVijk ≥ U) ∩ [TEij(
1
ijCK U k) ≤ TEij(

1
ijCK U m)

 k, m(PKij∩
1
ijCK ’)]}

(8)

Step 3: As in Step 2, at most one additional driver-preferred route is identified as controllable

using the heuristic rules of Eq. (9). That is, CKij, the final set of controllable routes identified

using the 3rd DOV paradigm has at most one route more than 2
ijCK . This additional route, if it

exists, is the one with the lowest TEij among all driver-preferred routes not in 2
ijCK which also

has a DOV value greater than or equal to L.

kCKij⇔ (k 2
ijCK ) U { k | (DOVijk ≥ L) ∩ [TEij(

2
ijCK U k) ≤ TEij(

2
ijCK U m) (9)
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 k, m(PKij∩
2
ijCK ’)]}

The last two steps of this paradigm partly include implementing the 2nd DOV paradigm for

two different threshold values. Since, in each of these steps, the route possibly added to the

controllable route set has the smallest total error among all routes that could be considered, this

paradigm is more sensitive to the impact on the total error of adding a route.

3.2.2 Route type paradigms

These paradigms increase the controllable route set by adding a route according to a specific

route type rule.

3.2.2.1 1st route type paradigm

This paradigm is labeled the “maximum SO route type paradigm”. The controller-desired route

to be added to the driver-preferred route set is that route, if it exists, with the highest SO

proportion that does not belong to the initial driver-preferred route set 0r
ijPK . The driver-preferred

route set according to this paradigm is denoted by r
ijPK . It is expressed as follows:

k r
ijPK ⇔ {(k 0r

ijPK ) U [ k | (SOijk ≥ SOijm  mDKij, m 0r
ijPK ) ∩ (k 0r

ijPK )]} (10)

The motivation for this paradigm is that by adding a SO route with high routing proportion to the

driver-preferred set, the system performance can potentially be enhanced. However, due to the

nature of the SO solution, there is a possibility that the added route may be significantly longer

than those in 0r
ijPK , and drivers may ignore it. This is the motivation for the next paradigm.

3.2.2.2 2nd route type paradigm
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This paradigm is called the “maximum degree of overlap route type paradigm”. It is conceptually

similar to the second route type paradigm, but adds the controller-desired (SO) route that does

not belong to 0r
ijPK and has the highest associated DOV with a driver-preferred route. It can be

expressed as follows:

k r
ijPK ⇔ {(k 0r

ijPK ) U [ k | (DOVijk ≥ DOVijm  k, m DKij) ∩ (k 0r
ijPK )]} (11)

Akin to the first two DOV paradigms, this paradigm does not use driver behavior to determine

the enhanced controllable route sets. This represents the motivation for the next paradigm.

3.2.2.3 3rd route type paradigm

This paradigm is labeled the “combination route type paradigm”. Similar to the 3rd DOV

paradigm, this paradigm adds the controller-desired route that does not belong to 0r
ijPK and results

in the lowest TEij. This paradigm is expressed as follows:

k r
ijPK ⇔ {(k 0r

ijPK ) U [ k | TEij(
0
ijPK U k) ≤ TEij(

0
ijPK U m)  k, m DKij] ∩ (k 0r

ijPK

)}
(12)

This paradigm is likely to perform at least as well as the previous two paradigms because it

considers the expected driver response in the determination of the driver-preferred route set

while seeking to minimize the total error.

4 Experiments

Simulation experiments are conducted using the solution framework for the behavior-consistent

approach (Fig. 1) to address three primary objectives: (i) evaluate the sensitivity of the approach

under alternative definitions for the set of controllable routes, (ii) analyze mechanisms to

enhance the performance of the approach, and (iii) enhance deployment effectiveness. These

objectives are assessed based on the system travel time savings that result from each deployment
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paradigm.

4.1 Experimental setup

This section describes the experimental setup used to address the above objectives. Several

aspects of the experimental setup in terms of network and behavior characteristics are described

hereafter.

4.1.1 Network characteristics

Experiments are conducted using the network illustrated in Fig. 2. It corresponds to the Borman

expressway corridor network which is located in northwest Indiana and consists of a sixteen-mile

section of I-80/94 (Borman expressway), I-90 toll freeway, I-65, and the surrounding arterials

and streets. The network has 197 nodes, 460 links, and 43 zones (with centroids that represent

origins/destinations). The Borman expressway serves a large amount of semi-trailer truck traffic

and experiences high congestion levels. To manage traffic, especially under incidents, an ATIS

was installed on the Borman network to provide drivers with real-time traffic information.

Depending on the destination, several alternative routes can be used to divert traffic.

4.1.2 Actual driver behavior model

A model with a completely different structure compared to the rule-based controller-estimated

driver behavior model is used to represent the actual behavior of the drivers. This is to ensure

that the analysis is conservative in terms of the performance of the behavior-consistent approach.

The model used here corresponds to a random coefficients multinomial path-size logit model. It

uses travel time, number of nodes, a path-size component (Ben-Akiva and Bierlaire, 1999,

Ramming, 2002) to capture the overlap between routes, and the route recommendation provided

by the controller to represent actual driver behavior. The model is described in detail in Paz and

Peeta (2007).

4.1.3 Level of responsiveness
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Two levels of driver responsiveness to the information strategies are used to analyze the

performance of the behavior-consistent approach. The first level of responsiveness defines the

“less responsive” drivers. These are drivers that are slightly influenced by the information

provided. They rely more on their past experience and behavioral tendencies to make route

choice decisions than on the traffic information. The second level of responsiveness defines the

“more responsive” drivers. These drivers are more influenced by the information than the first

type of drivers. They are more likely to accept the route recommended by the controller. The

details of these driver types for the controller-estimated and actual behavior models are provided

in Paz and Peeta (2007).

4.1.4 Traffic flow simulation and assignment model

A traffic simulation-assignment model, DYNASMART, is used to model the network dynamics

and determine the SO solution. The DTA module of DYNASMART is used in each stage to

determine the SO solution that is required by the behavior-consistent approach. The traffic flow

simulator module of DYNASMART is used to replicate traffic flow so as to evaluate the

performance of the system under the time-dependent demand and driver route choice decisions.

The model used to represent the actual driver behavior (discussed in Section 4.1.2) is embedded

in DYNASMART to provide pre-trip and en-route routing capabilities. A comprehensive

exposition of DYNASMART and a discussion of its capabilities are provided in Mahmassani

(2001) and Chiu (2002), respectively.

4.1.5 Estimation of the driver-preferred route sets

The initial driver-preferred route sets are estimated using a two-step approach. First, a UE DTA

problem is solved for the entire planning horizon using an average time-dependent demand

matrix. These UE routes represent the initial set of routes used as input in the second step.

Second, the initial route set and the controller-estimated driver behavior model are used to

determine the route choice proportions. Then, several simulation runs are conducted in a

sequential manner as follows. A random-number generator is used to allocate a route to a driver

in each run consistent with the route choice proportions. The actual route taken by the driver is
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based on the allocated route information, the controller-estimated driver behavior model, and the

controller-estimated expected travel time for each driver. Hence, each run can generate several

new routes for each O-D pair. The output from a run, in terms of the actual route chosen by the

driver and the updated expected link travel times for the UE routes (which update the UE route

choice proportions for random allocation in the next run), are used sequentially for the next run.

This process is repeated several times. Then, the top five routes (or as many as available, if the

number of routes is less than five) taken by the set of drivers for an O-D pair are assumed to

represent the driver-preferred route set. This approach is designed to represent the learning

process that most drivers experience over time to determine their preferred route choice set. It is

based on the premise that drivers consider only a subset of the routes connecting O-D pairs based

on past experience and imperfect/incomplete knowledge of the current field network conditions.

4.1.6 Other details for experiments

Different scenarios are used to evaluate the performance of the behavior-consistent approach

under each of the proposed paradigms. All drivers are assumed to have capabilities to receive

personalized information in all scenarios except for the no-information case. This is designed to

isolate effects and enable equitable comparison of the effects of the different control paradigms.

In all scenarios, other than the SO and UE DTA cases, the same model is used to represent

the actual driver behavior (as discussed in Section 4.1.2). This is done so as to ensure that the

insights are focused on the relative performance of the behavior-consistent approach. Similarly,

all drivers with the same O-D pair are assumed to have the same set of driver-preferred routes. A

total of 120,000 vehicles are loaded during the first 60 minutes of analysis. Each stage of the

rolling horizon has a length of 20 minutes and a roll period of 5 minutes.

4.1.7 Benchmark scenarios for experiments

Three scenarios are used to benchmark the performance of other scenarios.

Scenario I (base-case): No information is provided to the drivers. It is the do-nothing strategy

and represents the base-case. Here, drivers make route choice decisions based only on past

experience.
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Scenario II (SO DTA): This is the SO DTA solution. By definition, it represents the

theoretical best possible system performance.

Scenario III (BC-ideal): Under this scenario, the driver-preferred route set is assumed to be

identical to the controller-desired (SO DTA) route set. So, the controller recommends routes

from the SO DTA route set under the behavior-consistent approach, and the drivers choose

routes from the SO DTA route set as well as it represents their preferred-route set. Thereby,

though practically unrealistic, this scenario represents the benchmark for the best possible

performance for the behavior-consistent approach because the controller can use its “ideal” route

set (SO routes) to recommend routes. Hence, it is more meaningful to compare the performance

of other behavior-consistent paradigms with this benchmark rather than the SO DTA solution.

However, the system performance under this scenario cannot exceed the SO DTA performance

because routes are chosen by the drivers based on their behavioral tendencies though they are

recommended the SO routes.

4.2 Results and analysis

The following simulation scenarios are designed to evaluate each paradigm described in Section

3. Scenarios IV to VIII are described in Section 4.2.1. Scenarios IV to VI are used as additional

benchmarks for the control paradigms while Scenarios VII and VIII are used to evaluate the

control paradigms. Scenarios IX to XII are described in Section 4.2.2 and are used to evaluate

the DOV paradigms. Scenarios XIII to XV are described in Section 4.2.3 and are used to evaluate

the route type paradigms.

4.2.1 Control paradigms

Three other benchmark scenarios are evaluated here: one for the UE DTA, and one each for the

routing using SO and UE DTA solution routing proportions. Two scenarios related to the control

paradigms are analyzed: one each for the behavior-consistent approach directing the traffic

system towards the SO or UE states. Figs. 3 and 4 show the percentage cumulative system travel

time savings relative to the base-case (where no information is provided) for each of these

scenarios under the less and more responsive behavior cases, respectively.
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Scenario IV (UE DTA): This is the UE DTA solution. As is well-known in the literature,

Figs. 3 and 4 indicate significant travel time savings with respect to the base-case scenario

(Scenario I) but not as much as under Scenarios II and III.

Scenario V (SO-info): SO routes and their corresponding proportions are used to provide

route guidance. These SO routes may or may not match driver-preferred routes. A driver

completely ignores information provided about routes that do not belong to his/her preferred

route choice set. This scenario is used to illustrate the effects of directly using the SO DTA

solution to provide information. As shown in Fig. 3, while this scenario results in travel time

savings relative to the base-case for the less responsive behavior case, there is a substantial

performance gap compared to the SO and UE DTA solutions. Paz and Peeta (2007) illustrate that

the SO-info scenario can perform worse than the base-case under more responsive behavior. This

illustrates trade-offs between level of compliance and overreaction, implying that lack of

behavior consistency can result in poor information-based control strategies.

Scenario VI (UE-info): This scenario is conceptually similar to Scenario V. However, instead

of using SO routes, it uses UE routes and their corresponding proportions to provide route

guidance. This scenario is used to illustrate the implications of directly using the UE DTA

solution to provide information. Fig. 3 shows that while the UE-info scenario has savings over

the base-case, its performance is worse than that of the SO-info scenario, indicating the inherent

value of the SO objective. However, this difference is small, suggesting the existence of trade-

offs between the number of controllable routes and the quality of routes relative to the controller

objective. Fig. 5 illustrates that the UE-info scenario has higher compliance rates compared to

the SO-info scenario. As discussed in Section 1, this is because more UE routes match driver-

preferred routes compared to SO routes. However, higher compliance rates may not translate to

better performance. It questions the justification of the focus on UE for route guidance based on

the notion that the SO strategy is not behaviorally sustainable. This point is further illustrated in

the next two scenarios where behavior-consistent strategies are used.

Scenario VII (BC-SO-info or 1st DOV paradigm BC-SO-info): Here, the controller uses the

behavior-consistent approach to direct the system towards the SO DTA state. This scenario

corresponds to basic behavior-consistent approach where information is provided for only the

driver-preferred routes that fully match with controller-desired routes. As shown in Figs. 3 and 4,

the system performance under this paradigm results in significant travel time savings relative to
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the SO-info and UE-info scenarios. It highlights the value of developing behavior-consistent

strategies, which leads to significantly higher compliance rates (Fig. 5). However, the BC-SO-

info scenario results in fewer savings compared to the idealized SO or UE DTA scenarios which

unrealistically assume 100% compliance with the corresponding routing strategies. In reality, the

controller has only limited control over the system as drivers make route choice decisions using

several factors.

Scenario VIII (BC-UE-info with λ = 1): Here, the controller uses the behavior-consistent

approach to direct the system towards the UE DTA state. Akin to the previous scenario, the

controller recommends routes using only driver-preferred routes that fully match with controller-

desired routes. The BC-UE-info scenario performs better than the SO-info and UE-info scenarios

because of the behavior-consistent approach. It implies that the controller can significantly

enhance system performance by directing the system towards either the SO or the UE DTA

states in a behavior-consistent manner. However, for the reasons discussed under Scenario VI, it

does not perform as well as the BC-SO-info scenario.

Figs. 3 and 4 indicate that the gap between SO DTA and BC-SO-info is larger than the gap

between UE DTA and BC-UE-info. As discussed in Section 3.1, this is because there are more

controllable routes under BC-UE-info that under BC-SO-info. Hence, the controller has more

options to approach to its objective when it seeks the UE state. For the reasons discussed in

Scenarios VI and VIII, the BC-SO-info scenario performs better than the BC-UE-info scenario.

This is in contrast to most of the current literature that advocates UE-based information strategies

over SO-based ones. While many route guidance models (e.g., Mahmassani et al., 1994, Ben-

Akiva et al., 1997) include both SO and UE as driver classes, there is a marked bias to

considering the UE solution as the preferred approach for route guidance, while the SO solution

is typically relegated to being an upper bound or justified only for special cases such as incident

management. Stier-Moses (2004) and Jahn et al., (2005) discuss the inefficiency of UE-based

information strategies. They propose the use of SO-based constrained routing approaches, where

a static SO problem is solved while precluding relatively long routes from being included in the

solution to generate a better routing approach compared to UE.

Fig. 6 illustrates that there are more controllable routes when the behavior-consistent

approach seeks to direct the system towards the UE state rather than towards the SO state. This is

consistent with the earlier discussion on UE strategies entailing higher compliance rates
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compared to SO ones. In general, more controllable routes imply higher compliance rates under

the behavior-consistent approach. Fig. 7 shows the compliance rates for the BC-UE-info and BC-

SO-info scenarios under the two levels of responsiveness. As expected, the compliance rates are

higher for the “more responsive” case under both the UE and SO strategies.

4.2.2 Degree of overlap paradigms

The 1st DOV paradigm corresponds to Scenario VII. Two scenarios each are evaluated for the 2nd

and 3rd DOV paradigms. Figs. 8 and 9 plot the percentage cumulative system travel time savings

relative to the base-case scenario for these scenarios for less and more responsive drivers,

respectively.

Scenario IX (2nd DOV paradigm BC-SO-info λ = 0.90): This scenario implements the

threshold DOV paradigm with λ equal to 0.90. The results indicate that scenario enhances system

performance relative to the 1st DOV paradigm. It implies that additional “good quality”

controllable routes are available for traffic routing as λ is relatively high. Thereby, there are some

driver-preferred routes that are almost identical to some controller-desired routes. This is a case

where the number of routes added to the controllable set and their quality are significant enough

to positively affect performance.

Scenario X (2nd DOV paradigm BC-SO-info λ = 0.80): When λ equal to 0.80 is used, the

trade-offs between the number of routes and route quality become apparent. Hence, while this

scenario performs better than the base-case, it does worse than the 1st DOV paradigm. The trade-

offs are nicely illustrated in Fig. 10 which shows the system travel time savings relative to the

base-case for various λ values under the less responsive behavior. As the λ value decreases from

1, more routes are identified as controllable though their quality degrades relative to the

controller objective. Initially, the presence of more controllable routes improves performance

beyond the 1st DOV paradigm, but as λ is decreased further, the negative effect of route quality

kicks in. In the context of route guidance, this implies that simply increasing the number of

routing options does not necessarily imply better performance, and the effectiveness of a route

vis-à-vis the controller objective is as important.

Scenario XI (3rd DOV paradigm BC-SO-info λU = 0.90 & λL = 0.80): This scenario represents

the 3rd DOV paradigm with λU equal to 0.90 and λL equal to 0.80. Fig. 8 shows that this scenario
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performs worse than Scenario IX and about the same as the 1st DOV paradigm. For the more

responsive case (Fig. 9), it performs similar to Scenario IX. This suggests that there may not be a

need for the complex approach represented by the 3rd DOV paradigm, and the 2nd DOV paradigm

is sufficient to achieve comparative results. The performance of the 3rd DOV paradigm is not

superior because at most it adds one route each in the last two steps of its approach, while

Scenario IX can add several good quality routes as part of its paradigm.

Scenario XII (3rd DOV paradigm BC-SO-info λU = 0.85 & λL = 0.75): The savings under this

scenario are lower than under Scenario XI. This is expected based on the 2nd DOV paradigm

insights relative to the value of λ (Fig. 10); the quality of the additional controllable routes is not

significant enough to positively affect performance.

Figs. 8 and 9 also illustrate that the BC-UE-info strategy does not perform as well as

Scenarios IX and XI, both of which perform at least as well or better than the BC-SO-info

strategy with λ equal to 1. This further corroborates the insights discussed in Section 4.2.1 on the

relative value of SO-based strategies.

In summary, the 2nd DOV paradigm with a high λ value provides the best approach to

enhance system performance beyond that under the 1st DOV paradigm.

4.2.3 Route type paradigms

Each BC-SO-info route type paradigm described in Section 3.2.2 is associated with one scenario.

Figs. 11 and 12 depict the percentage cumulative system travel time savings relative to the base-

case for less and more responsive drivers, respectively. It should be noted here that the three

scenarios discussed hereafter, Scenarios XIII-XV, have a larger driver-preferred route set (one

more route) compared to Scenarios IV-XII, and hence, may have an a priori advantage over

them. This is confirmed in Figs. 11 and 12, where the performance of Scenarios XIII-XV is at

least as good as or better than the various DOV paradigm based scenarios.

Scenario XIII (1st route type BC-SO-info): This scenario performs better than the 1st DOV

paradigm. This is because for each O-D pair one additional controller-desired route is likely to

become a driver-preferred route, providing more options to the controller.

Scenario XIV (2nd route type BC-SO-info): The results under this scenario are very similar to

the ones under the previous scenario. This implies that adding the SO route that overlaps the
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most with a driver-preferred route is as effective, in terms of system performance, as adding the

route with the highest SO proportion. From the behavior-consistent approach perspective, this

suggests that the 2nd route type paradigm may suffice compared to exploring the 1st route type

paradigm as its focus is on the degree of overlap.

Scenario XV (3rd route type BC-SO-info): This scenario performs better than Scenarios XIII

and XIV. This is because it uses the estimation of driver behavior to select the controller-desired

route to add to the driver-preferred route set that minimizes the total error. It corroborates the

importance of behavior-consistent approaches for the development of information-based network

control strategies.

The travel time savings illustrated in Figs. 8, 9, 11 and 12 indicate how various paradigms

perform relative to the BC-ideal and full overlap paradigms. The objective of the analysis is to

obtain insights on the tradeoffs offered by the various paradigms and specific trends (Fig. 10)

that can aid deployment strategies. As noted before, the BC-ideal case is an idealized strategy

and the full overlap paradigm may have deployment limitations. Hence, the experiments seek to

explore potential alternative paradigms in terms of their deployment effectiveness.

5 Concluding comments

This paper proposes alternative paradigms to enhance the performance and the deployment

effectiveness of a behavior-consistent information-based network control approach (Paz and

Peeta, 2007). It compares the performance and compliance aspects associated with directing the

system towards the UE or SO states. It evaluates the sensitivity of the behavior-consistent

approach under various definitions for the sets of controllable and driver-preferred routes so as to

improve performance and analyze practical aspects to enhance deployment effectiveness.

The study captures the interdependencies between network interactions and driver response

to information by explicitly focusing on the acceptability of routes to drivers, the quality of those

routes relative to the controller objective, and ensuring behavior consistency in route

recommendations. Existing approaches, addressed primarily under the DTA label, tend to mostly

focus on adequately capturing the network flow interactions and dynamics, while making strong

assumptions on driver behavior under information provision.

Broadly, the study results confirm the primary finding of the behavior-consistent approach
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proposed previously by the authors (Paz and Peeta, 2007; 2008a); the simultaneous consideration

of controller objectives and driver behavior is essential to identifying realistic and superior

information-based control strategies. Here, “realistic” implies that the expectation of the

controller in terms of the likely response of drivers to the route recommendations is a reasonable

representation of the evolving network conditions. The superior performance is due to the

explicit assurance of behavior consistency, thereby preventing the possibility that the controller

may over-recommend or under-recommend routes, or recommend routes that are not considered

by the drivers.

A key insight from this study is that there are trade-offs between the number of driver-

preferred routes considered by the controller for routing and the quality of routes relative to the

controller objective. They manifest during the investigation of alternative control (SO and UE)

and DOV paradigms. In the control paradigm context, the results suggest that while a larger

percentage of UE routes match driver-preferred routes, the inherent quality of the SO solution

has intrinsic value. That is, even when routing is performed in a behavior-consistent manner,

higher compliance rates need not necessarily translate to better system performance. This

questions the justification of UE DTA solutions for route guidance on the ground that a SO

strategy is not behaviorally sustainable or implies unfair routing recommendations. A

fundamental corollary is that focusing primarily on robustly addressing either driver behavior

(enhancing compliance) or controller objective (quality of routes) while representing the other

aspect in a rudimentary manner is not adequate to ensure effective performance in the real-world.

That is, approaches driven primarily by either network traffic flow modeling or behavior

modeling do not suffice, implying the need for models with explicit supply-demand integration.

The trade-offs between the number and quality of routes are further illustrated by the DOV

paradigm experiments (as shown in Fig. 10). In these paradigms, higher threshold DOV values

are associated with better quality of routes, but may lead to fewer controllable routes. Hence, the

trade-offs lead to an “optimal” threshold DOV value at which the system performs the best. The

system performance deteriorates dramatically as the threshold DOV value decreases from the

“optimal” value, and at some point this paradigm may not generate savings over even the base-

case.

Over time, the learning processes of drivers vis-à-vis route guidance can alter their preferred-

route choice set. The controller can potentially influence this process by providing “new” routes
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based on its objectives and by factoring driver preferences. For example, these can be controller-

desired routes that highly overlap driver-preferred routes. Hence, they are likely to be accepted

as new preferred-route alternatives by the drivers, increasing the controller’s ability to enhance

system performance.

The use of the controller-estimated driver behavior model in the behavior-consistent

approach to determine the routes to be recommended to drivers and to identify new driver-

preferred routes is a key element of the behavior-consistent approach. There are numerous route

choice models in the literature that can potentially be used to meaningfully estimate driver route

choice decisions and calibrate the associated model parameters. For example, Peeta and Yu

(2006) propose a consistency-seeking mechanism for a hybrid route choice model (Peeta and Yu,

2005) that updates the model parameters on-line. In on-going work, the authors develop an on-

line consistency-seeking model that calibrates the parameters of the proposed rule-based

controller-estimated driver behavior model using field data to minimize the difference between

the actual and the estimated network states in terms of link volumes. It closes the loop for the

deployment of the behavior-consistent approach by enabling the simultaneous on-line

determination of the behavior-consistent information strategies and the calibration of the

controller-estimated model parameters.
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Fig. 1 Solution framework for the behavior-consistent traffic routing problem under information
provision
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Fig. 2 Borman network
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Fig. 3 Cumulative system travel time savings under the less responsive behavior benchmarked
against the no-information case (base-case)
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Fig. 4 Cumulative system travel time savings under the more responsive behavior benchmarked
against the no-information case (base-case)
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Fig. 5 Compliance rates for the less responsive behavior case under the standard DTA and
behavior-consistent approaches
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Fig. 6 Percentage of driver-preferred routes matching UE and SO routes
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Fig. 7 Compliance rates for more and less responsive behaviors
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Fig. 8 Cumulative system travel time savings under the less responsive behavior relative to the
base-case for the DOV paradigms
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Fig. 9 Cumulative system travel time savings under the more responsive behavior relative to the
base-case for the DOV paradigms
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Fig. 10 System travel time savings under the less responsive behavior relative to the base-case
versus the DOV
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Fig. 11 Cumulative system travel time savings under the less responsive behavior relative to the
base-case for route type paradigms
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