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Abstract: This paper proposes a behavior-based consistency-seeking (BBCS) model as an 
alternative to the dynamic traffic assignment paradigm for the real-time control of traffic systems 
under information provision. The BBCS framework uses a hybrid probabilistic-possibilistic 
model to capture the day-to-day evolution and the within-day dynamics of individual driver 
behavior. It considers heterogeneous driver classes based on the broad behavioral characteristics 
of drivers elicited from surveys and past studies on driver behavior. Fuzzy logic and if-then rules 
are used to model the various driver behavior classes. The approach enables the modeling of 
information characteristics and driver response to be more consistent with the real-world. The 
day-to-day evolution of driver behavior characteristics is reflected by updating the appropriate 
model parameters based on the current day’s experience. The within-day behavioral dynamics 
are reactive and capture drivers’ actions vis-à-vis the ambient driving conditions by updating the 
weights associated with the relevant if-then rules. The BBCS model is deployed by updating the 
ambient driver behavior class fractions so as to ensure consistency with the real-time traffic 
sensor measurements. Simulation experiments are conducted to investigate the real-time 
applicability of the proposed framework to a real-world network. The results suggest that the 
approach can reasonably capture the within-day variations in driver behavior model parameters 
and class fractions in the traffic stream. Also, they indicate that deployment-capable information 
strategies can be used to influence system performance. From a computational standpoint, the 
approach is real-time deployable.  
 

Key words: Real-time deployment, consistency-seeking, hybrid route choice model, real-time 
information. 
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1. Introduction  
 

The real-time deployment of a dynamic traffic assignment (DTA) system is a critical 
operational problem in the context of Advanced Traveler Information Systems (ATIS). The 
primary functional capabilities of a DTA system for ATIS operations are to predict the network 
state over time and to provide routing information to drivers consistent with some individual 
and/or system-wide objectives. However, while conceptually elegant, there are significant 
barriers to the deployment of a DTA model for real-time operations. Driver behavior is a 
fundamental determinant of the traffic network states unfolding over time. The current DTA 
literature does not model driver behavior realistically. This is partly because most DTA models 
assume rigid behavioral tendencies a priori, and commonly categorize drivers into classes such 
as user equilibrium (UE), system optimal (SO), boundedly-rational (BR), stochastic user 
equilibrium (SUE), pre-specified/fixed route, deluded equilibrium, and combinations thereof (for 
example, Peeta and Mahmassani, 1995; Lo et al., 1996; Nakayama et al., 1999). These classes 
are also assumed to reflect the amount of information availability to drivers and/or the 
information supply strategy of system controllers or information service providers. The models 
then analyze the time-dependent interactions of the various driver behavior classes assuming that 
instantaneous or anticipatory travel costs are the primary basis for route choice. 

From a deployment perspective, DTA models can be classified into iterative, reactive and 
hybrid types. Iterative DTA models solve for the optimal routes based on some pre-specified 
system-wide and/or individual driver behavior class objectives using an iterative search process 
that projects future traffic conditions (for a detailed review, see Peeta and Ziliaskopoulos, 2001). 
Reactive DTA models use instantaneous and/or local traffic information to predict the routes by 
focusing more on the real-time computational tractability (Hawas and Mahmassani, 1997; Pavlis 
and Papageorgiou, 1999; Peeta and Yang, 2003). Hybrid DTA models (Peeta and Zhou, 2002) 
exploit both historical and current traffic information by combining off-line and real-time 
computational components so that the real-time solution update strategies are computationally 
efficient. However, only a few DTA models consider heterogeneous driver behavior. Even these 
models are behaviorally restrictive, and assume that the driver behavior classes are pre-specified, 
where a driver behavior class is defined as a group of drivers who are behaviorally 
homogeneous. Further, they assume that the driver behavior class fractions in the ambient traffic 
stream are known deterministically a priori. This is a strong assumption in reality based on the 
current progress of technology. In the real-world, the natural mechanism for driver route choice, 
even under information provision, is based on the driver’s innate behavioral tendencies, past 
experience, situational factors (such as time-of-day, weather conditions, and trip purpose), and 
the ambient traffic conditions encountered. This is true irrespective of whether drivers receive 
personalized, generic, or no information. While information provision and content can be used as 
control variables to influence system performance (Peeta and Gedela, 2001), they cannot imply 
perfect compliance by the drivers to the supplied information, as is predominantly done in the 
DTA arena. Even studies that view compliance as a variable are restrictive because they still 
assume rigid behavioral classes. Further, they mostly model compliance through compliance 
rates by assuming that these rates represent the fraction of drivers that fully comply or do not 
comply with the provided route. This approach has limitations from a real-world perspective. 
First, not all drivers with access to information receive personalized routes. Second, even when 
personalized routes are recommended, compliance is not an “all-or-nothing” variable in terms of 
how the information is used. People may use the information to partly modify the existing route 
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based on their behavioral tendencies and past experience. An all-or-nothing perspective assumes 
that either the driver complies fully with the recommended route or completely ignores it. 

While realistic driver behavior modeling is critical to the effectiveness of DTA models in 
the operational context, their behavioral weaknesses have origins in the historical developmental 
perspective that DTA models are conceptual extensions of static traffic assignment (STA) 
models to the time-dependent case. The added dimension identified as being critical to DTA 
models was the need to realistically represent traffic flow dynamics, leading to the general 
consensus on the acceptability of simulation-based DTA models for deployment (Peeta and 
Ziliaskopoulos, 2001). Thereby, realistic behavioral representation has not been sufficiently 
emphasized in the methodological and algorithmic constructs for DTA models. The common 
DTA objectives, inherited from STA concepts, are UE and SO. Assumptions of UE and its 
underlying behavioral basis can partly be justified in a long-term planning context, both for STA 
and DTA. Similarly, a SO solution can serve as a benchmark for planning and operational 
strategies under STA and DTA. However, in the DTA operational context, using UE as a 
behavioral paradigm, or UE and SO as information supply strategies with partial or perfect 
compliance, are inherently restrictive from a behavioral standpoint. This is because they exclude 
from explicit consideration situational factors and driver learning (which is based on past 
experience, personal characteristics, and latent tendencies towards information provision), both 
of which can significantly affect driver route choice decisions on a specific day. This also 
implies the need for seamless and consistent modeling of day-to-day and within-day behavior. 

Traditional route choice models focus primarily on the socio-economic characteristics of 
drivers. Route choice models under information provision additionally consider some 
information-related characteristics of drivers. They typically do not incorporate the network-
level interactions resulting from traffic flow dynamics due to the decisions by individual drivers 
in terms of route choice, into the future route choice decision-making. En-route driver behavior 
models seek to address this aspect by modeling the en-route route switching decisions. 
Mahmassani and Jayakrishnan (1991) assume boundedly-rational driver behavior based on 
instantaneous route travel times and capture the network-level traffic flow interactions by 
simulating the driver en-route switching decisions. Abdel-Aty (1998) uses a nested logit model 
to predict en-route routing decisions for incident-related congestion under real-time information 
provision. Srinivasan and Mahmassani (2000) develop a multinomial probit framework and 
introduce two en-route behavioral factors under real-time information: inertia and compliance. 
The former represents a driver’s propensity to continue on the current path he/she is taking, 
while the latter represents the willingness to take the route recommended by the traveler 
information system. The study results show that driver en-route choices are affected by traffic 
congestion levels and drivers’ past experience with information. 

The day-to-day (or pre-trip, for a specific day) and en-route behavior models are mostly 
addressed in separate frameworks. There are very few studies that consistently address both 
within a common framework. Hu and Mahmassani (1997) use a simulation-assignment approach 
to investigate pre-trip and en-route routing decisions under real-time information provision. The 
selection of the route and departure time at the pre-trip stage each day are based on the driver’s 
scheduled delays experienced on the previous day. En-route switching is assumed to be based on 
boundedly-rational behavior under information provision. Mahmassani and Liu (1999) extend 
this work using a multinomial probit framework to model driver departure time and route 
choices. An interactive dynamic traveler simulator is used to generate route choice data through 
laboratory experiments. The study concludes that driver en-route routing decisions are based on 
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their expected travel time savings to their destinations. 
Lam and Yin (2001) propose an activity-based DTA model in which the activity choice 

behaviors of individuals are modeled using a multinomial logit formulation, and the driver route 
choices are assumed to satisfy a dynamic user equilibrium assumption. The combined 
activity/route choice variational inequality formulation is solved using a heuristic approach. 
However, the problem framework is still DTA-based with a specific objective (UE). Also, the 
notion of predicting the activities of drivers implies the microscopic modeling of the causes of 
driver trip-making. While this perspective may be justifiable for pre-trip route prediction, it is 
unrealistic for modeling en-route route choice in the dynamic setting of real-time operations, 
especially under information provision. Also, in general, existing models do not consider the 
dynamically changing route characteristics represented by the situational factors. 

We propose a behavior-based consistency-seeking (BBCS) modeling approach to bridge 
the functional gaps between route choice models and dynamic traffic assignment models vis-à-
vis predicting the time-dependent network traffic flow patterns. The approach consistently 
addresses day-to-day learning and within-day dynamics using a single hybrid probabilistic-
possibilistic behavioral model (Peeta and Yu, 2004, 2005) through intuitive if-then rules that are 
based on the findings of past studies in the literature. The traffic flow dynamics and network-
level interactions of driver route choice decisions are captured using a traffic flow simulator. The 
approach avoids rigid assumptions on driver behavioral tendencies and a priori knowledge of 
driver behavior class fractions. It enables the classification of information characteristics and the 
modeling of information effects more consistently with the real-world. From a deployment 
perspective, it uses the data available currently, both in terms of the time-scale and technology. It 
circumvents the need for a search procedure to predict the dynamically evolving traffic flow 
pattern. Thereby, it is a computationally tractable approach for real-time deployment. In the rest 
of the paper, we propose to show that a BBCS model can be viewed as an alternative to the 
behaviorally-restrictive DTA models to predict dynamic traffic flow patterns and to develop 
information-based system management strategies. 

 
2. Approach 
 
 In this section, we define the BBCS problem, discuss the BBCS modeling framework, 
introduce a hybrid route choice behavior model, describe the modeling of information 
characteristics and effects, and then briefly compare the proposed BBCS problem with the 
consistency-seeking problem that arises in the DTA deployment context (for example, Peeta and 
Bulusu, 1999). The BBCS framework incorporates the hybrid model and a consistency-seeking 
model to update driver behavior class fractions. 
 
2.1. The behavior-based consistency-seeking problem 
 
 The BBCS problem can be defined in descriptive and prescriptive contexts. The 
descriptive BBCS problem is defined as follows: given the time-dependent origin-destination (O-
D) trip demand on a specific day, determine the time-dependent traffic flow pattern consistent 
with the traffic flow measurements and driver behavior. Under information provision, this 
problem implies the prediction of driver routes by accounting additionally for the influence of 
the supplied information. Hence, in the absence of an explicit control mechanism, the BBCS 
problem seeks to describe the traffic flow pattern. Information can also be used as a control 
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variable to enhance system performance. Hence, the BBCS problem can be used in a prescriptive 
context to improve system performance through information provision strategies that are realistic 
in a deployment context. Section 2.4 discusses the modeling of information availability and 
information provision strategies consistent with the current technological progress. 

The BBCS problem is tailored for route prediction using realistically available data in a 
deployment context. The real-time data that is reasonably available based on current technology 
consists of the sensor-based traffic flow measurements (such as volume, occupancy, speed, and 
vehicle classification). In addition, the trends of the socio-economic characteristics of drivers in 
the region can be determined through census data and questionnaire surveys. Also, more detailed 
behavioral characteristics, especially under information provision, can be inferred through driver 
diaries, surveys, and driving simulators.  
 
2.2. Behavior-based consistency-seeking framework 

 
The proposed behavior-based consistency-seeking framework, illustrated in Figure 1, 

combines the hybrid route choice model (Peeta and Yu, 2004, 2005) for network loading and a 
consistency-seeking model that updates driver behavior class fractions. The planning horizon of 
interest for the current day is divided into discrete time intervals, denoted by τ. The BBCS 
procedure starts at τ = τ0. The hybrid route choice model uses two types of data as inputs: (i) 
static, and (ii) dynamic. The static inputs are assumed known a priori for the entire planning 
horizon. They include the network structure and the driver behavior classes. The dynamic inputs 
are not known a priori and are obtained in real-time. They consist of the time-dependent O-D 
demand, driver behavior class fractions, real-time information, and ambient driving conditions. 
The initial routes for the new O-D desires originating in interval τ are their pre-trip route choices 
determined using the day-to-day component of the hybrid route choice model and the real-time 
information provided. The within-day component of the hybrid model for interval τ updates the 
current routes of existing drivers at decision nodes based on the ambient driving conditions, the 
driver behavior class characteristics, and the real-time information provided. The routes of all 
drivers are used to predict the traffic network states for interval τ using a traffic flow simulator. 
The actual traffic flow measurements, in terms of link vehicular counts for interval τ, are 
obtained from the real-time network monitoring systems. The aggregate percentage difference 
between the actual and predicted link counts as a ratio of the corresponding actual counts is 
computed across all links for which measurements are available for interval τ, as shown in 
Equation (5) of Section 4.2. If this value exceeds a pre-specified threshold amount, a 
consistency-seeking model is executed to adjust the driver behavior class fractions so as to 
minimize the time-dependent prediction errors. Then, τ is incremented by one and the procedure 
is repeated until the end of the time horizon of interest is reached. 
 
2.3. Hybrid route choice model for network loading 
  

This section briefly summarizes the network loading mechanism for interval τ using the 
hybrid route choice model, as illustrated in Figure 2. A detailed description of the hybrid 
probabilistic-possibilistic model is provided in Peeta and Yu (2005). Its use in a consistent 
framework to integrate day-to-day driver behavior evolution and real-time behavioral dynamics 
is discussed in Peeta and Yu (2004). 
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The interval τ is divided into discrete sub-intervals, denoted by σ. Each sub-interval has a 
time duration Δ. The start time of sub-interval σ is denoted by tσ. Then, t1 represents the start 
time of interval τ. During sub-interval σ, the new O-D desires for the sub-interval σ+1 are 
considered for predicting the network state in σ+1. The set of initial route alternatives for each 
new driver is determined based on the k-dominant paths obtained through several test simulation 
runs (or in practice, using driver surveys and the historical traffic data collected). This is based 
on the assumption that a driver considers only a subset of possible O-D routes based on past 
experience and knowledge of the traffic network. Here, “dominant” routes imply the set of routes 
for an O-D pair that represent the routes of most drivers. The initial routes for the new drivers in 
sub-interval σ+1 are determined using the day-to-day component of the hybrid route choice 
model based on the driver personal attributes for interval τ as well as dynamic inputs at tσ in 
terms of information provision, ambient driving conditions, and the current route characteristics. 
The within-day component of the hybrid route choice model determines driver en-route route 
choices for sub-interval σ+1 at decision nodes using the dynamic inputs at tσ and the driver 
personal attributes for interval τ. Driver en-route route switching is considered for sub-interval 
σ+1 if unfinished trips exist in the network at time tσ. For σ = 1, en-route switching is considered 
if unfinished trips exist at the end of interval τ-1. Since the hybrid model has a probabilistic 
discrete choice model structure, its outputs are the choice probabilities for the alternative routes 
for each driver. These probabilities need to be converted into the discrete route choice for each 
driver. Monte Carlo simulation is used to generate these discrete choices from the predicted 
driver route choice probabilities (Peeta and Yu, 2005). The predicted driver routes are simulated 
using a traffic simulator, DYNASMART (Jayakrishnan et al., 1994), to generate the predicted 
time-dependent traffic flow conditions for the sub-interval σ+1. If tσ+1 represents the end of the 
interval τ, the network loading for τ is terminated. If not, the procedure is repeated until tσ+1 
reaches the end of interval τ. This implies that the predicted network states for the first sub-
interval of the interval τ+1 are obtained at the end of interval τ. 

The key feature of the hybrid model is its ability to capture the qualitative attributes 
considered in driver route choice behavior such as the subjective interpretation of route 
characteristics, linguistically expressed traffic information, and situational factors. Figure 3 
illustrates the hybrid model logic which treats qualitative and quantitative variables in a single 
framework. It first categorizes variables into quantitative and qualitative variables based on their 
nature. Qualitative variables are expressed as linguistic labels and/or require subjective 
interpretation, while quantitative variables are  naturally amenable to quantitative measurements. 
A rule-based fuzzy model is used to quantify qualitative variables. If interactions exist among 
quantitative variables, an adjustment procedure is used to capture them. For example, a fuzzy 
combination scheme can be used to capture the perceived travel time from the estimated travel 
time and the quantitative traffic information provided. For each route alternative, the original 
values of quantitative variables and the transformed continuous values of the qualitative and 
adjusted interaction variables are used to determine its utility. The hybrid model has a 
probabilistic discrete choice model structure and generates the route choice probabilities using 
the utilities. The utility function used in this study is as follows (Peeta and Yu, 2004), except that 
no alternative-specific constant is specified for one of the alternatives: 
    )()()(),( 654321 iPinFinQininiiiin PFQKTLDV Ω+Ω+Ω+Ψ+++= ββββββα                 
             ),,(),,( 87 nnnIinnnnCin SGWSGW Ω+Ω+ κβδβ      (1) 
    where, 



S. Peeta and J. W. Yu 

 

6 

           αi  = alternative specific constant for route i 
           βj  = coefficient of variable/function j 
           Di = travel distance on route i 
           Li = toll on route i 
           Ψ(⋅) = adjustment function to capture the perceived travel time 
           Tin = travel time estimated by driver n for route i 
           Kin  = quantitative traffic information on route i for driver n 
           ΩQ(⋅) = transformation function to determine the fuzzy value of descriptive qualitative 

traffic information 
           Qin = descriptive qualitative traffic information on route i for driver n 
           ΩF(⋅) = transformation function to determine the fuzzy value of familiarity 
           Fin = number of times driver n took route i in the past 
           ΩP(⋅) = transformation function to determine the fuzzy value of route complexity 
           Pi = number of nodes in route i  
           δin = 1 if route i is the recommended route for driver n; 0 otherwise 
           ΩC(⋅) = transformation function to determine the fuzzy value of compliance vis-à-vis 

recommended route i 
Wn = weather conditions for driver n 

   Gn = time-of-day for driver n 
   Sn = trip purpose of driver n 
   κ in = 1 if route i is the current route for driver n; 0 otherwise 
   ΓI (⋅) = transformation function to determine the numerical value of inertia for current 

   route i 
The hybrid route choice model is amenable to incorporating the day-to-day evolution of 

driver behavior and the within-day behavior dynamics consistently in a single framework, as 
shown in Figure 4. The driver behavior dynamics are captured by modeling the perception 
update of routes by the individual driver, and the update of the if-then rules at the individual 
and/or aggregate levels, using the hybrid model. The day-to-day dynamics are captured through 
perception and if-then rule updates based on the current day’s experience, which are reflected in 
the pre-trip decisions for the next day. Thereby, a driver’s membership functions (Peeta and Yu, 
2002) that represent his/her perception, and if-then rules, are updated on a daily basis. The 
within-day dynamics are captured through the en-route update. Behaviorally, drivers are not 
likely to change their if-then rules and perceptions en-route as they characterize phenomena that 
evolve over a longer timescale. Instead, driver en-route decisions are more sensitive to 
situational factors that unfold on the current day. These situational factors determine the if-then 
rules used in en-route decision-making. The en-route update is reflected by the within-day 
adjustment of the weights associated with the if-then rules in response to the situational factors.  

In the context of driver behavior classes, all drivers in a class use the same utility 
function and if-then rules. Also, the weights of the if-then rules are identical for all drivers in that 
behavioral class. Each individual driver in a behavioral class has specific membership functions 
that are updated on a day-to-day basis based on his/her experience on the current day. However, 
the if-then rules are updated for the entire behavioral class based on the current day’s experience 
for all drivers in that class. Similarly, the within-day updates of the weights of the if-then rules 
are also based on the real-time traffic flow measurements for all drivers in that class. In 
summary, the hybrid model affords the behavioral consistency of the BBCS framework in a 
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transparent manner by updating the membership functions and the if-then rules.  
 
2.4. Modeling information characteristics 
 

In the context of information provision to drivers, existing DTA models typically 
combine information characteristics with behavior characteristics to define driver behavior 
classes. A common mechanism combines information availability to drivers, information supply 
strategy, and driver behavior to categorize drivers. The information supply strategy is usually 
modeled by providing: (i) instantaneous or projected travel time information under the 
descriptive strategy, and (ii) UE or SO paths based on the instantaneous or projected travel times 
under the prescriptive strategy. Driver behavior is viewed in terms of UE, SUE or BR type 
behavior under descriptive information provision, and in terms of compliance characteristics for 
prescriptive information provision. As discussed in Section 1, this modeling approach is 
restrictive in depicting both information characteristics and driver response behavior realistically. 

In this study, information availability is classified into personalized, generic, and no 
information categories. It is consistent with the current state of information dissemination 
technologies. This is because personalized information (through sources such as cellular phone, 
pager, and wireless in-vehicle devices) is path-independent, while generic information for the en-
route context (through sources such as variable message signs (VMS) or highway advisory radio 
(HAR)) is path-dependent and that for pre-trip context (through mass-media sources such as 
television, radio, and Internet) is path-independent. That is, the en-route generic information is 
targeted at a subset of drivers in the network while the pre-trip generic information typically 
describes the network conditions and is independent of the O-D pair. The proposed taxonomy 
does not exclude the possibility that a driver has access to both personalized and generic 
information.  

Information provision strategies in the BBCS model are classified into: (i) instantaneous, 
and (ii) projected. Instantaneous strategies use current traffic conditions for information 
provision, while the projected strategies use the projected future traffic conditions. A key 
difference from existing DTA models is in terms of the realism of the information content 
provided. DTA models typically provide link/path travel times from a descriptive perspective or 
the recommended path in a prescriptive context. In the BBCS context, the information provided 
can be qualitative or quantitative, which is consistent with current information dissemination 
technologies. That is, the hybrid model component of the BBCS model enables the interpretation 
of linguistic messages such as “congestion ahead” or “30 minute delays”. Also, information can 
be provided for: (i) part of a path, (ii) the entire path, or (iii) for a local area around the current 
location of the driver. This is more realistic than the assumption of complete network-level 
information provision used in the commonly computed UE-based DTA solutions, which implies 
that the driver can process link travel time information on all links in real-time to determine a UE 
path. Also, in the BBCS framework information content can be used as a control variable; that is, 
different messages may lead to different driver response behaviors. The framework can also use 
the commonly modeled information provision strategies such as UE or SO. However, from a 
deployment context, this implies trade-offs between the computation time required for the 
iterative search procedures for SO/UE-type strategies and the operational tractability of simpler 
strategies based on k-dominant path computations. 

As discussed in Section 1, the modeling of driver response behavior to supplied SO/UE 
type information using a compliance variable is rather restrictive from a real-world perspective. 
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Additionally, information is not the only factor for driver route choice and is not necessarily the 
dominant factor either. In the BBCS approach, the hybrid model treats information as only one 
of the factors drivers consider for route choice. Its contribution to a driver’s route choice depends 
on his/her interpretation of that information, past experience, personal preferences, and ambient 
driving conditions. In the prescriptive context, the approach does not presume driver 
characteristics with regard to information. It does not pre-specify driver compliance, and 
captures the effects of situational factors on compliance (Peeta and Yu, 2005). Of considerable 
significance, it can consistently capture the evolution of information-related driver behavior 
phenomena such as compliance, inertia, delusion and freezing over time (Peeta and Yu, 2004). 
The flexibility in modeling information availability, information content, information provision 
strategy, and driver response behavior facilitate the use of information as a control variable to 
seek optimal routing patterns vis-à-vis network performance. 
 
2.5. Analogy between the BBCS problem and the consistency-seeking DTA problem 
 

The BBCS model is functionally analogous to consistency-seeking DTA models in that 
both address the consistency between the predicted network states and the actual conditions 
unfolding in real-time to determine driver routes for the deployment problem. Both models view 
incorrect O-D demand, traffic incidents, incorrect traffic flow modeling, incorrect prediction of 
driver route choices, and detector errors as the primary sources of inconsistency. Also, both 
evaluate consistency typically in terms of time-dependent travel times and link traffic counts. 
However, while there are key similarities, subtle differences exist in the context of the BBCS 
model addressed in this paper. While the BBCS model is an alternative to the deployable DTA 
model, the consistency-seeking problem is only one component of the deployable DTA model. 

In the DTA consistency-seeking framework, a DTA model is used to estimate driver 
routes for the current prediction period based on time-dependent O-D demand forecasts available 
towards the end of the previous prediction period. Then, the predicted traffic flow measurements 
are compared to the actual measurements at discrete time points in the current prediction period. 
The differences between the two measurements at the various time points serve as inputs to the 
consistency-seeking model, which adjusts the associated DTA model parameters for the next 
prediction period. By contrast, the BBCS framework uses the actual measurements to determine 
the driver behavior class fractions, and then predicts the traffic patterns based on driver route 
choices.  
 
3. The Consistency-Seeking Problem 
 
3.1. Background on the DTA consistency-seeking problem 
 

A key issue for the operational deployment of a DTA system is to ensure consistency 
between the model predictions and the actual traffic network states over time. This is critical to 
the effectiveness of control strategies implemented to enhance the traffic system performance. 
Several factors potentially contribute to the inconsistency between the predicted states and the 
actual conditions unfolding in real-time. They include (Peeta and Bulusu, 1999): (i) incorrect 
prediction of time-dependent O-D demands, (ii) traffic incidents, (iii) incorrect traffic flow 
modeling, (iv) incorrect driver behavior modeling, (v) incorrect driver behavior class fractions, 
(vi) incorrect assumptions on system-related parameters, (vii) noise/sparsity in measurements, 
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and (viii) failure of ATIS components. Among these, the effects of incidents can be modeled 
seamlessly in existing DTA frameworks. Also, the system-related parameter errors and/or ATIS 
component failures are typically observable and can be accounted for in a direct manner. 

 However, despite the importance of the consistency issue to successful on-line DTA 
deployment, the literature in this area is rather sparse and recent. These deployment models lack 
a seamless mechanism to incorporate adjustments to behavioral parameters. Past research 
primarily compares the predicted and measured traffic flow parameters (such as link counts 
and/or travel times) to infer on inconsistency in an aggregate sense, rather than explicitly 
modeling the contributions of specific factors. Most studies focus on the inconsistency in terms 
of O-D demand predictions by drawing on the abundant literature in O-D demand estimation. 
Others view inconsistency in terms of traffic flow model parameters and O-D demands (Doan et 
al., 1999), or detector measurement errors (Peeta and Anastassopoulos, 2002). Yet others view 
inconsistency as the aggregate effect of several factors and manifesting in terms of errors in path 
assignment proportions (Peeta and Bulusu, 1999). None explicitly address incorrect driver 
behavior modeling and/or incorrect driver behavior class fractions. 

Peeta and Bulusu (1999) develop a theoretical framework for the operational consistency 
of real-time DTA in traffic networks with ATIS. They view inconsistency as arising from 
incorrect O-D demand, traffic incidents, incorrect prediction of paths of unequipped drivers, and 
incorrect prediction of compliance characteristics of equipped drivers, and measure their 
aggregate effect using link traffic counts. The consistency approach seeks to correct the time-
dependent path assignment proportions within a rolling horizon scheme. The model first solves a 
rolling horizon based deterministic DTA problem to predict the traffic network state for the near-
future, and then seeks consistency between the predicted network states and actual conditions 
unfolding in real-time. The consistency problem is formulated as a constrained least squares 
model and is solved using the generalized singular value decomposition technique. The model 
performance is evaluated in terms of the time-dependent travel times and link/path traffic counts. 

Mahmassani et al. (1998) categorize the error sources in terms of on-line and off-line 
components. The on-line error sources identified are in terms of on-line data observation, traffic 
flow propagation, and path estimation, while off-line errors are in terms of O-D demand 
estimation and internal traffic model structure. Based on this classification, Doan et al. (1999) 
propose a consistency-seeking framework that consists of on-line and off-line adjustments. The 
on-line adjustment is performed for the paths and traffic simulator parameters, while the off-line 
adjustment is for the day-to-day O-D demand. The approach uses a feedback control procedure 
for the on-line adjustments and a linear programming formulation for the off-line adjustment. 
Sawaya et al. (2000) use a similar feedback control procedure to correct the inconsistency 
between predicted and actual travel times under freeway incidents. On-line measurements are 
used to adjust some traffic flow simulator parameters to address these inconsistencies. 

He and Ran (2000) propose a consistency-seeking framework under incomplete real-time 
link traffic counts and absence of data due to detector malfunctions. They use the maximum 
likelihood estimation method to update the time-dependent route choices based on the joint 
probability distribution function of the corresponding link flows. He et al. (2002) extend this 
method to estimate the updated time-dependent route choices and O-D demand simultaneously 
using real-time and historical traffic flow data. 

While different combinations of the aforementioned factors can cause inconsistency, this 
study focuses on inconsistency due to the incorrect values of driver behavior class fractions.  The 
study assumes that the traffic flow modeling, the O-D demand predictions, and the data used are 
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accurate. This is primarily to derive insights on the driver behavior modeling aspects by isolating 
its effects. The BBCS approach can address consistency issues related to O-D demand 
predictions and data used, in the current framework. However, some extensions are necessary to 
incorporate traffic flow modeling related inconsistencies. To address the driver behavior 
modeling related inconsistencies, the approach should be able to reflect the evolution of driver 
route choice behavior over time, because route choice is significantly influenced by past 
experience, intuition, and subjective interpretation/perception of the traffic information provided. 
This entails a capability to calibrate the appropriate behavior model parameters in real-time, 
implying an efficient consistency-seeking algorithm to update driver behavior class fractions. 
The notion of considering driver behavior class fractions is reasonable in this context because the 
behavior classes can be naturally identified using drivers’ socioeconomic and information-related 
characteristics. 

The BBCS model uses a combination of the hybrid route choice model and a consistency-
seeking model to update driver behavior class fractions in real-time. The consistency-seeking 
model captures the driver behavior class fractions using link traffic counts observed from the 
traffic flows unfolding in real-time. In Section 4, simulation experiments are conducted to obtain 
insights on the BBCS framework in terms of: (i) its ability to incorporate the real-time dynamics 
of driver en-route route choice behavior, (ii) its ability to capture driver behavior class fractions, 
and (iii) the real-time tractability of the consistency-seeking algorithm. 

 
3.2. Update of driver behavior class fractions 

 
The consistency-seeking model seeks to update driver behavior class fractions at discrete 

time points so as to minimize the difference between the observed and predicted link counts. In 
general networks, the number of time-dependent paths is substantially larger than the number of 
links. Hence, multiple path-based solutions can exist to minimize the objective function. More 
importantly, the computation can be highly intensive, precluding the real-time operational 
tractability of the consistency-seeking model. Here, an efficient mechanism for computing the 
driver behavior class fractions is developed to seek consistency between the predicted and 
observed link counts. The formulation for the consistency-seeking model in interval τ is 
represented by: 

minimize: [Yτ– Xτ]2         (2) 
            subject to: Yτ = Zτ  + Σσ  (Mτ×Cσ×Rσ)           (3) 

     Rσ = Fτ×Dσ×Pσ          (4) 
            where, 

    Yτ = the vector of the predicted link traffic counts for interval τ 
    Xτ = the vector of the observed link traffic counts for interval τ 
    Zτ = the vector of the predicted link traffic counts for interval τ representing drivers 

that do not reach their destinations during interval τ–1   
     Mτ = link-path incidence matrix for the k-dominant paths for interval τ 
     Cσ = link-path incidence adjustment matrix for sub-interval σ 
     Rσ = the vector of the number of drivers taking each route for sub-interval σ 
     Fτ  = the vector of driver behavior class fractions for interval τ 
     Dσ  = the vector of O-D desires for sub-interval σ 
     Pσ  = the vector of route choice probabilities for sub-interval σ 
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Pσ  is the vector of time-dependent route choice probabilities obtained from the hybrid model. 
Mτ×Cσ×Rσ represents the vector of the predicted link count contributions from the new O-D 
desires entering the network in sub-interval σ. The link-path incidence matrix Mτ is time-
dependent, but known a priori since the initial routes for each τ are chosen from the time-
dependent k-dominant paths identified from historical data. Unlike the use of the time-dependent 
link-path incidence matrix in DTA to track vehicle trajectories, Mτ is used here only to generate 
initial routes for interval τ. The drivers can change these routes en-route at decision nodes based 
on the ambient driving conditions. Cσ denotes the adjustment to Mτ to ensure consistency 
between the observed link travel times for each sub-interval σ and the vehicle trajectories of the 
new O-D desires entering the network in sub-interval σ. Note that the consistency-seeking is 
done at the end of interval τ, at which time the observed link travel times for all sub-intervals in τ 
are available. 

From Equations (2) – (4), the only unknown variables are the driver behavior class 
fractions. Link traffic counts for interval τ serve as the data points to estimate these fractions 
using the least squares method. Typically, the number of data points is greater than the number 
of driver behavior classes. In the rare instance that the number of behavior classes is greater than 
the number of data points, the length of interval τ needs to be increased to obtain more 
observations. However, this may degenerate the quality of the predictions because new O-D 
desires generated in the earlier part of interval τ may switch routes en-route during the later part 
of that interval, leading to errors due to the assumption of constant Mτ in Equation (3). This 
introduces trade-offs for the length of τ. 

The proposed consistency-seeking approach is synergistic with the real-time deployment 
of the BBCS model as driver behavior class fractions change dynamically over time even at the 
same location. Also, the current model structure can be extended seamlessly to the case where 
driver behavior class fractions vary across O-D pairs.  
 
4. Application of the BBCS Model 
 
 This section analyzes the effectiveness of the BBCS model in enhancing network 
performance under information provision, and performs sensitivity analyses of the associated 
parameters. In addition, it analyzes the ability of the consistency-seeking model in capturing the 
dynamically varying driver class fractions. 
 
4.1. Experimental setup 

 
Figure 5 illustrates the Borman corridor network in northwest Indiana (USA) which 

consists of a 26 km section of I-80/94 (called the Borman expressway), I-90 toll freeway, I-65, 
and the surrounding arterials. It has 197 nodes and 458 links, and is divided into 14 zones. The 
Borman expressway is a highly congested freeway that has a large percentage of semi-trailer 
truck traffic. To manage traffic under incidents and peak-period congestion, an advanced traffic 
management system has been installed on the Borman network to provide drivers real-time 
traffic information. The Indiana toll road, I-90, which operates parallel to the Borman 
expressway is a potential alternative to it. Depending on the destination, other potential major 
alternative routes are US-20, US-30, Ridge road, and 73rd avenue. In all study experiments other 



S. Peeta and J. W. Yu 

 

12 

than the incident-related ones, the network is congested only at the low to medium level as travel 
speeds on most links range between 40%-70% of the corresponding free flow speeds. 

Two types of driver route choice decisions are analyzed in the experiments: pre-trip and 
en-route. At the beginning of their trips on the current day, drivers are assumed to choose their 
routes to their respective destinations based on their individual pre-trip route choice models. The 
en-route route choice models are used to determine the potential route switches of drivers at 
decision nodes in response to situational factors and/or real-time information. In the pre-trip 
context, four quantitative variables (travel distance, toll, estimated travel time, and quantitative 
traffic information) and five qualitative variables (qualitative traffic information, familiarity, 
route complexity, compliance, and inertia) are assumed to influence driver route choice 
decisions. For the en-route decisions, three situational factors (weather conditions, time-of-day, 
and trip purpose) are considered in addition to the pre-trip factors.  

As discussed in Section 2.1, the BBCS framework is based on realistically available data. 
Since observed field data is currently not available for the Borman corridor network, route 
attribute data is generated for analyzing the BBCS model. The procedure to generate the values 
of variables is discussed in detail in Peeta and Yu (2004, 2005). The values of path travel 
distances and tolls are obtained by summing up the associated link quantities for the Borman 
corridor network.  The values for the estimated travel time and quantitative traffic information 
are generated using a traffic simulator. The numerical values of qualitative attributes are 
generated using pre-specified functions (Peeta and Yu, 2004). For example, the descriptive 
qualitative traffic information consists of five linguistic labels. Its values are generated using a 
simple discrete function which assigns a meaningful value to each linguistic label. By contrast, a 
non-linear function of the number of nodes is used to generate the numerical values associated 
with route complexity, as the perceived complexity is assumed to increase more rapidly with the 
number of nodes. The specification of the route choice set is an important step in predicting the 
route choices. In this study, the route choice sets for drivers’ pre-trip and en-route routing 
decisions at every decision node consist of up to 5 dominant paths revealed from ten test 
simulation runs. Each simulation run assumes different traffic conditions in terms of travel 
demand, and considers all likely routes for that O-D pair. The ten simulations runs are used to 
identify a subset of these routes which are labeled the dominant routes. 

In the experiments, the personalized information drivers receive for their pre-trip 
decision-making are the recommended route to their destination and/or descriptive information 
for requested links. The generic information drivers acquire is descriptive information on some 
links via mass-media such as television, radio, or Internet. For en-route decision-making, the 
personalized information consists of the recommended route from the current location to the 
destination and descriptive information on links of interest, through cellular phone, pager, or 
wireless in-vehicle devices. The generic information in this context is descriptive information 
disseminated through VMS based on the path of the driver. Other generic sources such as radio 
or HAR are not modeled because drivers are less likely to use these media while driving, unlike 
VMS messages that are conveniently located. The information conveyed through VMS is either 
descriptive information on downstream traffic conditions or prescriptive information on detour 
routes. 

Since field data is unavailable currently, driver routing decisions are assumed to be based 
on the combination of two rules: (i) lexicographic, and (ii) utility maximization subject to a 
threshold indifference band. The associated logic, illustrated in Table 1, is also used to define 
driver behavior classes using the attribute ranks and the functions specified in the table. It is 
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important to note here that the BBCS model is unaware of this driver route choice decision 
process, and has access only to the associated observable data in practice (the route choice of the 
driver and associated route attributes). The driver attitudes to information content are based on a 
stated preference survey conducted in the Borman corridor network (Peeta et al., 2000). The 
attributes are assumed to be rank-ordered by importance. At each rank-level, utility functions are 
used to determine the utilities of alternatives. The driver eliminates inferior alternatives by 
excluding those alternatives whose utility values are less than a certain threshold percentage of 
the maximum utility value for that rank. The driver is indifferent to all alternatives that satisfy 
this threshold. The attributes belonging to the first rank are considered first to eliminate 
alternatives. If the route choice is not determined according to these attributes, the driver 
evaluates the second-ranked attributes. If a single alternative is not obtained even with the last-
ranked attributes, utility maximization is used to determine the route choice at that point. 
 
4.2. Update of driver behavior class fractions 
  

The socioeconomic characteristics considered here to determine driver behavior classes 
are age, gender, income, and information type. The associated categories are: age (young and 
old), gender (male and female), income (high and low), and information type (personalized and 
non-personalized). The non-personalized category implies that generic information is potentially 
available to all drivers who travel past VMS locations, and no information is available to the 
remaining drivers in that category. Four cases are considered by varying the number of driver 
behavior classes as follows: (i) 2 (information type) driver behavior classes = 2, (ii) 2 
(information type) × 2 (age) = 4, (iii) 2 (information type) × 2 (age) × 2 (income) = 8, and (iv) 2 
(information type) × 2 (age) × 2 (income) × 2 (gender) = 16. 
 The effectiveness of the BBCS model is analyzed by predicting traffic flows. The 
performance measure used here is the average percentage difference between the actual and 
predicted states in terms of link traffic counts: 
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    where, 
             lX

τ = observed counts on link l at time τ 
             lY

τ = predicted counts on link l at time τ 
              L = number of links for which real-time measurements are obtained 
The performance measure is also used to determine whether the consistency-seeking model 
needs to be implemented at the end of each interval τ, as shown in Figure 1. In the study 
experiments, the consistency-seeking model is activated if a threshold value of 5% is exceeded 
for this performance measure. 

Figure 6 illustrates the performance measure value under the four cases in terms of the 
number of driver behavior classes. Since the driver class fractions are not known a priori, this 
experiment arbitrarily assumes that initially all drivers belong to the first driver behavior class. 
Hence, the initial error between the actual and predicted network states ranges from about 35% 
and 55%. The BBCS model updates the driver behavior class fractions to minimize the error 
between the actual and predicted network states. In cases 1 and 2, the average percentage errors 
towards the latter part of the planning horizon range from 5%-10%, while in cases 3 and 4 they 
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are between the 35%-42%. The results suggest that the consistency-seeking component of the 
BBCS model can capture the driver behavior class fractions by reducing the prediction errors. 
But, as illustrated by cases 3 and 4, if many distinct driver behavior classes co-exist in traffic 
stream, it is difficult to estimate the driver behavior class fractions robustly due to the limited 
data. However, these results are rather conservative because over time historical trends can 
suggest more robust initial values for the driver class fractions than the single class considered 
here. Also, to the extent that en-route route choices are significantly influenced by situational 
factors and other ambient driving conditions, it is unlikely that several distinct behavioral classes 
will exist en-route. Hence, the results are promising for the real-time deployment of the BBCS 
model.  

To test the effect of different initial values for the driver behavior class fractions on the 
performance of the consistency-seeking procedure, Figure 7 analyzes the case of the four driver 
behavior classes. It is assumed here that the actual driver class fractions are 25%:25%:25%:25%. 
Three different sets of initial values are tested: (i) 100%:0%:0%:0%, (ii) 50%:50%:0%:0%, and 
(iii) 30%:30%:20%:20%. The results show that there are significant differences in the model 
performance initially, but they dissipate with time. Initially, the third set of initial values has the 
lowest percentage difference since it is closest to the actual set of driver class fractions. 

Figure 8 illustrates the update of driver behavior class fractions under different class 
fraction values when four driver behavior classes exist. Three scenarios are tested by varying the 
actual fractions as follows: (a) 70%:10%:10%:10%, (b) 40%:30%:20%:10%, and (c) 
25%:25%:25%:25%. The model predicts the fractions of the larger groups better than those of 
smaller groups because the route choices associated with a large driver behavior class contribute 
more to determining the unfolding traffic flow patterns. When the actual fractions are close to 
each other (Figure 8 (c)), the model prediction is robust.  

 
4.3. Sensitivity tests 
 

Since driver route choices differ behaviorally across classes, the associated fractions 
differ by location. The four locations considered and the associated actual average driver class 
fractions are: (i) I-80/94 (25%:25%:25%:25%), (ii) I-90 (30%:20%:30%:20%), (iii) US-20 and 
15th avenue (25%:25%:30%:20%), and (iv) Ridge road and 45th avenue (30%:20%:25%:25%). 
Figure 9 illustrates the average percentage difference between the actual and predicted link 
traffic counts at various locations for the four driver behavior classes case. The classes 
considered vary by information type and driver age: (i) young drivers with personalized 
information, (ii) young drivers without personalized information, (iii) old drivers with 
personalized information, and (iv) old drivers without personalized information. The model has 
no information on the driver behavior class fractions at any location. Hence, the initial values at 
all locations are set as 100%:0%:0%:0%. The model prediction for the freeway traffic streams is 
better than that for the street/arterial traffic streams. This is because more route choices are 
generally available at street/arterial decision nodes irrespective of driver behavior classes. 

In the real-time context, driver behavior class fractions may vary with time. Figure 10 
illustrates the ability of the BBCS model to estimate the corresponding class fractions. In this 
experiment, driver behavior class fractions are assumed to vary every 60 minutes, and the initial 
fractions are obtained from the historical data. Figure 10(a) indicates that the model estimates 
these fractions adequately due to the robust initial values used. Also, as illustrated in Figure 
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10(b), the prediction improves with time for the period in which the driver class fraction values 
are constant, due to the increasing amount of data available for those values. 

Experiments are conducted to analyze the effectiveness of the BBCS model under 
incidents. A traffic incident can be viewed as a situational factor that affects compliance and 
inertia. The severity and duration of incidents affect both compliance and inertia. Hence, the 
effect of a traffic incident on the driver routing decisions is incorporated by updating the weights 
associated with the compliance and inertia rules. The if-then rules for traffic incidents for the 
hybrid route choice model are shown in Table 3. The modified utility function in the hybrid 
model that incorporates the severity and duration of the incident is as follows: 
    )()()(),( 654321 iPinFinQininiiiin PFQKTLDV Ω+Ω+Ω+Ψ+++= ββββββα                 
            ),(),,,,(),,,,( 987 niDinnnnnIinnnnnnCin BABASGWBASGW Ω+Ω+Ω+ ζβκβδβ  (6) 
    where the additional variables used are: 
         ΩD(⋅) = transformation function to determine the fuzzy value of incident effects 
         Ai = severity of the incident occurring on route i  
         Bi = duration of the incident occurring on route i  
        ζi = 1 if incident occurs on route i; 0 otherwise 
Figure 11 illustrates the performance of the BBCS model under various incident scenarios in 
terms of severity and duration. Incidents are generated on one link each on I-80/94 and I-90. For 
the first set of experiments, various incident severities are assumed for a 10-minute duration. For 
the second set of experiments, various durations of incidents are considered with a 40% 
reduction in capacity. Both sets of experiments suggest that the BBCS model significantly 
enhances the link counts prediction capability under incidents, as illustrated in Figures 11(a) and 
11(b). 
 
4.4. Information strategies consistent with deployment: alternative to DTA 
 
 As discussed in Section 2.4, the modeling of information characteristics and the 
associated driver response behavior in the BBCS model is more consistent with a real-world 
deployment capability compared to that of existing DTA models. Information provision, 
personalized and/or generic, is based on instantaneous or near-future projected travel times. The 
projected travel times are obtained using a traffic simulator that uses the pre-trip (initial) routes 
of the near-future O-D desires. These strategies are deployable because they can be computed in 
less than real-time, irrespective of whether they provide descriptive or prescriptive information. 
In addition, UE or SO type strategies can be solved off-line using DTA by assuming an idealized 
demand scenario to generate additional strategies for real-time information provision. Note that 
unlike in a DTA model, the BBCS model interprets the UE/SO type routes consistent with the 
drivers’ behavioral tendencies (such as familiarity, route complexity, compliance, and inertia) 
represented through the hybrid model. This also holds for the prescriptive routes provided using 
instantaneous or projected travel times. 
 Figure 12 illustrates the network performance under the following information provision 
strategies: (i) instantaneous, (ii) 5-minute projection into future, (iii) 15-minute projection into 
future, and (iv) UE information based on projection for the entire planning horizon. Two driver 
behavior classes are used to test these strategies: with and without personalized information. 
Under the instantaneous information strategy, the current travel times are provided to drivers, 
while the 5-minutes and 15-minutes projected strategies use the corresponding projected travel 
times. When routes are prescribed, they are based on solving for the k-dominant paths using the 
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corresponding travel times. The UE information projected strategy (UE-Info) provides each 
driver who can receive personalized information a projected UE route obtained by solving the 
idealized DTA problem off-line. However, the information provision strategies based on the 
prediction of future network states entail the prediction of future O-D desires, leading to trade-
offs in terms of the O-D demand prediction accuracy and more informed decision-making by the 
drivers. In addition, trade-offs also exist in terms of the computational requirements and the 
future projection duration. In the current experiments, future O-D desires are assumed to be 
known accurately, leading to optimistic system performance results for the projected strategies. 

Figure 12(a) compares the average system travel times under the various information 
provision strategies for different percentages of drivers with personalized information. The 
results suggest that information provision strategies can be used to influence system 
performance. They also illustrate that the marginal benefits associated with market penetration in 
terms of personalized information provision taper off in the 40%-80% range. Also, in some cases 
performance worsens with higher market penetration beyond the 60% value. This is consistent 
with the trends identified in previous studies involving system performance under personalized 
information provision. However, the worsening is not as marked as suggested by some of the 
prior literature. This is partly because some drivers have access to generic information through 
VMS which enables them to make more informed decisions though they may not receive 
personalized information.  

In terms of the information provision strategies, Figure 12(a) suggests that there is value 
to projecting the future traffic conditions. While the 15-minute projected strategy does better 
than the 5-minute one, there are trade-offs involved in terms of the computational time and the 
accuracy of the predicted future O-D desires. Hence, in some situations, the 5-minute projected 
strategy may be more attractive from a deployment perspective. The UE-Info strategy performs 
the best among the strategies considered. However, it assumes that the actual O-D desires for the 
current day are known a priori off-line for the entire planning horizon, which is unrealistic. This 
implies that the use of an idealized O-D demand matrix (such as the time-dependent mean O-D 
demand matrix) to generate the UE routes may degrade the UE-Info strategy performance for the 
current day, leading to substantially lesser benefits than those suggested in Figure 12(a). Hence, 
the UE-Info may not be an effective deployment strategy. When the computational requirements 
to obtain the UE routes in real-time (that is, using the current day O-D demand forecasts) are 
factored in, it may not even be a realistic deployment strategy. 

Figure 12(b) illustrates the percentage savings under the various information provision 
strategies compared to the case where no driver has access to personalized information. In this 
experiment, drivers with and without personalized information each constitute 50% of the traffic 
stream, except for the UE-DTA case where all drivers are assumed to follow the personalized UE 
routes specified to them. The results mostly mirror the conclusions based on Figure 12(a). In 
addition, they suggest that the UE-Info strategy does not perform significantly better than the 15-
minute projected strategy though it assumes that O-D demand forecasts are known a priori for 
the entire planning horizon. The UE-DTA solution is specified purely for benchmarking 
purposes, and unlike the other strategies assumes that 100% drivers have access to personalized 
UE routes. Hence, just solving for the UE solution using DTA may lead to overly optimistic 
performance predictions, especially when heterogeneous driver classes exist. 
 In Figure 12, the results associated with the various information strategies are obtained 
using the simulation executed on the 10th day based on day-to-day evolution. While the UE-DTA 
solution does not consider day-to-day evolution, the BBCS model consistently incorporates this 



S. Peeta and J. W. Yu 

 

17 

feature. Figure 13 compares the solutions of UE information provision based on DTA and the 
BBCS model that factors in day-to-day evolution. It assumes that 100% drivers have access to 
personalized UE routes. The UE-DTA solution is compared with the BBCS solutions for the 
10th, 20th, and 30th days to capture the effect of UE information provision. In this experiment, 
situational factors are not considered in the BBCS model. It is important to note that existing 
DTA models do not consider situational factors and day-to-day behavior dynamics, and 
predominantly focus on travel costs. The results show that some differences exist among the 
various solutions, but they are not emphatic because all drivers receive UE routes and most 
follow them based on their past experience. This is also partly because situational factors are 
ignored in the BBCS model for this experiment. However, the results highlight the effects of 
other route characteristics on the day-to-day evolution leading to different benefits levels for the 
30th day compared to the 10th day. These differences become more emphasized when situational 
factors and heterogeneity in driver classes and information characteristics are considered. 
 
5. Concluding comments 
 

This paper proposes the BBCS framework as an alternative to DTA for the deployment of 
information provision strategies for real-time control in vehicular traffic systems with 
heterogeneous driver behavior classes. It is real-time deployable, and combines a hybrid 
probabilistic-possibilistic driver route choice model and a constrained least squares consistency-
seeking model to update driver behavior class fractions in real-time based on field traffic flow 
measurements. The hybrid model captures the day-to-day evolution and within-day dynamics of 
driver behavior seamlessly within a single framework using observable data. There is a key 
philosophical distinction between existing DTA models to predict driver routes and the proposed 
consistency-seeking route choice determination using the hybrid model. The BBCS approach 
simultaneously considers real-time network-level traffic flow interactions and the causal factors 
of driver route choice behavior. Here, information is only one of the variables influencing driver 
route choice. Also, it enables a more realistic modeling of information characteristics and the 
associated driver response behavior. Further, it uses intuitive if-then rules based on historical 
data and/or past studies to model driver behavior. 

The experiments indicate the effectiveness of the BBCS model in predicting driver routes 
and the response to the supplied information. They also illustrate its ability to capture driver 
learning over time in the information context and the reactive aspects of decision-making based 
on the ambient driving conditions. The experiments also suggest that information strategies that 
are realistic in a deployment context can be used to influence the system performance. The 
BBCS model can also be used to effectively manage the traffic system under incidents by better 
predicting the traffic conditions. Also, it can capture the driver behavior class fractions robustly 
using the real-time traffic measurements. In the real-world, the traffic stream consists of 
behaviorally heterogeneous drivers and the driver class fractions can be time-varying. To our 
knowledge, this is the first study that considers the driver behavior class fractions as variables. 

The authors view this study as only the starting point of a different methodological 
perspective to address the complex deployment problem associated with the real-time control of 
traffic systems using information provision strategies. Several aspects merit further attention. 
While several sources of inconsistency can exist, this study assumes that only the driver behavior 
class fractions explain the gaps between the predicted and actual states. Hence, the study needs 
to be extended to additionally consider other sources such as the traffic-flow modeling related 
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inconsistencies. Also, the study assumes that the departure times of drivers are fixed. The 
proposed approach can be seamlessly extended to simultaneously consider departure times and 
route choices. In addition, while this study is one of the few efforts to consider heterogeneous 
driver behavior classes, akin to the rest it assumes that these behavior classes are known a priori. 
This may be reasonable if historical data is available and regular socio-economic surveys exist. 
Currently, a two-stage approach is being developed to simultaneously identify the driver 
behavior classes and their fractions in the traffic stream. 

A note of caution in interpreting the study results is that they are based on the particular 
assumptions of actual driver behavior described in Table 1 and the BBCS model being unaware 
of it. In reality, driver behavior may be different from the one assumed here. Hence, the benefits 
under information strategies may be more or less than the ones shown in Figures 12 and 13. 
However, they clearly illustrate that a UE-DTA solution may overestimate the benefits 
achievable under information provision. This implies that an adequate consideration of the 
behavior-side is essential to the meaningful practical deployment of these strategies.  

Due to the current sparsity in observable field data sets, route attribute data and driver 
route choices are generated using computer simulations for analyzing the BBCS model here. 
However, simulation data is limited in its ability to represent the randomness in driver behavior 
associated with causes that are not clearly understood. Currently, observable data is being 
collected from a real network to further analyze the BBCS approach. Hence, in general, models 
based on observable data and behavioral consistency are essential for deployment. The BBCS 
approach also fosters the design of targeted information provision strategies that are consistent 
with the socioeconomic characteristics of a specific region. 
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Fig. 1.  Behavior-based consistency-seeking framework. 
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Fig. 2.  Network loading for interval τ using the hybrid route choice model. 
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Fig. 3.  Hybrid route choice model logic. 
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Fig. 4.  Framework for driver behavior dynamics. 
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Fig. 5.  Test network.
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Fig. 6.  Effectiveness of the consistency-seeking model. 
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Fig. 7.  Effect of different initial values for the driver behavior class fractions. 
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Fig. 8.  Prediction of driver behavior class fractions.
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Fig. 9.  Effect of different locations on the prediction of driver behavior class fractions. 
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(a) Estimated driver class fractions 
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(b) Performance measure 

Fig. 10.  Within-day variation of driver behavior class fractions. 
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(a) Severity of a traffic incident 
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(b) Duration of a traffic incident 

 

Fig. 11.  Effect of traffic incidents. 
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(a) Average travel times 
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(b) Total travel times 

Fig. 12. System performance under various information provision strategies. 
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Fig. 13. Comparison between UE information strategies when 100% drivers receive UE routes. 

 

 

 

 

 



 

 

 

 

Table 1.  Route Choice Decision Process Used for Data Generation 

Rank Attribute Utility Function Threshold 

1 

Travel distance 
Toll 

Estimated travel time 
Quantitative traffic 

information 
Qualitative (descriptive) 

information 

)(54321
1

inQininiiin QaKaTaLaDaU Γ++++=  φ1% of 1
∗U  

2 Familiarity 
Route complexity )()( iPinFinin PaFaUU Γ+Γ+= 76

12  φ2% of 2
∗U  

3 Compliance 
Inertia 

),,( nnnCinininin SGWaUUU Γ++= δ8
213  

                   ),,( nnnIin SGWa Γ+ κ9  
 

where, 
   ΓQ (⋅) = function to determine the numerical value of descriptive qualitative traffic information 
   ΓF (⋅) = function to determine the numerical value of familiarity 
   ΓP (⋅) = function to determine the numerical value of route complexity 
   ΓC (⋅) = function to determine the numerical value of compliance vis-à-vis recommended route i 
   ΓI (⋅) = function to determine the numerical value of inertia vis-à-vis current route i 
   1

∗U , 2
∗U  = maximum utility values among 1

inU  and 2
inU , respectively 

  



 

Table 2.  Fuzzy If-then Rules 

Attribute LHS RHS 

Qualitative traffic information 
If traffic condition is good He/she will probably take the route 
If traffic condition is normal He/she will be neutral 
If traffic condition is poor He/she will probably not take the route 

Familiarity 

If a driver is very familiar with a route He/she will take the route 
If a driver is familiar with a route He/she will probably take the route 
If a driver’s familiarity is undecided He/she will be neutral 
If a driver is unfamiliar with a route He/she will probably not take the route 
If a driver is very unfamiliar with a route He/she will not take the route 

Complexity 
If a route is simple He/she will probably take the route 
If a route is normal He/she will be neutral 
If a route is complex He/she will probably not take the route 

Compliance 

Weather 
conditions 

If weather is good He/she will probably follow the recommended route 
If weather is bad He/she will probably not follow the recommended route 

Time-of-day 
If time-of-day is daytime He/she will probably follow the recommended route 
If time-of-day is nighttime He/she will probably not follow the recommended route 

Trip purpose 
If driver is on a business trip He/she will probably follow the recommended route 
If driver is on a leisure trip He/she will probably not follow the recommended route 

Inertia 

Weather 
conditions 

If weather is good He/she will probably switch from the current route 
If weather is bad He/she will probably not switch from the current route 

Time-of-day 
If time-of-day is daytime He/she will probably switch from the current route 
If time-of-day is nighttime He/she will probably not switch from the current route 

Trip purpose 
If driver is on a business trip He/she will probably switch from the current route 
If driver is on a leisure trip He/she will probably not switch from the current route 



 

Table 3.  Fuzzy If-then Rules for Traffic Incidents 

 

Attribute LHS RHS 

Incident 
effects 

If incident is very severe He/she will definitely not take the 
route on which incident occurs 

If incident is severe He/she will not take the route on 
which incident occurs 

If incident is not severe He/she will probably not take the 
route on which incident occurs 

If incident duration is long He/she will definitely not take the 
route on which incident occurs 

If incident duration is medium He/she will not take the route on 
which incident occurs 

If incident duration is short He/she will probably not take the 
route on which incident occurs 

Compliance 

If incident is very severe He/she will definitely follow the 
recommended route 

If incident is severe He/she will follow the recommended 
route 

If incident is not severe He/she will probably follow the 
recommended route 

If incident duration is long He/she will definitely follow the 
recommended route 

If incident duration is medium He/she will follow the recommended 
route 

If incident duration is short He/she will probably follow the 
recommended route 

Inertia 

If incident is very severe He/she will definitely switch from the 
route on which incident occurs 

If incident is severe He/she will switch from the route on 
which incident occurs 

If incident is not severe He/she will probably switch from the 
route on which incident occurs 

If incident duration is long He/she will definitely switch from the 
route on which incident occurs 

If incident duration is medium He/she will switch from the route on 
which incident occurs 

If incident duration is short He/she will probably switch from the 
route on which incident occurs 

 

 

 


