
 

 

Dynamic Game Theoretic Model of Multi-Layer 
Infrastructure Networks 
 
 
PENGCHENG ZHANG 
SRINIVAS PEETA* 
School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA 
email: zhangp@purdue.edu 
email: peeta@purdue.edu 
 
 
TERRY FRIESZ 
Harold and Inge Marcus Chaired Professor of Industrial Engineering, The Pennsylvania State University, University Park, 
PA  16802, USA 
email: tfriesz@psu.edu 

 
Abstract 

Due to similarities in terms of network structure and interactions among them, most infrastructure systems can 
be viewed as coupled layers of a generalized transportation network in which the passenger, freight, data, water, 
and energy flows are the commodities in the different layers. The coupling is due to the varying degrees of 
interactions among these layers in terms of shared physical networks, budgetary constraints, socio-economic 
environments, environmental concerns, information/other resources, and in particular, functional 
interdependencies. However, these interactions are normally ignored in the engineering planning, design and 
analysis of infrastructure systems. Identifying and understanding these interactions using a holistic perspective 
can lead to more efficient infrastructure systems. This paper presents a preliminary network flow equilibrium 
model of dynamic multilayer infrastructure networks in the form of a differential game involving two essential 
time scales. In particular, three coupled network layers – automobiles, urban freight and data – are modeled as 
being comprised of Cournot-Nash dynamic agents. An agent-based simulation solution structure is introduced to 
solve the flow equilibrium and optimal budget allocation problem for these three layers under the assumption of 
a super authority that oversees investments in the infrastructure of all three technologies and thereby creates a 
dynamic Stackelberg leader-follower game. 
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1. Introduction 

Infrastructure systems that carry passenger, freight, data, water, and energy flows are key 
functional elements of a society. Their efficient operation is critical to the enabling of 
economic and social activities, quality of life, mobility, and as highlighted in recent years, 
national security and disaster response. Most infrastructure systems involved in generalized 
transportation are organized as networks. There is a growing awareness that these 
infrastructure networks (INs) are interdependent, and can be thought of as coupled layers of a 
generalized transportation network (GTN). Therefore, the flow patterns, system performance, 
and investment decisions for these systems can be analyzed as integrated multi-layer 
infrastructure network (MIN) problems in which certain types of flows (or commodities) are 
transported. 

In the Transportation arena, studies exist since the early 1970s that cursorily acknowledge 
the similarities between transportation and telecommunication networks. Dafermos (1972) 
developed a traffic assignment model that is capable of handling several user classes in the 
same transportation network using the concept of generalized flows. Each user class has an 
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individual cost function and contributes to cost functions of other classes as well. The study 
indicates that the model can be applied to telecommunication networks in addition to 
traditional traffic networks, but does not consider interactions. Also, while cost functions are 
explicitly incorporated, other physical and/or behavioral characteristics of these flows are 
ignored. 

In the late 1970s, the concept of “hypernetwork” was introduced by Sheffi (1978) and 
Sheffi and Daganzo (1978) to explicitly represent the interactions between multiple 
transportation modes. The interactions are modeled as sequences of discrete choices when 
individuals face the route/mode travel decisions on the hypernetwork. Contrary to previous 
works, this approach starts from a disaggregate level, and then aggregates across individuals 
to evaluate system-wide performance.  

The literature on the MIN problem is rather sparse. However, the importance of this 
problem has been recognized in recent years due to heightened security concerns, and in 
particular, the operational linkages across critical infrastructure systems. In the United States, 
this has led to the formation of a Homeland Security department that coordinates the security-
related functions of multiple individual federal agencies that previously operated without 
explicit coordination. Rinaldi et al. (2001) discuss critical infrastructure interdependencies by 
highlighting some examples of cascading failure phenomena, whereby the malfunctioning of 
one infrastructure system can have severe negative consequences on other systems. They 
discuss various dimensions of infrastructure interdependencies by identifying the types of 
interdependencies, infrastructure operation environment, degrees of coupling, infrastructure 
characteristics, and types of failures. They also identify some modeling and simulation 
challenges for addressing the infrastructure dependency problem. Heller (2001) summarizes 
some recent studies on interdependencies across civil infrastructure systems. She emphasizes 
the importance of information infrastructure in the operation of various infrastructure systems, 
and proposes the concept of “integrated information infrastructure systems” and “meta-
infrastructure systems”. However, both these articles are descriptive and do not propose 
modeling approaches. 

Haimes and Jiang (2001) propose a Leontief-based input-output model to formulate the 
interdependencies of interconnected critical infrastructures in terms of failure risk. They 
consider an “economy” consisting of n critical infrastructure systems that are thought of as 
interconnected production sectors in the economy. In this system, the output of each sector is 
the risk of “inoperability” of the associated infrastructure network, and the input to the sector 
can be in terms of failures due to accidents, natural hazards, or acts of terrorism, in addition 
to the negative impact from the failure of another sector. The quantity, quality and likelihood 
of failures are converted into an expected level of failure, and this risk is measured in 
monetary terms. A preliminary study on the dynamics of such risk is also discussed using a 
Leontief-based dynamic model. By applying a Leontief input-output model, which is the 
classical approach to formulate interdependencies among interconnected sectors in an 
economic system, the study introduces a potentially powerful tool to analyze the interactions 
among critical INs. However, it focuses on the interactions of failure risk among the various 
INs, which is only one aspect of infrastructure interdependencies. 

Friesz et al. (2001) introduce the concept of multi-layer infrastructure networks that 
involves generalized transportation. They study the interdependencies among the different 
layers by using a spatial computable general equilibrium (SCGE) model. The concept of 
interdependency is generalized, and five sources of interdependencies are identified. The 
various layers of the MINs are formulated as the transportation sectors connecting multiple 
regions in an economy, in which each layer carries a particular type of commodity. When the 
markets of all commodities are cleared and the flows in each sector are distributed in the 
corresponding network, a general equilibrium is reached in the economic system. In addition, 
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a MIN capital budgeting model is proposed for the budget allocation problem in which the 
impacts of inter-layer interdependencies are explicitly considered. 

Nagurney and Dong (2002) propose the concept of a unified “supernetwork” to capture the 
interactions among transportation, telecommunication, energy, and financial “subnetworks”. 
This approach is mathematically substantially similar to the Sheffi-Daganzo hypernetwork 
perspective but stresses different types of infrastructure rather than different transportation 
modes. Nagurney and Dong illustrate their perspective through case studies using subsets of 
these infrastructure systems in application domains such as supply chain modeling, 
telecommuting, teleshopping, and electronic commerce. However, this work does not deal 
with the key questions of multiple time scales and linkage constraints (beyond the standard 
notions of flow conservation). The work is largely static in perspective, and considerations of 
dynamics are based on the notion of projection of trajectories onto constraint boundaries, so 
that all agents follow constraint boundaries and do not visit the interior of the relevant 
feasible region. 

Some relevant studies in a more narrow and limited context consider only a subset of these 
infrastructure systems or certain aspects of the interdependence. These include the 
telecommuting problem (Salomon, 1997; Mokhtarian and Meenakshisundaram, 1999; Choo 
et al., 2001), shared inter-state resources problem (Apogee Research, 1996), and the 
telecommunications needs for intelligent transportation systems deployment (Gianni and 
Moore, 1997; Johnson and Thomas, 2000). They provide analytical/practical results as well 
as behavioral insights by addressing only limited aspects of the infrastructure 
interdependency problem.  

These studies and real-world events suggest that identifying and understanding the 
interactions among infrastructure systems using a holistic perspective can potentially lead to 
more efficient infrastructure systems. However, these interdependencies are generally 
ignored in engineering practice, which typically addresses infrastructure systems in isolation. 
There are several reasons for this common perspective. First, engineering infrastructure 
systems are complex even at an individual level leading to a significant degree of difficulty if 
the scope is broadened to include multiple systems. Second, different INs are planned, 
designed and operated by different public, private and/or public-private sectors without 
explicit coordination. Third, the degree of coupling across INs can vary substantially 
implying weak interactions in some cases and strong ones in others. However, events in the 
recent past suggest that the explicit consideration of multiple INs simultaneously can be 
essential to circumventing unintended catastrophic consequences, even if the interactions 
between any subset of them are weak. For example, this scenario can manifest as cascading 
failures of IN components that cripple essential societal functions across several of them. 
Also, a key economic benefit of considering multiple INs simultaneously is in terms of 
enabling more informed engineering decisions and/or resource allocation strategies. 

The expected benefits of considering infrastructure interdependencies are many-fold. 
Recent events suggest that addressing INs individually may lead to wasted resources, 
operational inefficiencies, and at times cripples some subnetworks completely. The California 
energy crisis in the summer of 2000 is an excellent case study in this context. The 
deregulation of the power industry, aided by the lack of a holistic perspective, led to severe 
power shortages in that state when extreme weather conditions coincided with high power 
needs leading to debilitating cascading effects on the telecommunication and water networks. 
The rolling power cuts in the Silicon Valley region crippled data networks and Internet 
functionality affecting businesses nation-wide. Another example of cascading effects across 
infrastructure systems is the port union strike on the U.S. west coast in 2002. This had a 
ripple effect on the air, rail and road transportation systems, and on commerce and e-
commerce. It is an example of functional interdependencies across in infrastructure systems. 
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If such linkages are identified in the planning stage, cascading phenomena can be 
circumvented or at least planned for in terms of contingency measures. An important caveat 
that further emphasizes the need for capturing IN interdependencies is that some of the 
cascading catastrophes may not manifest when an IN is being analyzed in isolation. This 
implies that system failure and the impacts of catastrophic phenomena can be alleviated to 
some extent by explicitly considering the linkages, even in the operational stage. For example, 
the terrorist attack in New York in September 2001 led to the shutdown of several 
infrastructure systems due to the cascading effects across INs. This highlights the notion that 
when multiple INs fail, there may be strong interdependencies across these failures. By 
contrast, a severe road traffic accident may lead to the partial failure of the road IN. This 
indicates the need to introduce redundancies in individual INs to alleviate the cascading 
effects on other INs. For example, disaster response strategies involving the road 
infrastructure subnetwork should focus on strengthening multiple critical routes based on 
factors other than population coverage alone. These routes should also factor in access to 
critical infrastructure systems such as power and water systems to dilute the cascading effects 
across other INs. 

The consideration of multiple INs simultaneously entails the addressing of three key 
aspects in a research context. First, there is a need to identify the types and degree of the 
interactions among different INs. A specific IN can have varying types and degrees of 
interactions with other INs. For example, an automobile transportation subnetwork has 
physical interdependencies with a road-based freight transportation subnetwork in terms of 
shared right of way. This is a strong interaction as travel delay characteristics are highly 
correlated. By contrast, the interdependency between the automobile and water subnetworks 
in a region is typically much weaker though they may have similar network structures. 
Further, the level of interactions between the same IN pair can themselves vary with other 
factors. For example, in areas with dense population, the characteristics of the 
telecommunication systems may have a significant impact on the performance of the 
transportation system through phenomena such as telecommuting and teleshopping. By 
contrast, such interactions may be less significant in a sparsely populated area.  

The second research aspect is the need to develop a new generation of methodological 
constructs that can explicitly capture the interactions among INs and analyze their impacts. 
Currently, systematic methods to address MIN problems do not exist. This manifests as the 
need to model flow dynamics across the different layers of MINs to capture the various 
interactions. In addition, there is a need to develop broad-based resource allocation 
procedures that capture these interactions vis-à-vis investment decision-making. This is 
important because investment and improvements in one IN may influence the performance of 
other INs. For example, in some regions, improving the telecommunication infrastructure 
may induce more people to work from home, reducing the demand and increasing the service 
levels on the transportation network.  

The third research aspect is the need to develop efficient solution methodologies for the 
MIN problems. The modeling of a large-scale individual IN is inherently complex due to the 
large problem size, stochasticity in user behavior, and existence of disturbances. The MIN 
problem combines multiple INs under a single framework. The explicit consideration of 
coupling among these INs, in addition to the dynamic nature and the nonconvexity/nonlinear 
properties of the various MIN components, adds an extra dimension of complexities to the 
problem. These prevent the effective application of traditional analytical methods to solve the 
problem. This entails the consideration of non-traditional computational intelligence 
techniques and simulation-based approaches that go beyond the traditional methodologies 
typically applied in the civil infrastructure systems domain. 
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Studying the interdependence of infrastructure networks is a relatively new and complex 
research domain, and many issues need to be addressed in order to reveal the nature and 
engineering significance of interdependencies in the MINs. This paper is a preliminary effort 
to introduce some basic concepts and methodologies to analyze IN interdependencies. We 
propose a generic framework to address MIN problems, and focus on the network flow 
equilibrium analysis problem. Other aspects, such as risk management and emergency 
response can also be addressed using this framework, but are not the focus of this paper. 
Section 2 introduces the sources and types of infrastructure interdependencies, and lists key 
challenging issues in the problem context. Section 3 presents a preliminary three-layer (auto, 
urban freight, and data) flow dynamics MIN model based on existing single-layer subnetwork 
flow dynamics models assuming the telecommunication (data) sector as the leader in the 
Stackelberg game and the authority controlling the data/information network. This authority 
is also informed on the auto and urban freight networks. Section 4 proposes an agent-based 
modeling and solution framework for the MIN model, and discusses some preliminary 
experimental insights. Concluding comments are presented in Section 5. 

2. Basic Concepts 

In this section, we introduction some basic concepts related to multi-layer infrastructure 
networks. Section 2.1 introduces the similarities among different infrastructure systems in 
terms of structure, flow characteristics and system operation. Section 2.2 identifies six types 
of interdependencies that exist among INs. Section 2.3 lists some challenging issues for MIN 
problems. 

2.1. Similarities in Infrastructure Networks 

The various infrastructure systems in a GTN can be structurally characterized as networks. 
This can be a key source of interdependencies among them. 

2.1.1. Structural Characteristics. Infrastructure systems are organized as networks. They 
are composed of basic network elements such as nodes, links, and paths. For transportation 
networks, the nodes are traffic intersections, activity (residence, business, shopping, 
recreation, etc.) centers, cities, logistic origins/destinations/hubs, railway stations/yards, 
airports, seaports, etc. The links are the highways, freeways, city streets, railways, air lines 
and seaways. For telecommunication systems, the nodes are computers (network servers, 
routers, and terminal clients), telecommunication exchange stations, satellites, etc., while the 
links are telephone lines, cables, fiber optic cables, wireless radio/microwave linkages, etc. 
Water (drinking and sewage) systems consist of processing stations, pump stations, and 
storage towers as nodes, and pipelines as links. In energy systems, nodes are electricity plants, 
transformer substations and gasoline stations, while the links are electricity transmission 
wires, pipelines, or roads. 

Viewed in a regional context, the various infrastructure systems typically serve the same 
economy, society, and population. Therefore, their physical and operational structures are 
constructed to accommodate the common demand characteristics and activities. For instance, 
if the population and/or activity levels of a region are dense, it may contain more nodes and 
links of every IN type. 
 
2.1.2. Flow Characteristics. Infrastructure networks carry different types of flows. In 
transportation systems, the flows are vehicles (passenger and freight), trains, airplanes, and 
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ships. In telecommunication systems, the flows are message and data (text, voice, video, 
image, etc.). In energy systems, the flows are electricity and gasoline. These flows share 
some common properties. First, the demand generation of these flows is highly dependent on 
the network user needs and decisions. Second, randomness in flow pattern exists for most INs, 
though the degree of randomness may vary. The randomness in user behavior causes demand 
fluctuation, while recurrent flow patterns also exist due to specific behavioral tendencies. In 
addition, the system performance can also be random due to unpredictable factors such as 
debilitating events and/or severe weather conditions. Third, the design and analysis of INs 
typically assume that flows intend to (or can be controlled to) reach equilibrium states and/or 
satisfy some controller objectives. Fourth, the methodologies, tools, models and algorithms 
used to study flow equilibria across different INs are similar. For example, graph theory, 
queuing theory and optimization methods are widely used in the design and operations of INs. 
Next, all INs have capacity constraints, highlighting the importance of the resource allocation 
problem. Finally, all INs are susceptible to failure. This has key ramifications for 
interdependencies across INs and emphasizes the need for redundancy, reliability and 
robustness.  

2.1.3. System Operational Characteristics.  INs are essential to the fundamental economic 
and social activities of a region, and are hence closely related to public good. Therefore, 
public agencies are involved to some extent in the investment, planning, design, maintenance, 
management, and/or operation of most INs. The privately owned INs, such as 
telecommunication, energy and water, are normally oligopolistic markets with some major 
service providers in each region due to the huge investment needed and the large-scale nature 
of these systems. Most IN owners/operators are guided by caveats such as profit 
maximization, capacity maximization, or delay minimization in their planning and 
operational procedures. The INs also interact with the socio-economic environments in which 
they operate. The IN system users are influenced, to varying degrees, by the operators. 
However, the operators do not have full control on user decisions.  

2.2. Types of Interdependencies in MINs 

Six forms of interdependencies among the INs are identified in this study: 

1. Physical interdependencies. Some networks are coupled by shared physical flow rights of 
way leading to joint capacity constraints.  Data and telecommunications networks are an 
example. Infrastructure facilities may also share the same geography even though the flows 
do not share capacities. An example is the shared right of way between road transportation 
and telecommunication networks.   

2. Functional interdependencies. The construction and operations of one IN may rely on the 
support from other INs. For instance, electrical power is needed for the functioning of most 
other INs. Another example is the need for data and information transmission for efficient 
transportation operations under advanced information systems.  

3. Budgetary Interdependencies. Many infrastructure systems associated with GTN involve 
some degree of public financing so that the financing of one IN either directly or indirectly 
affects the financing of others. 

4. Market interdependencies and spatial economic competition. With the increasing 
globalization of the world’s economy and the trend toward ever more intelligent 
infrastructure, spatially separated supplies and demands for the services and goods exchanged 
over INs generally from a single global competitive market and, thereby, influence one 
another even when other explicit interdependencies are not manifest. Moreover, because of 
the public good aspect of many INs, numerous governmental regulations exist and are 
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emerging that control both intra- and inter-layer aspects of the spatially extended economic 
competition that occurs via INs.  

5. Information Interdependencies. With recent advances in enabling information technology, 
comprehensive data and information infrastructures are commonly available. As a 
consequence, database sharing and information exchange among individual INs provides 
synergism and cost-efficiency. For example, urban water and energy utilities may share 
information on the socioeconomic characteristics of individual households to more 
consistently predict future demands.  

6. Environmental Interdependencies. The increasing reflection of environmental issues in 
infrastructure policy decisions, coupled with the direct impacts of the ambient environment 
on various INs, indicates potential environmental interdependencies among various INs. For 
example, hazardous material spills can manifest as short-term effects on the flow of goods 
and passengers, and potentially long-term effects on nearby water networks and/or 
ecosystems. 

2.3. Key Modeling Issues 

The conceptual identification of interactions among the different layers of a MIN is 
reasonably straightforward. However, their quantification and systematic formulation is 
substantially more involved. Some of the key modeling issues include: 
1. The modeling issues of MINs depend on the objectives of the associated problems. As 
illustrated by the literature review in Section 1, research efforts in the infrastructure 
interdependencies focus on two major aspects: disequilibrium analysis (Rinaldi et al., 2001; 
Haimes and Jiang, 2001) and equilibrium analysis (Friesz et al., 2001; Nagurney and Dong, 
2002). The former emphasizes the phenomena of cascading failures or risk transmission 
caused by interdependent infrastructures, while the latter aims to develop general network 
flow equilibrium models for multiple systems, considering their flow interaction and other 
interdependencies. Both classes of problems study the evolving flow patterns or system states 
based on the physical and/or functional linkages among IN layers, and the behavioral 
characteristics of participating agents. Due to the behavioral implications, the equilibrium 
analysis problems are most naturally formulated as games with multiple self-interested 
players.  

In addition to the equilibrium/disequilibrium (descriptive) analysis, prescriptive problems 
can also be formulated for multilayer infrastructure networks. Prescriptive problems, such as 
budget allocation, network planning and design, risk management and emergency response 
problems, aim to optimize the overall network performance based on system-level criteria 
such as cost minimization, social surplus maximization, risk minimization, or recovery time 
minimization after network failure. These problems are normally formulated using a top-
down approach. In many cases, the equilibrium or disequilibrium analysis is the basis for the 
prescriptive problems. 

MIN problems can also be differentiated by the implementation timescale. Typically, 
system optimization can be employed in both long-term planning and short-term operations 
of infrastructure systems. By contrast, equilibrium analysis is mostly used for long-term 
planning and can be the basis for prescriptive problems which contain equilibrium constraints. 
Disequilibrium analysis is primarily meaningful in a short-term context, and can be used to 
address both long-term (risk analysis and management) and short-term (emergency response) 
security scenarios. 

2. The flow dynamics of different MIN layers can have different time scales. For example, 
in the MIN that includes auto, urban freight and data, the transportation networks can be 
characterized at a day-to-day level while the telecommunication networks have a within day 
basis. Changes in traffic flow patterns occur on a day-to-day scale as travelers update their 
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travel decisions based on the current day’s experience. However, telecommunication flows 
change much faster and dramatically due to the “burstiness” property of data transmission 
demand, even compared to the within day traffic dynamics. Synchronizing the time scales of 
the different layers is a challenging and critical issue for flow interaction problems in a MIN. 

3. The flow characteristics scale is another critical issue in the formulation of MINs. For 
example, when road transportation and data networks in a region are considered, the flow 
scales can be significantly different in terms of their influence on the corresponding IN 
performance. Road transportation networks can be highly congested during the peak periods 
of traffic flow. A small percentage reduction in this flow through telecommuting can 
significantly influence the traffic system performance. However, its effects on the 
telecommunications network are asymmetric and negligible due to the due to the relatively 
much higher capacities of data networks compared to data flow changes. This significantly 
enhances the complexity of capturing the impacts of flow changes in telecommunications 
networks. 

4. The performance characteristics scale can also introduce a significant complexity to the 
formulation of MIN problems. As illustrated by the MIN problem involving road 
transportation and telecommunications networks, the magnitude of performance measures are 
much more perceptible for transportation networks than for telecommunication networks 
under normal conditions. Hence, formulating robust performance operators for 
telecommunications networks is significantly more difficult than for transportation networks. 

5. An additional source of complexity for the MIN budget allocation problem is the 
difficulty in enabling coordinated investment decisions due to the disparate nature of the 
ownership of the different IN layers. A simple mechanism is to assume a super authority that 
makes coordinated resource allocation decisions. However, the formulation can be 
significantly more complex when public and private operators co-exist in a MIN problem, 
and or oligopolistic entities exist within individual layers. This is because different entities 
can have different goals, strategies, and financial capabilities.  

3. Flow Dynamics Models 

The modeling of flow dynamics and equilibrium tending flows are key issues of the MIN 
problems. In traditional formulations, the equilibrium tending flows are considered one 
network at a time. However, subnetworks are not isolated in a multi-layer IN framework. The 
various interdependencies must be explicitly represented in terms of flow interactions, shared 
capacity constraints, and/or combined budget constraints.  

In this section a preliminary formulation is presented for a three-layer MIN flow dynamics 
problem. First, the single-network flow dynamics models are introduced for auto, urban 
freight, and data subnetworks. Then, these models are combined to obtain a three-layer MIN 
model. This modeling uses a game-theoretic approach because the auto and freight flow 
dynamics are based on a fixed-point formulation of a Cournot-Nash equilibrium of games 
while travelers, travel information providers, freight shippers, and carriers are treated as self-
interest players in the games. 

3.1. Notation 

We use the standard notation of equilibrium models in the three single-layer and three-layer 
network modeling formulations.  
 

A the set of arcs, |A| = m; 
N the set of nodes, |N| = n; 

NNo ⊆  the set of nodes which are trip origins; 
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NN D ⊆  the set of nodes which are trip destinations; 

ijP  the set of paths for origin-destination (O-D) pair i, j; 
P  the complete set of network paths indexed by p; 

p
ijw  an element of the path-(O-D) pair matrix; specifically, p

ijω =1 if path p 

connects O-D pair (i,j) and p
ijω =0 otherwise; 

)( p
ijwW =  the path-(O-D) pair matrix; 

apγ  an element of the arc-path incidence matrix; specifically apγ = 1 if arc  
pa∈ and apγ = 0 otherwise; 

)( apγ=Γ  the arc-path incidence matrix; 
)(thp  the flow on path p at time t, measured as the flow at the entrance of the first 

arc of path p at time t; 
)(th  the full vector of path flows at time t; 
)(tf a  the commodity flow on arc a at time t; )(tf a and )(thp  are related by the 

identity ∑
∈

=
Pp

pap thtf )()( γ ; 

)(tf  the full vector of arc flows at time t; 
)(tuij  the travel cost estimated by the ATIS for origin i and destination j on day t; 

)(tu  the full vector of estimated travel cost on day t; 
)]([ thc p  the unit cost of flow on path p on day t, as a function of the full vector of 

path flows h(t); 
)]([ thc  the full vector of path costs on day t; 

)]([ tuTij  the travel demand between i and j on day t; 
)]([ tuT  the full vector of travel demands on day t; 

)])([( tuTijΘ  the inverse travel demand between i and j on day t; 
)])([( tuTΘ  the full vector of inverse travel demands on day t; 

)(tiπ  the supply price of commodity i in location r; 
π  the vector of commodity supply price on day t; 

)(πr
id  the demand function in location r for commodity i; 

),( ua rs
ij π  the input-output coefficient of productive activity j in location s relative to 

input commodity i produced in location r; 
),( uA π  the price and transport cost dependent activity analysis matrix; 
)]([ tSi π  the effective commodity supply function for market i; 

)]([ tS π  the vector of effective commodity supply; 
)(tki  the capacity of the industry in region i on day t; 

)(tk  The vector of capacity on day t. 
 

In order to formulate the multi-layer model, extra superscripts are needed for some 
variables. The superscript A refers to auto, F to urban freight, and D to data. For example, the 
notations Ah  and Fh  are vectors of path flows in auto and urban freight networks, 
respectively. An additional set of variables y is introduced to represent the improvements on 
each layer through investment. That is, Ay , Fy , and Dy  are the vectors of improvements 
made to the auto, urban freight, and data subnetworks through investment. 
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3.2. Single-layer Dynamic Network Equilibria Models  

Single-layer dynamic network equilibria models address one network at a time. The flow 
dynamics models of auto, urban freight, and data subnetworks are discussed in this 
subsection. These single-layer models are based on Friesz et al. (1994), Friesz et al. (1998) 
and Friesz et al. (2004). 

3.2.1. Auto Layer Flow Dynamics Submodel. A day-to-day dynamic network equilibrium 
model is briefly introduced in this subsection.  A detailed description of this model can be 
found in Friesz et al. (1994). It assumes that drivers change their behavior (travel demand and 
route choice) on a day-to-day basis based on information on network conditions provided by 
an advanced traveler information system (ATIS) on each day. Such behavioral change causes 
the adjustment of network flows from one disequilibrium state to another following the 
traditional Wardropian user equilibrium principle.   

At the start of each day for the period of interest, the ATIS provides each driver the 
estimated travel cost on the various routes for that day. The driver uses this information to 
obtain the equilibrium costs on the paths connecting the O-D pair of his/her interest. Based on 
this perceived information, each driver decides whether to make the trip and the trip route. 
The aggregate of the decisions of all drivers determines the amount and distribution of flows 
on each link. This is equivalent to the demand in an economic system, and can be represented 
as an inverse demand function: 

∑
∈

Θ≡∈∈Θ=Θ
klPp

AA
ij

A
d

A
o

A
p

A
ij

AAA
ij hNlNkhtuT )(),:()])([(     (1) 

where ),,:( A
ij

A
d

A
o

A
p

A PpNjNihh ∈∈∈=  is the full vector of path flows. This implies that 
the travel costs estimated and disseminated by the ATIS are ultimately a function of the 
actual flows in the network. The excess travel cost, measured as the difference between the 
drivers’ current actual average travel cost and the cost for their O-D pairs reported by the 
ATIS, is expressed as: 

)]([)]([)]([ ththcthETC AA
ij

AA
p

A
p Θ−≡         (2) 

The difference between the number of drivers who would have traveled (based on the 
inverse cost function) had the estimated O-D travel cost been realized and the total actual 
path flow for a given O-D pair is treated as excess demand. The ATIS thereby makes an 
adjustment on the estimated travel cost for the following day in a way that as excess demand 
increases (decreases), the broadcasted O-D travel cost increases (decreases) for the next day 
to reflect the relative scarcity (surplus) of transportation services. Thus the excess 
transportation demand can be expressed as: 

∑
∈

−≡
A

ijPp

A
p

AA
ij

AA
ij thtuTthtuETD )()]([)](),([        (3) 

As a consequence, such a system can be readily stated as a global projective dynamic 
system (Smith et al., 1997). Define: 

)]}(),([)({Pr)( thtuETCthtv AA
ijp

AA
pp β−= Ω , 1

+ℜ∈Aβ  
where }{Pr ⋅Ω  denotes an operator that projects the infeasible values onto the closed set of 
constraints Ω   pertinent to the analysis to avoid infeasibilities. Therefore, )(tv p  can be 
viewed as the instantaneous revision of the path preference in accordance with continuously 
provided excess cost information. Imposing the initial conditions, we have the full vector of 
excess costs as: 

),,:)](),([()](),([ A
ij

A
d

A
o

AA
ijp

AA PpNjNithtuETCthtuETC ∈∈∈≡  
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+≡ }{),0max( vv  
ρ
+ℜ∈== 0,)0( AA hth  

With the coefficient vector ):( AA
p

A Pp∈≡ ηη , the flow dynamics in the auto layer can be 
expressed as: 

)}()]}([)({{)( ththETCth
dt

tdh AAAAA
A

−−= +βη , ],0[ Tt ∈∀  

where 
0,)0( AA hh =  

and T is the period of interest. 
Discretizing the above flow dynamics, and including the capacity enhancement variables, a 

discrete time flow dynamics can be expressed as: 
])]},()([[{ ,,,,,1,

A
p

AAA
p

AA
ij

A
ij

A
p

A
p

A
p

A
p hyhchhhh ττττττττ θβη −−Γ−=− ++    (4) 

0,
0, )0( A

p
A
p hh =           (5) 

A
oNi∈∀ , A

DNj∈∀ , APp∈∀ , ∈∀τ [0, 1, 2, …, T-1] 
For details of the auto flow dynamics models, see Friesz et al. (1994). 

3.2.2. Urban Freight Layer Flow Dynamics Submodel. The second layer to be discussed is 
the freight transportation subnetwork. Though the freight subnetwork shares the same 
physical network with the auto subnetwork, they have substantially different characteristics in 
terms of demand generation, user behavior, and decision variables. Therefore, a separate flow 
dynamics model is built for this layer. This model is based on Friesz et al. (1998). 

In this formulation, the interregional commodity flow dynamics is modeled by introducing 
a disequilibrium adjustment mechanism in which the commodity prices and interregional 
flows follow distinct signals, and constraints ensuring balanced trade flows are not enforced 
prior to attaining an equilibrium. In a traditional spatial price tatonnement process, a central 
auctioneer collects information from and provides information to consumers, producers and 
carriers. Trade cannot be realized until the equilibrium commodity prices are reached in each 
region. In this model the tatonnement process is modified to a non-tatonnement process in a 
sense that some feasible production and consumption will generally occur continuously along 
a realizable disequilibrium trajectory until the market is cleared. 

The process assumes that the economy of interest is completely competitive, and for each 
firm in the economy there is a technologically optimal production level at which the firm 
produces and supplies. Consumers and producers are modeled as players with distinct goals 
and rules in a non-cooperative game. The transportation costs between regions are explicitly 
considered in addition to the spatial price differences of the commodity. The system starts 
from a disequilibrium state, and adjusts to the Cournot-Nash equilibrium when the market is 
cleared. During the adjustment process, the commodity prices in different regions respond to 
the excess commodity demand, which is expressed as the difference between the freight 
transportation demand that would have been realized based on the demand function 
responding to the current commodity price in each region and the effective supply function 
which decides the demand that actually manifests in this region, plus the difference between 
inflow and outflow for this region: 

∑ ∑∑ ∑
∈ ∈∈ ∈

−+−=
F
o

F
ji

F
d

F
ij Nj Pp

F
p

Nj Pp

F
pii

F
i ththtStDthtECD )()()]([)]([)](),([ πππ   (6) 

F
dNi∈∀ , ],0[ Tt ∈∀  
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where ][⋅iS  is the effective commodity supply function for market i. Akin to the auto 
submodel, we also consider the excess price in the urban freight subnetwork. The difference 
is that in the auto layer the “price” is the travel cost, and in the urban freight layer it is the 
commodity price in the different regions. The excess delivered commodity price is expressed 
as: 

)()]([)()](),([ tthctthtEDP j
FF

pi
F

p πππ −+=       (7) 
F
oNi∈∀ , F

dNj∈∀ , F
ijPp∈∀  

The transportation flows adjust in response to the delivered price, which is the summation of 
the commodity price in the producing node and the transportation cost that is decided by 
transport agents (carriers).  

On the producer side, we assume that the industry in a region can only produce limited 
amount of the commodity. The industry capacity adjusts in response to excess industry 
capacity, which is measured as the difference between the present capacity and market 
demand under the prevailing market prices: 

})()()]([{)()](),(),([ ∑ ∑∑ ∑
∈ ∈∈ ∈

−+−=
F
o

F
ji

F
d

F
ij Nj Pp

F
p

Nj Pp

F
pii

F
i ththtDtktkthtEIC ππ   (8) 

F
oNi∈∀ , ],0[ Tt ∈∀  

The corresponding vectors of the above excess demand, price, and industry capacity can be 
expressed as: 

):)](),([()](),([ F
d

F
i

F NithtECDthtECD ∈≡ ππ  
),,:)](),([()](),([ F

ij
F
d

F
o

F
p

F PpNjNithtEDPthtEDP ∈∈∈≡ ππ  

):)](),(),([()](),(),([ F
o

F
i

F NitkthtEICtkthtEIC ∈≡ ππ  
The initial conditions on the commodity price, path flow and industry capacity are: 

||0)0(
FNt +ℜ∈== ππ  

||0,)0( PFF hth +ℜ∈==  
||0)0(

F
oNktk +ℜ∈==  

The price, flow and capacity dynamics in the urban freight subnetwork can be expressed as: 

)}()]}(),([)({{)( tthtECDt
dt

td F ππαπωπ
−+= +      (9) 

)}()]}(),([)({{)( ththtETPth
dt

tdh FFFFF
F

−−= +πβη               (10) 

)}()]}(),(),([)({{)( tktkthtEICtk
dt

tdk F −−= +πργ                (11) 

with initial conditions 
0)0( 0 ≥= ππ , 0)0( 0, ≥= FF hh , 0)0( 0 ≥= kk . 

By discretizing the period of interest, we get the discrete time dynamics model: 
}][{][ ,,, ∑ ∑∑ ∑

∈ ∈∈ ∈

−+−=
F
o

F
ji

F
d

F
ij Nj Pp

F
p

Nj Pp

F
piii hhSDECD τττττ ππ  

]}[{ ,,,,1, τττττ παπωππ iiiiiii ECD −+=− ++  
0

0, ii ππ =  

ττττ ππ ,,, ],[ j
FF

pip yhcEDP −+=  

]}[{ ,,,,1,
F
pp

FF
p

F
p

F
p

F
p hETPhhh τττττ βη −−=− ++  
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0,
0,

A
p

F
p hh =  

}][{ ,,,, ∑ ∑∑ ∑
∈ ∈∈ ∈

−+−=
F
o

F
ji

F
d

F
ij Nj Pp

F
p

Nj Pp

F
piii hhDkEIC τττττ π  

]}[{ ,,,,1, τττττ ργ iiiiiii kEICkkk −−=− ++  
0

0, ii kk =  
F
oNi∈∀ , F

DNj∈∀ , FPp∈∀ , ∈∀τ [0, 1, 2, …, T-1] 
For more details see Friesz et al. (1998). 
 

3.2.3. Data Layer Flow Dynamics Submodel. The characteristics of the data layer are 
different from those of the auto and urban freight layers. First, the users of the data 
subnetwork cannot directly access information on the condition of the telecommunications 
network. Though users can feel that data transmission is “slow” or “fast”, typically they 
cannot access quantified transmission delay information a priori. Second, the users of the 
data subnetwork do not have to choose a route to transmit data. This function is performed by 
the network controller (router) based on optimizing some controller objectives. Finally, in 
some cases the data transmission delay is not a key concern of the data subnetwork user. For 
example, when sending an email, normally the sender does not know when the email reaches 
the receiver. In other words, the data delay does not affect the user’s decision. Due to these 
differences, it is difficult to develop flow dynamics models from the network user perspective 
unlike for other two subnetworks. However, the data flows can be represented based on how 
the data packages propagate in the network. 

Consider a network exclusively devoted to data communication. Suppose that the scheduled 
demands meant to be serviced at or before pre-specified times are known with certainty for a 
finite time interval ],[ 0 Tt . The arc delay functions, denoting the traversal time experienced 
by a data packet on arc a with )(txa  message volume arriving in front of the packet, take the 
form of: 

0)]([ >
−

+=
aa

a
aaa xK

B
AtxD , DAa∈∀                    (12) 

The path for data routing contains a set of arcs: 
},...,,,,...,,{ )(1121 pmiii aaaaaap +−=&                   (13) 

where =)( pm the number of arcs in the data communication path p. 
The associated flow dynamics of each arc pai ∈ can be expressed as: 

)()(
)(

1
tgtg

dt
tdx p

a
p
a

p
a

ii

i

−
−=                    (14) 

0)0( p
a

p
a ii

xx =                          (15) 

where 
=)(tx p

ai
 the volume on arc ia  due to flow on path p at time t 

=)(tg p
ai

 the flow exiting arc ia  of path p at time t 

=
−

)(
1

tg p
ai

 the flow entering arc 1−ia  of path p at time t 

Note that p
ag

0
 is the flow exiting the origin node of path p, and is given a special symbol D

ph  
to denote the flow on path p: 

D
p

p
a hg ≡

0
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The data volume on arc a is the summation of the contributions from the paths traversing 
that arc, and is given by: 

∑
∈

=
Pp

p
a

D
apa xx γ                     (16) 

where D
apγ  is the arc-path incidence variable: 

⎩
⎨
⎧

∉
∈

=
pa if 0
pa if 1D

apγ  

We also use },:),{(W D D
d

D
o NjNiji ∈∈=  to denote the set of O-D pairs between which 

the data packets are moved, where 
=D

oN  the set of nodes from which data traffic originates 
=D

dN  the set of nodes to which the data traffic is destined 
By carefully considering the propagation time and flow dynamics, we obtain the following 

proper flow progression constraints: 
)())]([1)])(([(

111111

' thxtxDtxDtg paaaaaa =++ &                 (17) 

)())]([1)])(([(
1

' tgxtxDtxDtg p
aaaaaa

p
a iiiiiii −

=++ &                (18) 
DPp∈∀ , )](,2[ pmi∈  

These constraints are derived so as to be completely consistent with the point queue model of 
arc delay. 

We further define ),( xtDp  as the path delay operators that tell us the delay experienced by 
a message packet transmitted at time t and encountering traffic conditions x: 

0),()(),(
)(

1
>Φ=≡ ∑

=

pm

i
apapp xttDxtD

ii
δ                  (19) 

where ),(
1

xtaΦ  are the arc delay operators obeying: 
0)]([),(

111
>=Φ txDxt aaa  

0)]([),(
1222

>Φ+=Φ aaaa txDxt  
0)]([),(

21333
>Φ+Φ+=Φ aaaaa txDxt  

….. 

0)]([] ...)([),(
1

1
11111

>Φ+=Φ++Φ+=Φ ∑
−

=
−

i

j
aaaaaaaa jiii

txDtxDxt              (20) 

We also introduce the arrival penalty operator ]),([ Ap TxtDt −+Π  where AT  is the 
prescribed fixed arrival time with TTA > , and the arrival penalty operator has the properties: 

0),(]),([),( >=−+Π⇒>+ xtTxtDtTxtDt L
ApAp χ               (21) 

0),(]),([),( >=−+Π⇒<+ xtTxtDtTxtDt E
ApAp χ               (22) 

0]),([),( =−+Π⇒=+ ApAp TxtDtTxtDt                 (23) 
for every path Pp∈ . Consequently, the effective delay operator for each path is: 

0]),([),(),( >−+Π+=Ψ Appp TxtDtxtDxt                 (24) 
Now we are ready to express the dynamic flow routing problem as an optimal control 

model. Suppose that there is a single agent that sets message transmission rates and 
determines message routes. The objective of this agent is to minimize the total system delay 
for the network over the period ],0[ T  across all O-D pairs: 



 

 

15

Minimize ∑∫
∈

Ψ=
Pp

p

T

p dtthtxttthJ )()](,[]),([
01                 (25) 

We also assume that there are two types of data demands in the network: scheduled and 
unscheduled demands. We denote the fixed, unscheduled demand for O-D pair Wji ∈),(  by 

1
++ℜ∈ijQ , and the scheduled demand for the same O-D pair by )(tRij at time ],0[ Tt ∈ . The 

following flow generation and conservation constraints and non-negativity restrictions hold 
for every O-D pair Wji ∈),( : 

)()( tRth ij
Pp

p
ij

≥∑
∈

                   (26) 

D
ij

T

ij
D
ij

Pp

T

p QdttRQdtth
ij

~)()(
00

=+= ∫∑∫
∈

&                  (27) 

0≥x , 0≥g , 0≥Dh                    (28) 
where 

)])(,1[,:( pmiPpxx Dp
ai

∈∈=&                   (29) 

)])(,1[,:( pmiPpgg Dp
ai

∈∈=&                   (30) 

):( DD
p

D Pphh ∈=&                    (31) 
Define: 

hold} (28) and ),27(),26(),18(),17(:),,{(1 ghx=Λ                (32) 
as the set describing the feasible region of the omniscient controller. Then, the overall 
dynamic flow model can be expressed as: 

⎪⎭

⎪
⎬
⎫

Λ∈

Ψ= ∑∫
∈

1

01

),,(                                   ..

)()](,[]),([min 

ghxts

dtthtxttthJ
Pp

p

T

p                 (33) 

Further details can be found in Friesz et al. (2004). 

3.3. Three-layer Flow Dynamics Model 

Based on the single-layer flow dynamics models discussed in Section 3.2, an integrated three-
layer MIN flow dynamics model is presented. Let: 

=+
A

ijT 1,τ  the auto demand during the period ]1,[ +ττ  in the absence of data flows 

=+
D

jiQ 1,, τl  data volume between i  and l  pertinent to employer at j  and worker 
residing at i  during the period ]1,[ +ττ  

=D
oN  set of all data sender nodes 
=D

dN  set of all nodes demanding data 
The effective auto demands in light of the option to work at home afforded by data flows 

are: 
∑ +++ −=
l

l
D

ji
A

ij
E

ij QTT 1,,1,1, τττ α  

where A
++ℜ∈α  is an exogenous parameter.  This leads to: 

∑ +++ −=
l

l
D

ji
A

ij
E

ij QTT 1,,1,1, τττ α                   (34) 

E
ij

Pp

A
p Th

A
ij

1,1, +
∈

+ =∑ ττ                    (35) 

0)],()([ 1,,1, =− ++
E

ij
AAA

p
EA

ij TyhcT τττθ  
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0),()( ,1, ≤−+
AAA

p
EA

ij yhcT ττθ  
A
oNi∈∀ , A

DNj∈∀ , APp∈∀ , ∈∀τ [0, 1, 2, …, T-1], and AWji ∈),( . 
The flow conservation constraints for data flows are: 

D
ji

Pp

p
a Qdg

D
i

1,,

1
)(

0 +
∈

+
=∑ ∫ τ

τ

τ
ξξ l

l

                  (36) 

where D
iPl  is the set of paths of the data network, ξ  is a dummy variable for continuous time, 

and constraint (33) is stated for every ...2,1,0=τ . It is important to note here that the data trip 
matrix elements D

jiQ 1,, +τl  and the elastic auto demands A
ijT 1, +τ  are control variables. 

Equation (34) demonstrates the interaction between auto and data flows. It assumes that the 
flows in the two subnetworks are convertible to each other under certain circumstances. Note 
that A

ijT 1, +τ  is the potential total auto demand. While several types of traffic activities (such as 
drive to work or shopping) are substitutable by data communication (such as telecommuting 
or teleshopping), the effective auto demand can be decided by the potential total auto demand 
minus the demand switched to the data subnetwork. The switched auto demand can be 
represented as a function of data volume D

jiQ 1,, +τl . 
The flow conversion represented by Equation (34) can stem from several scenarios, and 

telecommuting is an example of such switchable flows. It is a work mode that uses the 
employee’s home or a location close to home as the employee work space, and connects to 
the office, supervisor, colleagues, clients and others through a telecommunications network. 
Over the past two decades, it has been suggested to policy makers as an efficient way of 
mitigating vehicular traffic congestion problems and negative consequences thereof. The 
telecommuting population has been constantly increasing over the past decade due to the 
quantum leap in information technology development, and this increase is predicted to 
continue even more rapidly in the future. Telecommuting employees either telecommute on a 
regular basis, or often in a month. Surveys (Doherty et al., 2003) suggest that between 25 and 
65% of jobs in North America and Europe are at least partly telecommutable.  

The linkage between the transportation layer and telecommunication layer is in terms of the 
user’s decision on whether to telecommute or commute based on the performance of the data 
and auto subnetworks. The availability of telecommuting infrastructure is an important factor 
that influences the choice of telecommuting. According the 1999 National Telework Survey, 
teleworkers spend 38% of their work time on the computer; 17% on the phone; 24% doing 
reading, research or analysis; and 9% on face-to-face meetings (Pratt, 1999). One cannot 
suppose that all the time spent on a computer is dedicated to communication. However, it is 
reasonable to assume that a considerable portion of communication is done through the 
computer due to the spawning of the Internet revolution and the versatility of computers vis-
à-vis sending and receiving information in different formats such as email, fax, downloading 
and uploading electronic files through FTP, web browsing, online voice and image 
exchanging, and real-time data retrieving. A study in Los Angeles (Nilles, 1993) suggests that 
significant differences exist between telecommuters and non-telecommuters in terms of 
personal ownership and usage of advanced information technologies. It suggests that a higher 
percent of telecommuters owns personal computer, while the percentage of telecommuters 
owning a computer modem is double that of non-telecommuters. It also indicates that a 
higher percentage of telecommuters use other telecommunication services such as email and 
audio conferencing. Another study (Allenby and Roitz, 2002) lists the reasons why 
employees do not adopt telecommuting and why some former telecommuters quit 
telecommuting. The lack of efficient telecommunication capabilities is identified as the most 
important reason in both cases. According to a web-based survey (Sina, 2003), the lack of 
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high-speed Internet access is one of the major causes for reduced work efficiency of 
telecommuters. However, the availability and quality of telecommunication services may not 
be the primary reason for telecommuting decisions. The technological limitations in terms of 
data transmission are diminishing due to the increasing availability of broadband Internet 
access both at home and at work. The organizational restrictions, job characteristics, need for 
face-to-face communication, work efficiency, and personal or family issues such as health or 
childcare may have greater influence on the telecommuting choice once a stable 
telecommunication service is established. In addition, the traffic related concerns such as 
travel time, gas price and other monetary costs, safety, environmental issues, and land use can 
be the key factors influencing the telecommuting decisions. Therefore, in the example 
presented in Section 4, the telecommuting decision of an auto user is primarily based on the 
auto subnetwork performance. 

The auto and data layers can be seamlessly combined under a single day-to-day dynamics 
framework because the users only need to make a decision on whether to commute or 
telecommute at the beginning of each day. Once the decision is made, he/she will become a 
user of the corresponding subnetwork for that day. Therefore, to address the time scale issue, 
the time scales of the three subnetworks can be treated on a day-to-day basis.  

The three-layer model is based on the assumption that a super authority is responsible for 
the provision of information to commuters and urban freight agents in order to minimize the 
total social costs of congestion. This minimization is constrained by the equilibrium tending 
behavior of commuters and urban freight agents. The fiction of the super authority allocating 
information to minimize social costs is employed in order to calculate the most efficient 
information-passenger-freight flow patterns. We will use the Pareto-optimal efficient flow 
patterns found from this model in the next phase of our research (not reported here) to 
evaluate capital investments. 

Thus the problem becomes an optimal control problem with the objective function: 
Minimize )( 332211 JwJwJw ++    

where 1J , 2J , and 3J  are the subnetwork delay based on the delay operators of auto, urban 
freight, and data layers, and 1w , 1w , 1w  are corresponding weights. These weights are varied 
parametrically to generate the set of Pareto optimal (or non-dominated) solutions that may be 
used in various multi-objective decision making (MCDM) schemes to evaluate the social 
desirability of a given information allocation by the super authority. Our intent in this paper is 
merely to show how Pareto optimal alternatives are generated using the original dynamic 
Stackelberg game-theoretic model we have proposed, and so we do not elaborate on the 
MCDM techniques that would use Pareto optimal solutions to arrive at a best compromise 
information allocation plan. 

With auto, urban freight, data dynamics, and coupling constraints, a three-layer fast-slow 
model (where “fast” corresponds to the data subnetwork flow dynamics and “slow” 
corresponds to the other two subnetworks) can be expressed as: 
Minimize )( 332211 JwJwJw ++                    (37) 
Subject to 
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0
0, ii ππ =                     (43) 

]}[{ ,,,,1, τττττ ργ iiiiiii kEICkkk −−=− ++                 (44) 
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AWji ∈),(                     (52) 
A

ijPp∈                      (53) 
=τ  0,1,2,3…                    (54) 

All variables ≥  0                   (55) 
In addition to the MIN flow dynamics model presented here, a three-layer MIN budget 

allocation model has also been developed that includes combined budget constraints and an 
objective function that explicitly considers the overall benefits across the three layers. It adds 
additional dimensions of complexity to the problem. This is a practically important strategic 
infrastructure planning problem, especially for decision-making under a centralized authority. 
However, due to space limitations, this model is not presented here. 

The above model can be used to capture several of the interdependencies discussed in 
subsection 2.2. Since the auto and freight subnetworks share the same physical facility, the 
cost function of the transportation system depends on both the auto and freight flows. This 
represents physical interdependency. Also, since the flow can be diverted between data and 
auto network, the two subnetworks compete for the same group of users. This can be treated 
as a market interdependency. The model (37)-(55) can also be extended to reflect more 
infrastructure interdependencies under the proposed modeling framework. For instance, the 
performance of transportation system can also be the function of data system performance 
due to the impact of an advanced traveler information system. This can be viewed as a 
functional interdependency. If a budget allocation model is considered and resources are to be 
assigned to the various subnetworks, a budgetary interdependency manifests. We do not 
incorporate these components here because the focus of this paper is on the network flow 
equilibrium analysis only. 

The key modeling issues discussed in subsection 2.3 are also addressed. Model (37)-(55) is 
a mathematical program with equilibrium conditions, represented by the flow dynamics for 
the individual layers. The network flow dynamics of the different MIN layers are formulated 
using separate constraints without intervention, and the flow interactions only manifest 
through the flow conversion operators. This implies that flow characteristics such as time 
scale and cost functions can be addressed based on the current available models for the 
individual infrastructure networks. Budgetary issues can also be addressed under different 
scenarios. First, a common budgetary resource can be available from public agencies (such as 
federal/local government) to improve the performance of the individual infrastructure 
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networks. In such a case, a central budgetary constraint is considered for all layers. Second, 
when the public/private budget is only available to a specific infrastructure layer, a budget 
constraint is added to that layer, and the resource is distributed to the different components of 
the layer. 

4. Solution Procedure and Preliminary Experiments 

As discussed in Section 3, the three-layer flow dynamics MIN model formulated here is 
based on the three single-layer flow dynamics models. Akin to the single-layer models, the 
three-layer MIN model can be represented using a system of combined differential and/or 
difference equations under behavioral assumptions for the various players in each layer. The 
proposed formulation assumes simple behavioral rules. If it also uses simplified performance 
operators, desirable mathematical properties such as linearity and convexity are preserved. 
Such a system of equations can be solved using commercial software. However, when the 
problem is scaled to a real-world MIN system and incorporates the more involved behavioral 
tendencies of real-world players and realistic performance operators, key concerns arise in 
terms of the problem complexity, solution accuracy and computational efficiency, precluding 
successful implementation of the traditional methods. First, this system is unavoidably non-
convex; the non-convexity arises from the non-linear equality constraints that express the 
coupling of the various IN layers. Second, the accuracy of the flow dynamics and system 
evolution process of a MIN is highly dependent on the ability to realistically replicate the 
behavior of various players in each subnetwork. The involvement of human decisions in this 
process introduces an important source of stochasticity due to the wide variations in user 
preferences, perceptions and information accessibility, and the learning capabilities of all 
players. Third, the number of variables and constraints needed to model a large-scale MIN is 
significant. Hence, the solution for such a complex system using traditional analytical 
approaches could be prohibitively expensive. Finally, the presence of explicit path variables 
in the model formulation introduces further complexity; this is a direct result of its dynamic 
nature and the fact that the generalized transportation demands naturally occur at the origin-
destination level. Therefore, non-traditional computational intelligence techniques and/or 
simulation-based solution approaches are appropriate for the generalized MIN problem. We 
propose an agent-based simulation (ABS) approach as a general solution mechanism for the 
generalized MIN problem. 

4.1. Agent-based Simulation Solution Approach 

Agent-based modeling is a well-established and active branch of artificial intelligence. An 
agent, by definition, is a computational entity that can be viewed as perceiving and acting 
upon its environment, and that is autonomous in that its behavior at least partially depends on 
its own experience (Weiss, 2000). In ABS modeling, different players in a system are 
represented as intelligent agents interacting with each other and with the environment. The 
intelligent agents perceive information and pursue specific goals by performing certain 
actions. 

In recent years, ABS has attracted increasing attention in diverse domains such as sociology, 
economics, engineering, and science as it offers several inherent advantages compared to 
traditional analytical approaches for problems that lack well-behaved mathematical properties 
and/or are difficult to represent analytically. Due to its robust ability to handle large-scale 
problems involving complex behavior, interaction, dynamics, stochasticity, learning, 
rationing, and decision-making, ABS offers a promising and innovative way to understand, 
manage and simulate behavior of users in distributed, open, and heterogeneous systems. 
Another key advantage of ABS is its ability to provide transparent behavioral interpretations 
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for model parameters. By contrast, traditional approaches that rely on regression analysis of 
aggregate data to estimate model parameters often lack satisfactory behavioral interpretations 
for complex systems. In addition, ABS can typically represent the behavior of large-scale 
stochastic systems using a small set of explanatory variables (Parunak et al., 1998). 

ABS has several advantages for solving the MIN problem, especially in the context of the 
tatonnement process that describes the dynamic system evolution process. First, the agents in 
an ABS are autonomous; given rules and goals, they can “behave” by themselves, and 
improve their knowledge through a learning process. The behavior preferences, objectives, 
actions and constraints of agents can be conveniently encapsulated into their rules. This 
enables a simulator to replicate the system from an individual agent level rather than from a 
“centralized control” perspective; that is, using a “bottom-up” approach rather than a “top-
down” one. This perspective is more consistent with reality. For example, in a transportation 
system, each traveler typically makes his/her own decisions in a non-cooperative manner 
based on past experience and perceived system conditions, rather than being tightly 
controlled by a central authority, even under information provision. Second, the learning 
capability of agents provides a convenient tool to robustly model system dynamics. Agents 
learn from their past experience, as well as by sharing information with each other and 
interacting with the environment in which they live. These characteristics provide flexibility 
vis-à-vis modeling realism for complex systems such as the MIN problem. This is especially 
important for the game-theoretic approach used to solve the day-to-day evolution process in 
the MIN system. Third, ABS allows the convenient representation of a hierarchy structure of 
various agents and different subsystems. In other words, multiple interacting systems can be 
modeled as individual agents, each comprising a set of sub-agents. For instance, the 
individual infrastructure systems such as auto, freight, and data subnetworks can be modeled 
as agents interacting with each other. At the same time, each individual IN can itself contain a 
set of intelligent sub-agents whose performance and/or behavior are independent of each 
other while inheriting common features from a higher class. This enables us to conveniently 
simulate multi-level multi-class agents with distinct behavioral characteristics. Fourth, ABS 
can be easily combined with other optimization and solution methods, such as simulated 
annealing, to improve the computational efficiency. Thus, a hybrid approach can potentially 
be used to more efficiently search for solutions. Finally, ABS has the capability to easily 
implement different time scales for different agents. This can aid in solving the complex 
time-scale issue in generalized MIN problems. 

4.2. ABS Solution for the MIN Problem  

An ABS solution procedure is proposed to solve the three-layer flow dynamics model on a 
day-to-day basis. Table 1 illustrates the agents of the highest hierarchy in the ABS modeling 
for the three-layer MIN problem solution procedure. The agents/environments of auto, urban 
freight, and data subnetworks, along with the actions, rules and information these agents 
receive and/or provide, are listed in the table. The actions decide the functions the agents 
perform in the flow dynamics model, and can be represented by the combined differential and 
difference equations. Information is the input and output of the actions performed by each 
agent. Different agents retrieve and provide different information based on the subnetwork 
they belong to and the actions they can take. Rules are the objectives and/or the behavioral 
basis for the actions of agents. 

Figure 1 shows the interactions between the various agents and environments (subnetworks) 
on a day-to-day basis for the three-layer MIN flow dynamics problem. For the auto 
subnetwork, ATIS operators collect information on travel costs from the installed sensors and 
the traffic demand through interactions with the drivers. They provide the estimated travel 
costs to drivers whose travel decisions manifest as the traffic demand for the current day. 



 

 

21

Based on the estimated travel cost in the traffic subnetwork and the level of service in the 
data subnetwork, the potential driver chooses to drive to work or telecommute. If a potential 
driver telecommutes, he/she becomes a data user. In the data subnetwork, the router decides 
the data routing mechanism based on the prevailing data communication demand and the 
associated telecommunication network structure. In the urban freight subnetwork, the 
auctioneer collects consumption and production plans from consumers and producers, 
respectively, in each region, and computes the excess demand/supply in the market. The 
carriers obtain the freight transportation demands from the market, decide the freight routing 
plan over the traffic subnetwork, and estimated the shipping costs to auctioneer. The 
auctioneer determines the delivered price for a commodity in each region based on the excess 
demand/supply and shipping costs. The delivered price information is provided to consumers 
and producers, who in turn modify their consumption, production, and/or capacity change 
plans. This iterative day-to-day procedure continues until the market is cleared. 

The proposed ABS structure coincides with that of the MIN flow dynamics model 
introduced in Section 3, though only a simplified example is demonstrated in the numerical 
experiments in Subsection 4.3. The flow dynamics in the MIN are realized by the 
tatonnement-like behavior of participating agents. This enables the circumvention of 
optimization-based centralized flow assignment approaches, which lack behavioral basis for 
MINs, especially for descriptive cases.  

4.3. Numerical Experiments  

Some preliminary insights are generated on ABS-based solution procedures for MIN 
problems by conducting numerical experiments for a two-layer MIN consisting of the auto 
and data subnetworks. Without loss of generality, the freight subnetwork is not considered in 
these experiments. The experiments are conducted for a small-scale artificial two-layer 
network under simple behavioral assumptions. Results from a telecommuting scenario are 
provided to illustrate the potential of ABS for addressing MIN problems.  

4.3.1. Experimental Setup. The experiments use a two-layer system consisting of two nodes, 
three traffic links and one data link, as illustrated in Figure 2, to analyze the capabilities of 
ABS vis-à-vis articulating the MIN system evolution for a day-to-day time scale. As 
illustrated in Table 1, the players such as the auto user, data user and traffic network ATIS 
operator are represented as self-interested, rule-based agents in the simulation. The traffic and 
data networks are treated as the external environment. Agents collect information such as the 
perceived traffic costs from the environment. The performance of the environment is 
influenced by the decision of the agents. Agents also interact with each other. For example, 
the ATIS operator in the traffic network can disseminate predicted traffic cost information to 
the auto agents. In our experiments, 10,000 potential auto agents are simulated for each day, 
and they can be converted to data agents based on the prevailing traffic condition. A single 
traffic ATIS operator agent is considered. 

The performance operators for the traffic subnetwork are the link travel cost functions of 
the form: 
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where 
=)( aa fc  travel cost of link a for day t 

=)(tf a  traffic flow on link a for day t 

aA , aB , and aK = link-specific coefficients 
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Specifically, the cost functions used for the three traffic links are: 
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for each solution iteration (day).  
 

Experiment 1: Single-layer Network Experiment 
To compare the ABS performance for the single-layer and two-layer networks, a single-

layer network experiment is conducted to generate a benchmark. Here, the auto network is 
used for the single-layer case and user equilibrium is assumed to be the system objective. The 
total traffic demand is fixed at 100 units. At the beginning of each iteration (day), the agents 
on the non-optimal routes switch to the best route with a probability that is dependent on the 
travel cost difference between their current route and the best route for the previous iteration 
(day). The travel route switching probability for an agent is assumed to be a negative 
exponential function and is given by: 

bestccurrentceP −
−

=

θ

 
where 
P = the probability of switching from the current route to the best route for that agent 

bestc = travel cost on the best route 

currentc  = travel cost on the current route 
θ  = resistivity parameter 

The resistivity parameter θ  is a measure of the sensitivity of an agent to switching. A 
higher value of θ  translates to a low sensitivity implying that larger travel time savings are 
required to compel this agent to switch. The value of the resistivity parameter depends on 
several factors such as the driver’s socio-economic characteristics, trip purpose, familiarity to 
traffic network, and time of day.  

As shown in Figure 3.1, with the resistivity parameter θ  = 40, the link flows approach 
equilibrium after 15 iterations using the ABS solution procedure. With 100 traffic demand 
units, the user equilibrium flows on the three links are 36, 47 and 17 units, respectively. 

 
Experiment 2: Two-layer Network Experiment 
In this experiment, a two-layer network containing the auto and data subnetworks is 

considered. Here, each agent is a single system user who will decide at the beginning of each 
day (iteration) whether to drive using the traffic links or telecommute using the data link. 
This decision is based solely on his/her travel experience on the previous day. If the agent 
experiences long travel delays on the previous day, his/her probability to telecommute 
increases. If the agent decides to drive to work, he/she also decides which traffic link to take 
based on the travel costs for the link he/she took and the link with minimal cost on the 
previous day, as described in Experiment 1. 

We assume that the total number of system users is fixed. However, the auto subnetwork 
user is sensitive to the travel costs because he/she can choose to telecommute. This 
subnetwork choice is determined using a binary logit model of the form: 
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where 
Aπ  = probability of using auto subnetwork 
Ac  = travel cost on auto subnetwork 
Dc  = cost in data subnetwork, converted to units of travel cost 
ρ  = positive scale parameter, which is set to 0.1 for the study experiments 

In the study experiments, the data subnetwork cost Dc  is assumed to be a constant 
reflecting that the data generated by the switched users who telecommute is a negligible 
component of the total data flow. 

Note that a simple behavioral rule is used here to represent the user decision of choosing 
between auto and data networks. As a result, the data network can be thought of as an 
alternative route in a generalized transportation network, and the above model is equivalent to 
a mode choice model with route choice decisions. This is because the primary focus of the 
paper is to propose a generic modeling framework for multiple interacting infrastructure 
networks rather than on the sophistication of the behavioral models. If available, more robust 
behavioral models can be plugged into the current framework. For example, in many 
instances, the decisions to telecommute are not only influenced by the technological factors, 
but also restricted by organizational issues such as the need for face-to-face communication 
or physical presence for some jobs. These factors can be incorporated into the current 
modeling framework by further classifying the potential drivers into different groups. 

In summary, the two-layer MIN flow dynamics problem is a hierarchical decision-making 
problem. At the upper level, the user decides whether to telecommute or drive. If the user 
decides to drive, then the route choice represents the second-level of decision-making. Figure 
3.2 illustrates the equilibrium tending flows for the two-layer network in terms of traffic link 
flows. The system approaches equilibrium after about 50 iterations (days). With 100 traffic 
demand units, the user equilibrium flows on the three links are 38, 50 and 9 units, 
respectively. The remaining demand is serviced by the data link. 

4.3.2. Results and Insights. Figure 3 illustrates that the system flows tend to reach user 
equilibrium in both the single- and two-layer network scenarios. With identical values for the 
common parameters, the single-layer network reaches the equilibrium state much faster than 
the two-layer network. This highlights the interactions across the two INs considered, and 
suggests that interactions can significantly affect the individual network performance, and 
more broadly, influence the budget allocation process which is based on system performance 
characteristics. In the two-layer network, there is an additional choice alternative, leading to 
switching between the auto and data subnetworks. Hence, it takes more iterations for the 
system to reach equilibrium under the two-layer scenario. However, the two-layer network 
has better worst-route (in terms of travel cost) performances in the disequilibrium states. 
Figure 4 illustrates the travel costs on the worst routes for the auto subnetwork in single-layer 
and two-layer networks for the first 20 iterations. The results indicate that the travel costs on 
the worst routes in the two-layer network are typically lower than that in the single-layer 
network, especially during the initial iterations. This is because users taking a “bad” traffic 
link have a higher probability to choose telecommuting in the next iteration, thereby reducing 
the traffic subnetwork demand. However, this potential benefit is only an upper bound on the 
network performance improvement because from a transportation system analysis perspective, 
improved network performance may induce more traffic from other sources.  
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5. Concluding Comments 

The interactions among various infrastructure systems are normally ignored in engineering 
planning, design and analysis procedures. However, identifying and understanding these 
interactions using a holistic perspective can lead to more efficient infrastructure systems. The 
interactions among the INs exist in terms of physical, functional, budgetary, market, 
informational, and environmental interdependencies. Three key aspects need to be addressed 
vis-à-vis research on IN interdependencies. They include the identification of the types and 
degree of IN interdependencies, the development of a new generation of methodological 
constructs that explicitly consider these interdependencies, and the development of efficient 
and robust solution methodologies. Key challenging issues in this context include the time 
scale of the flow dynamics, flow characteristics scale, performance characteristics scale, and 
the complexities in enabling coordinated investment decisions across various INs. 

We propose a preliminary three-layer flow dynamics model for the automobile, urban 
freight and data networks based on three single-layer flow dynamics submodels. Specifically, 
the three coupled network layers are modeled as being comprised of Cournot-Nash dynamic 
agents. An agent-based simulation approach is proposed to solve the MIN problem. 
Experiments are conducted on a small network under simple behavioral and system 
performance assumptions. The results suggest that ABS has the potential to solve generalized 
MIN problems, as extensions to incorporate more complex behavioral rules into the decision- 
making process of agents are seamless. 
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Table 1. Agents in the ABS Modeling for the Three-layer MIN Problem. 

Sub-
networks 

Agents/ 
Environments Actions Rules Information 

Drivers (users) Make travel 
decisions User optimal Get estimated travel costs; 

provide traffic demand 

ATIS operators 
Disseminate 

traffic 
information 

System optimal 
Get actual travel costs and 

traffic demand; provide 
estimated travel costs 

Auto 

Traffic network Measure system 
performance N/A Get traffic demand; provide 

actual travel costs 

Consumers Consume 
commodities 

Utility 
maximization 

Get commodity price; provide 
demand plan 

Producers Produce 
commodities 

Profit 
maximization 

Get demand plan and 
commodity price; provide 
production and capacity 

change plan 

Carriers Ship 
commodities 

Delay 
minimization 

Get demand and production 
plans; provide routing plans 

and shipping costs  

Auctioneer 
Perform 

tatonnement 
process 

Market 
clearance 

Get demand, production and 
shipping costs; provide 
delivered price for the 

commodity 

Urban 
Freight 

Market 
Enable 

commodity 
trading 

N/A Get demand and production 
plans; provide excess demand 

Users (drivers) 
Make 

telecommuting 
decisions 

Utility 
maximization 

Get levels of services from 
Auto and Data; provide 

telecommuting decisions 

Routers Route data Delay 
minimization 

Get network information; 
provide data routing decisionsData 

Data network Measure level of 
service N/A 

Get data routing decisions; 
provide level of service 

information for Data 
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Figure 1. Agent/Environment Interactions for the Three-layer MIN Problem. 

 

 

 
 
 
 
Figure 2. Two-layer IN with Traffic and Data Links. 
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Figure 3. Equilibrium Tending Flow in Single-layer and Two-layer Networks. 
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Figure 3.1. Equilibrium Tending Flow on the Auto Network (Single-layer Network). 
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Figure 3.2. Equilibrium Tending Flow on Auto Subnetwork (Two-layer Network). 

 



 

 

29

 
Figure 4. Travel Costs on Worst Routes in Single-layer and Two-layer Networks. 
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