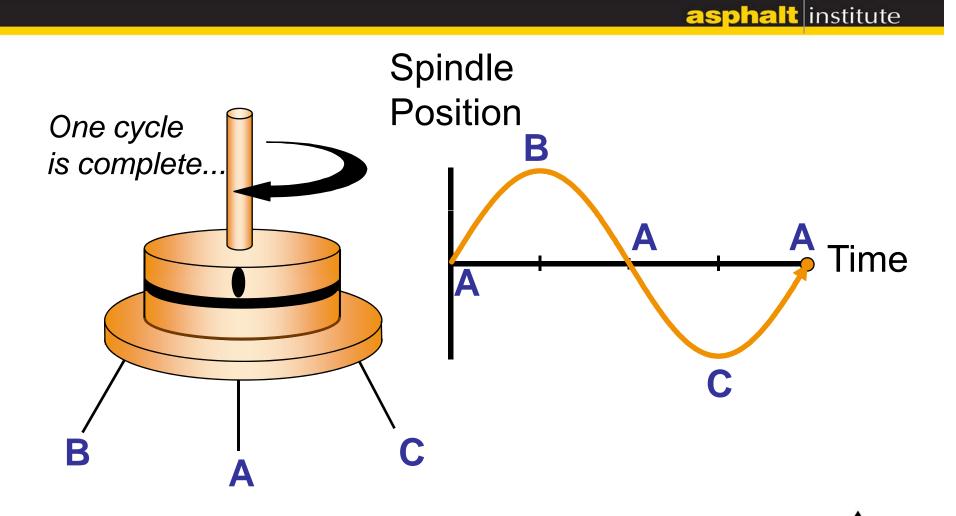


Using the Multiple-Stress Creep-Recovery (MSCR) Test

Mike Anderson, Asphalt Institute John Bukowski, FHWA

North Central Asphalt User Producer Group Meeting 15 February 2012 Indianapolis, IN

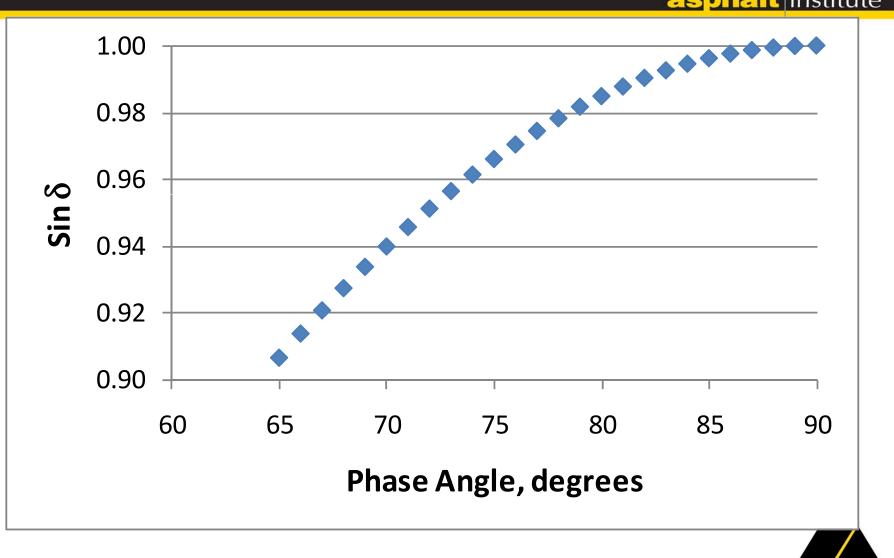
Acknowledgments


- DTFH61-08-H-00030
 - Cooperative Agreement between the FHWA and the Asphalt Institute
- John A. D'Angelo
- Asphalt Binder ETG
- Member Companies of the Asphalt
 Institute
 - Technical Advisory Committee

Discussion

- Background
- Basics of the MSCR test
- How do MSCR results (J_{nr}) relate to rutting?
- How can MSCR Recovery be used and what does it indicate?
- How does the specification work?
- Educational and implementation activities

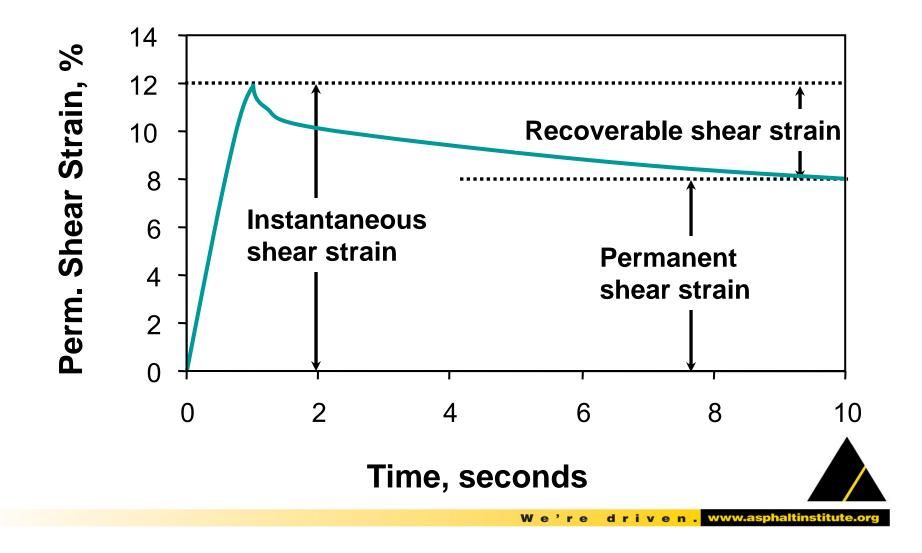
DSR Operation: AASHTO T315


Shortcomings of G*/sin δ

- G*/sin δ as a High Temperature Parameter
 - Properties determined in Linear Viscoelastic (LVE) region
 - No damage behavior
 - Rutting is a non-linear failure
 - Polymer-modified systems engaged in non-linear region
 - Characterizes stiffness
 - Related to rutting

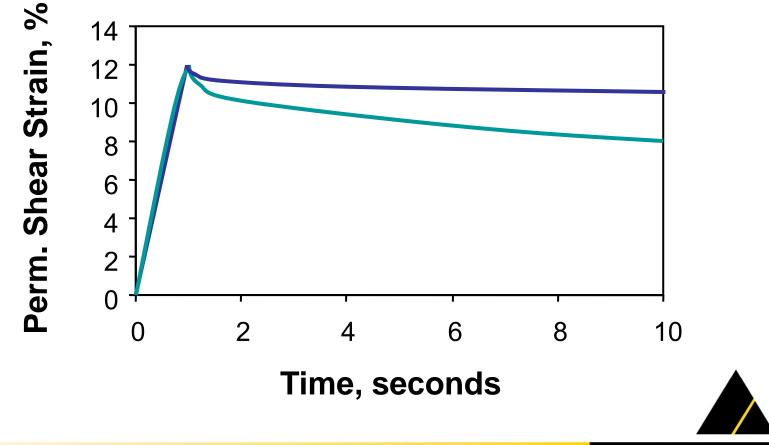
Effect of Phase Angle

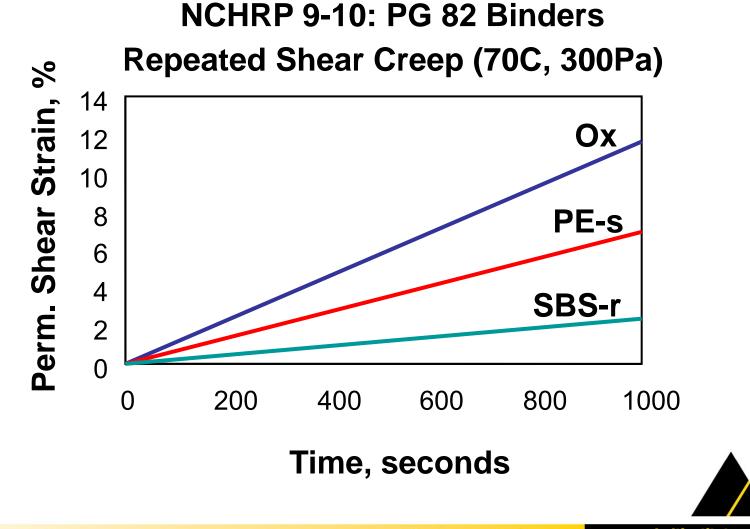
asphalt institute



High Temperature Testing

- Repeated Shear Creep
 - Analogous to mixture test (RSCH)
 - Performed in DSR
 - Controlled shear stress (i.e., 25 Pa or 300 Pa)
 - 100 cycles
 - 1-second load, 9-second rest per cycle
 - High test temperature (HT-?)
 - Response: permanent shear strain (γ_{p}) or strain slope


Repeated Shear Creep


Repeated Shear Creep

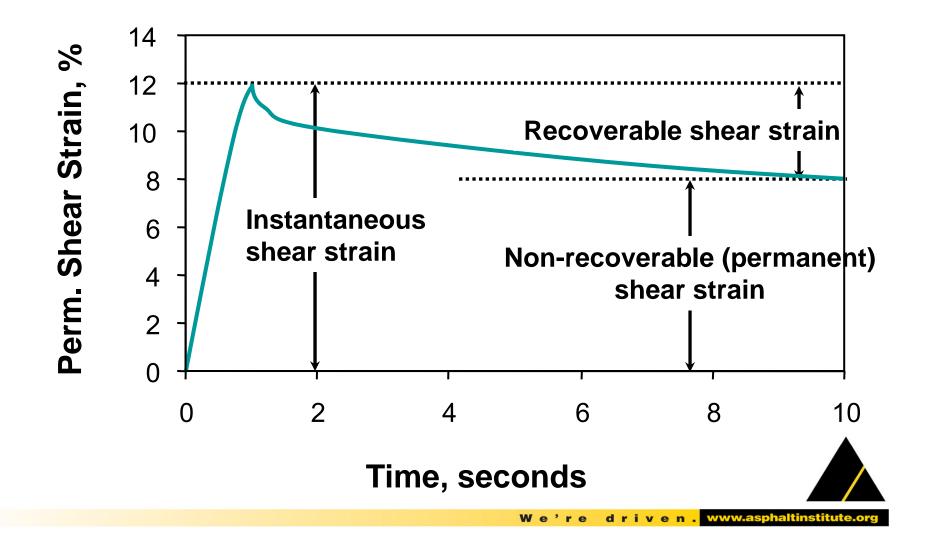
asphalt institute

NCHRP 9-10: PG 82 Binders Repeated Shear Creep (70C, 300Pa)

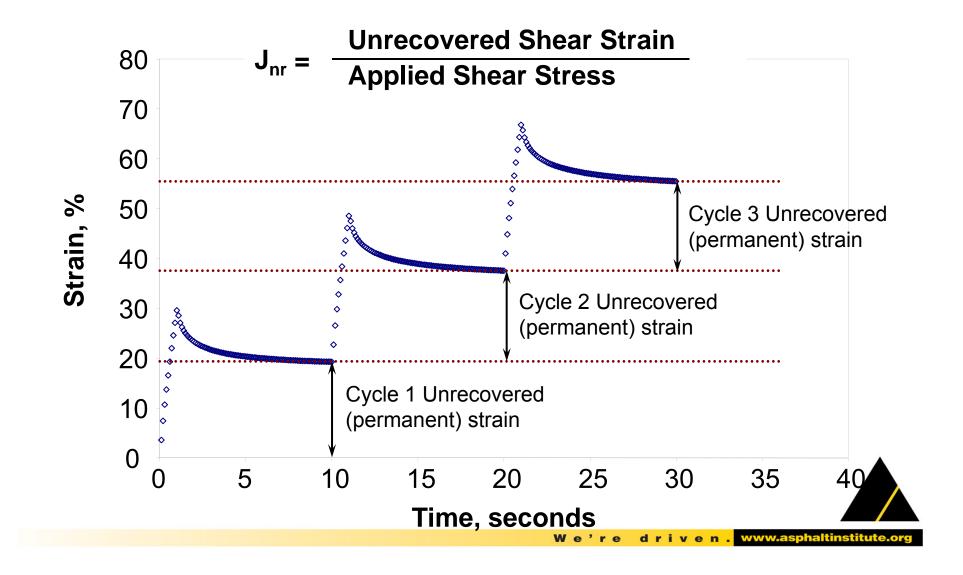
Repeated Shear Creep

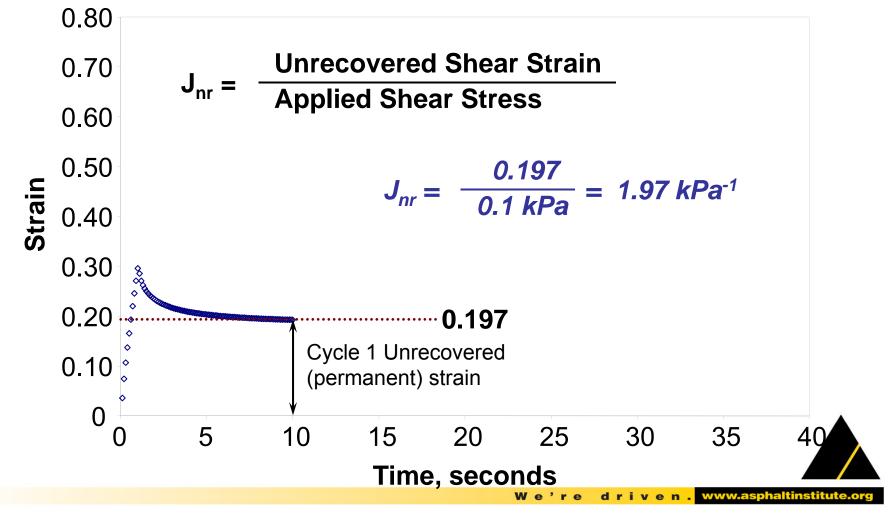
Multiple-Stress Creep-Recovery (MSCR) Test: AASHTO TP70

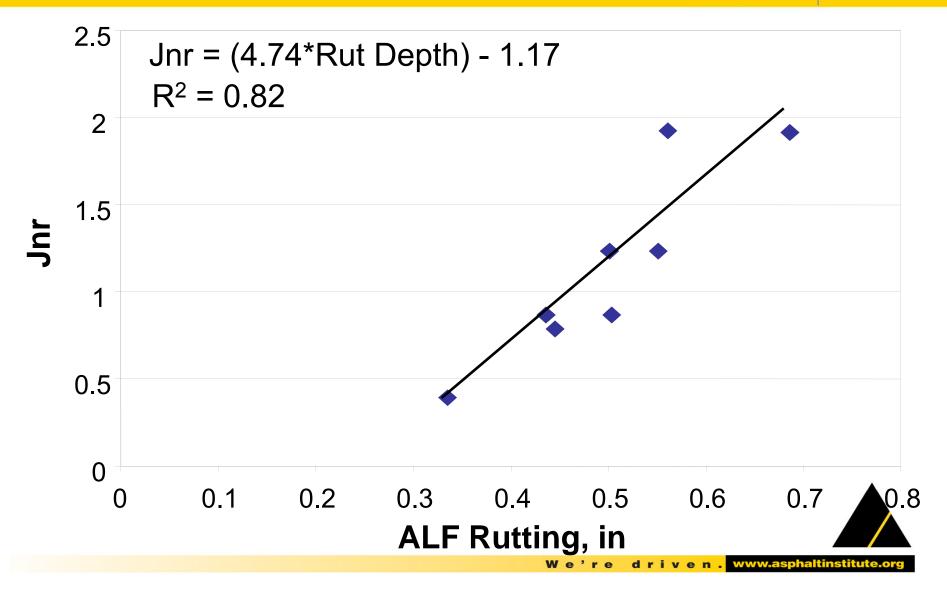
- Performed on RTFO-aged Binder
- Test Temperature
 - Environmental Temperature
 - Not Grade-Bumped
- 10 cycles per stress level
 - 1-second loading at specified shear stress
 - 0.1 kPa
 - 3.2 kPa
 - 9-second rest period



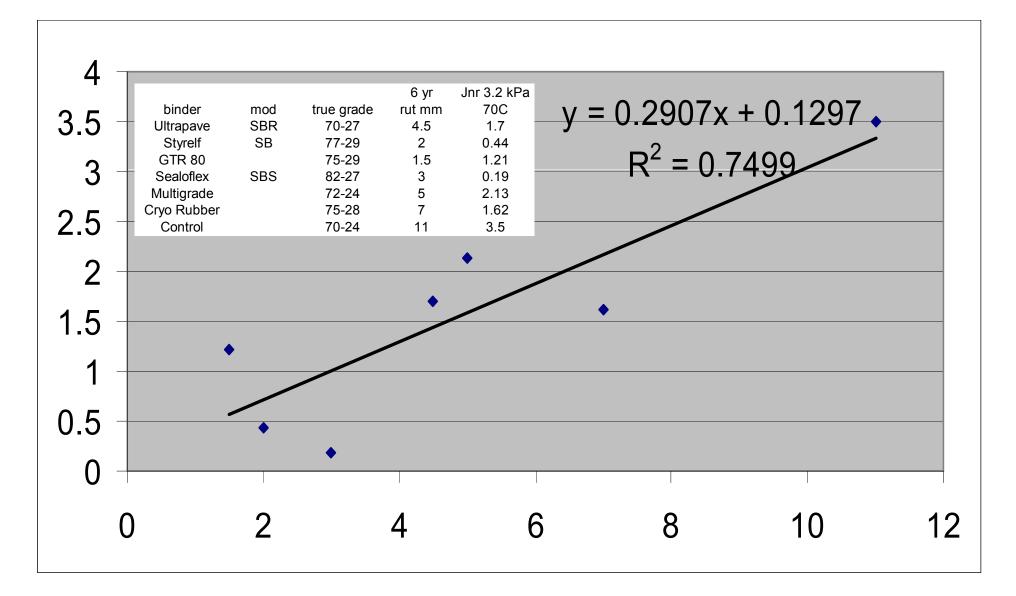
MSCR Test


- Calculate Non-recoverable Creep Compliance (J_{nr})
 - Non-recoverable shear strain divided by applied shear stress
 - "J" = "compliance"
 - "nr" = "non-recoverable"
- Calculate Recovery for each Cycle, Stress
 - Difference between strain at end of recovery period and peak strain after creep loading


MSCR – Non-Recoverable Compliance (J_{nr})


MSCR – Non-Recoverable Compliance (J_{nr})

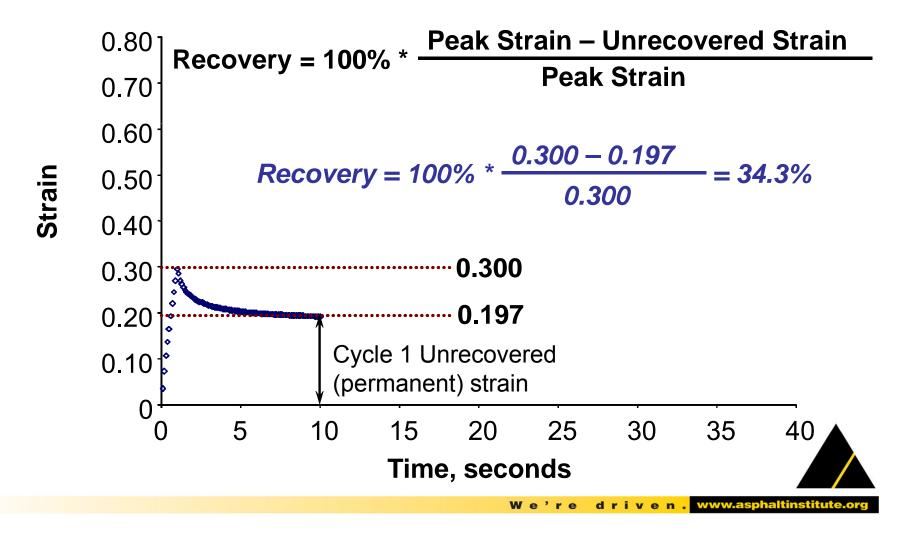
asphalt institute


0.1 kPa Shear Stress

Relationship between Jnr and ALF Rutting 25.6kPa asphalt institute

Mississippi 155: 6yr rutting J_{nr} 3.2 kPa

MSCR: What is % Recovery?


- MSCR J_{nr} addresses the high temperature rutting for both neat and modified binders
 - but many highway agencies require polymers for cracking and durability.
- The MSCR % Recovery measurement can identify and quantify how the polymer is working in the binder.

MSCR Recovery

asphalt institute

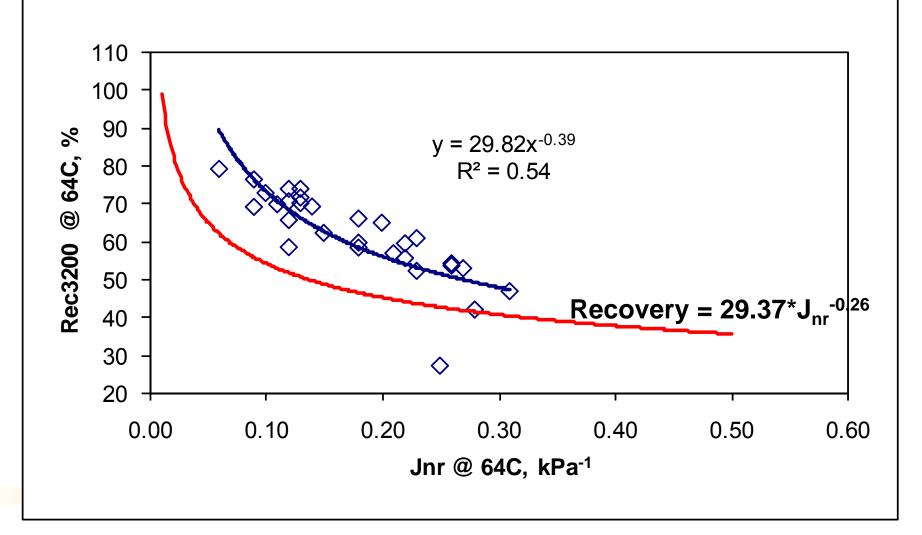
3.2 kPa Shear Stress

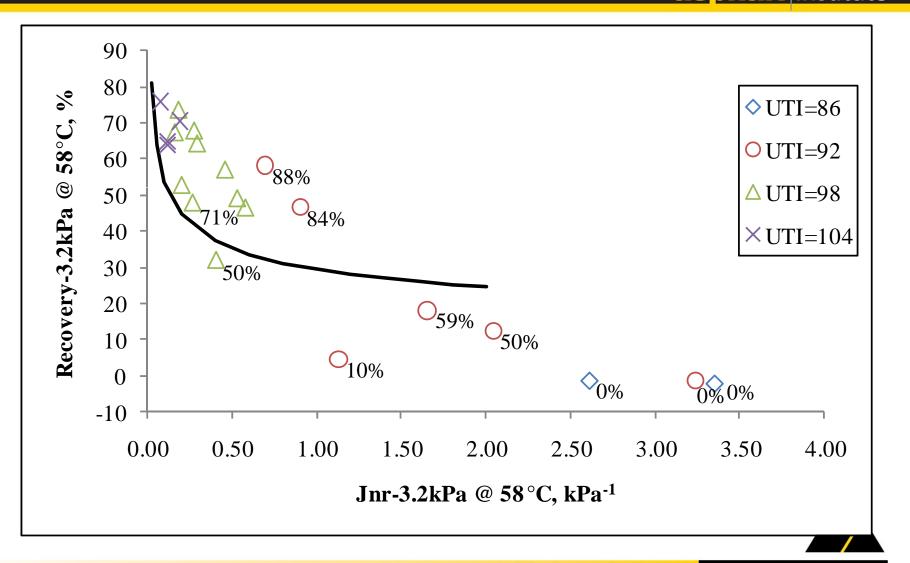
MSCR Recovery: Validate Polymer Modification

100 The curve stops at $J_{nr} = 2 \text{ kPa}^{-1}$. J_{nr} values greater than 2 kPa^{-1} 90 are not required to have any minimum value of % Recovery. 80 70 Significant Delayed Recovery, % Elastic Response 60 50 40 30 20 10 0 0.00 1.50 2.00 0.50 1.00 J_{nr}, kPa⁻¹

Table for MSCR % Recovery:Minimum Valuesasphalt

Minimum % Recovery for Measured J_{nr} values


J _{nr} @ 3.2 kPa	Minimum % Recovery
2.0 - 1.01	30%
1.0 - 0.51	35%
0.50 - 0.251	45%
0.25 - 0.125	50%


Validate Polymer Modification

asphalt institute

PG 76-22 Binders: MSCR3200

Evaluation of the MSCR Test for Canadian Asphalt Binders

We're driven, www.asphaltinstitute.org

	PG 64						
	-10 -16 -22 -28 -34 -40						
	Original Binder						
DSR (T315) – temp @ 10 rad/s G*/sin δ ≥ 1.00 kPa	64						
	RTFO-Aged Binder						
MSCR (TP70) – temp All Grades: Jnr,Diff ≤ 75% "S" Grade: Jnr-3.2 ≤ 4.0 kPa ⁻¹ "H" Grade: Jnr-3.2 ≤ 2.0 kPa ⁻¹ "V" Grade: Jnr-3.2 ≤ 1.0 kPa ⁻¹ "E" Grade: Jnr-3.2 ≤ 0.5 kPa ⁻¹	64						

	PG 64						
	-10	-16	-22	-28	-34	-40	
	PAV-Aged Binder @100°C						
DSR (T315) – temp @ 10 rad/s "S" Grade": G*sin $\delta \ge 5000$ kPa "H" Grade": G*sin $\delta \ge 6000$ kPa "V" Grade": G*sin $\delta \ge 6000$ kPa "E" Grade": G*sin $\delta \ge 6000$ kPa	31	28	25	22	19	16	
BBR (T313) – temp @ 60 s All Grades: Stiffness ≤ 300 MPa m-value ≥ 0.300	0	-6	-12	-18	-24	-30	

- Grades
 - Based on Climatic Temperature
 - High and Low Pavement Temperature
 - Traffic Designation
 - "S" Standard
 - "H" Heavy
 - "V" Very Heavy
 - "E" Extreme

- Grades
 - Based on Climatic Temperature
 - High and Low Pavement Temperature
 - Traffic Designation
 - "S" Standard
 - "H" Heavy
 - "V" Very Heavy
 - "E" Extreme

- < 10 Million ESAL
- 10-30 Million ESAL
- > 30 Million ESAL
- > 30 Million ESAL and standing traffic

- PG 64-22V asphalt binder
 - What do I need to test?
 - What are the temperatures and criteria?

PG 64-22V Asphalt Binder

- Original (Unaged) Binder
 - COC Flash Point
 - Must be ≥ 230°C
 - Rotational Viscosity @ 135°C
 - Must be ≤ 3 Pa-s
 - DSR (AASHTO T315)
 - G*/sin δ must be \geq 1.00 kPa @ 64°C

PG 64-22V Asphalt Binder

- RTFO Aged Binder
 - RTFO Mass Change
 - Must be ≤ 1.00%
 - MSCR (AASHTO TP70)
 - J_{nr} @ 3.2 kPa Shear Stress must be ≤ 1.0 kPa⁻¹ @ 64°C
 - Stress Sensitivity must be $\leq 75\%$

PG 64-22V Asphalt Binder

- PAV Aged Binder
 - DSR (AASHTO T315)
 - G*sin δ must be ≤ 6000 kPa @ 25°C
 - BBR (AASHTO T313)
 - S(60) must be ≤ 300 MPa @ -12°C
 - m(60) must be ≥ 0.300 @ -12°C

Implementation

- Telephone survey in 2010 and since indicate that there are barriers to state MSCR implementation
 - Inadequate DSR equipment/software
 - Lack of resources to perform transitional tests
 - Lack of guidance from suppliers and other states
 - Uncertainty about effect on binder supply and modification

Implementation: SEAUPG

 Task Force agreed to conduct survey of 14 SEAUPG states

- Determine current capabilities to run MSCR
- Determine need for training
- Find out what barriers exist to testing and/or implementation

Survey Results - Barriers

 9 of 14 states said biggest barrier was concerns over correlation between existing PG Plus and new MSCR criteria

- Comment:
 - Satisfied with the PG 76-22 polymer modified binder performance. There is a perception that moving to MSCR test may result in lower polymer loading and reduction in binder performance.

Survey Results - Training

 11 of 14 states said they could use some type of training

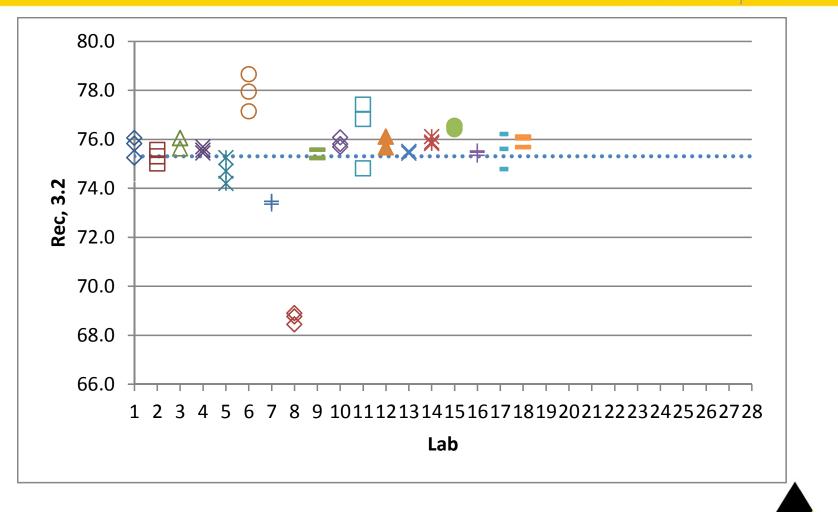
- 8 requested classroom training
- 9 requested laboratory training
- Comments:
 - More important than training is keeping abreast of progress around the country
 - Internet based training would be preferred since travel is restricted



Implementation Activities

- User-Producer Groups
 - Task Force participation
 - Coordination of round-robin testing
- Conducting testing for individual user agencies

Binder AR (PG 64-22): Jnr-3.2 at 64°C


Repeatability and Reproducibility Estimates (before removal of outliers)

Jnr (3.2 kPa) @ 64°C

								Repeatability		Reproducibility	
ID	Binder	X-bar	S _{X-bar}	Sr	s _R	r	R	1s%	d2s%	1s%	d2s%
AO	PG 64-22	4.73445	0.30437	0.28046	0.38090	0.78530	1.06651	5.9%	16.6%	8.0%	22.5%
BO	PG 76-22	0.31478	0.03366	0.01686	0.03636	0.04722	0.10182	5.4%	15.0%	11.6%	32.3%
CO	PG 70-22	1.09091	0.09018	0.05083	0.09928	0.14234	0.27797	4.7%	13.0%	9.1%	25.5%
AR	PG 64-22	2.16532	0.15582	0.09492	0.17403	0.26578	0.48729	4.4%	12.3%	8.0%	22.5%
BR	PG 76-22	0.13844	0.01514	0.00591	0.01589	0.01654	0.04448	4.3%	11.9%	11.5%	32.1%
CR	PG 70-22	0.42219	0.03845	0.01743	0.04100	0.04880	0.11479	4.1%	11.6%	9.7%	27.2%

Binder BR (PG 76-22): Rec-3.2 at 64°C

Repeatability and Reproducibility Estimates (before removal of outliers) halt institute

Recovery (3.2 kPa) @ 64°C

								Repeatability		Reproducibility	
ID	Binder	X-bar	S _{X-bar}	Sr	s _R	r	R	1s%	d2s%	1s%	d2s%
AO	PG 64-22	-0.70138	1.16245	0.27286	1.18361	0.76402	3.31411	-38.9%	-108.9%	-168.8%	-472.5%
BO	PG 76-22	69.86953	2.04476	0.50367	2.08571	1.41028	5.83998	0.7%	2.0%	3.0%	8.4%
CO	PG 70-22	35.33316	1.45239	0.89656	1.62644	2.51037	4.55404	2.5%	7.1%	4.6%	12.9%
AR	PG 64-22	0.85334	0.98338	0.13352	0.98941	0.37387	2.77035	15.6%	43.8%	115.9%	324.6%
BR	PG 76-22	75.30791	1.86344	0.46241	1.90130	1.29475	5.32365	0.6%	1.7%	2.5%	7.1%
CR	PG 70-22	47.66866	1.67845	0.70757	1.77510	1.98119	4.97028	1.5%	4.2%	3.7%	10.4%

Implementation Assistance

- Educational
 - FHWA Technical Brief (FHWA-HIF-11-038)
 - Asphalt Institute
 - Guidance Document, "Implementation of the Multiple Stress Creep Recovery Test and Specification"
 - Guidance Document, "Using the MSCR Test with the AASHTO M320 Specification"
 - www.asphaltinstitute.org

Educational Activities

- "Understanding the MSCR Test and its Use in the PG Asphalt Binder Specification"
 - Two-hour informational webinar on the MSCR test and how it is used in the specification
 - www.asphaltinstitute.org/public/asphalt_acad emy/Webinars/MSCR_Test_and_its_Use.asp

Implementation

asphalt institute

Recognize that the refineries that serve your state may also serve bordering states.

This may be a good reason to work with other states to implement regionally

Note that every Performance Grade may not equate to a distinct MSCR grade - for example, the current polymer loading in both a PG 70-22 and PG 76-22 may be high enough that both grade to a "PG 64-22 E"

Implementation

asphalt institute

Some agencies may be reluctant to implement MSCR fully, since the names by which they refer to binder types will necessarily change.

"PG 64-22 H" instead of "PG 70-22," for a possible example

Al's "Guidance on the Use of the MSCR Test with the AASHTO M320 Specification."

Why MSCR?

- Why Use the MSCR Test and Spec?
 - Non-recoverable creep compliance, J_{nr} , is better correlated with pavement rutting than G*/sin δ
 - The high temperature parameter is truer to the intent of the PG specification, that it be blind to method of modification

Why MSCR?

- Why Use the MSCR Test and Spec?
 - MSCR Recovery can be used to identify elastomeric modification, thereby eliminating the need for many PG-Plus tests like Elastic Recovery
 - Much quicker test
 - Not directly tied to performance

Thanks!

Contact Information:

R. Michael (Mike) Anderson, P.E. Director of Research and Laboratory Services Asphalt Institute 859.288.4984 office manderson@asphaltinstitute.org www.asphaltinstitute.org

