Results of NCHRP Project 9-40: Tacking Your Way to Performance

Louay Mohammad, Ph.D.
Louisiana Transportation Research Center
Louisiana State University

2010 NCAUPG Hot Mix Asphalt Technical Conference
February 3-4, 2010
Overland Park, Kansas
What is a Tack Coat?

- An application of asphalt onto a pavement surface
 - HMA, PCC
 - Emulsion
 - Hot AC
- Used to ensure a bond between the surface being paved and the underlying course
Background

- **Experience and empirical judgment**
 - Selection of tack coat material type, application rate, and placement

- **Quality control and quality assurance testing**
 - rarely conducted
 - resulting in the possibility of unacceptable performance at the interface,
 - premature failure.

- **NCHRP Project 9-40**
 - Optimization of Tack Coat for HMA Placement
 - develop a procedure to evaluate the tack coat quality in the field
 - bonding characteristics testing
Tack Coat Material Approaches to Test Strength

- Interlayer Bond Strength
- Tack Coat Quality

Torsion
Direct Shear
Torsion
Torsion
Tension
Tack Coat Material
Approaches to Test Strength

- Tack Coat Quality

Torsion
Tension
Field Pull-off Test for Tack Coat Evaluation

- Apply adhesive material on the pavement surface
- Contact plate is pushed into the pavement surface with a specific pressure
- The plate is then pulled off
- Tensile strength between the plate and tack coat surface is measured
Characterization of Tack Coat Quality
Louisiana Tack Coat Quality Tester -- LTCQT

- Developed equipment
 - Tack coat quality -- residual
 - Tension
- User friendly, Easy to use
- Laboratory and field
- Draft test method in AASHTO format
- Tensile load
 - Displacement
 - Tensile Force
 - Time
Summary

- LTCQT could serve as a valuable tool for highway agencies to perform comparative evaluations of various tack coat materials and application rates in the field.
- Repeatability of measurements
 - average coefficient of variation of less than 14%

Reference

Evaluate the Effectiveness of Tack Coat Materials

- Interface Bond Strength

Direct Shear

Torsion
Objective

- Evaluate the interface shear strength of tack coat materials under a wide range of testing conditions commonly encountered in field applications
 - effect of tacked surface type;
 - effect of tack coat materials type;
 - effect of application rate;
 - Construction condition;
 » effect of wetness (rain).
<table>
<thead>
<tr>
<th>Variable</th>
<th>Content</th>
<th>Number of Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tack Coat Material</td>
<td>CRS-1, SS-1h, SS-1, Trackless, PG 64-22</td>
<td>5</td>
</tr>
<tr>
<td>Residual Application Rate</td>
<td>0.00-, 0.14-, 0.28-, 0.70- (0.00-, 0.031-, 0.062, 0.155)</td>
<td>4</td>
</tr>
<tr>
<td>Pavement Surface</td>
<td>HMA: Existing, Milled, New PCC: Existing</td>
<td>4</td>
</tr>
<tr>
<td>Wet (Rain) Condition</td>
<td>Wet, Dry</td>
<td>2</td>
</tr>
<tr>
<td>Testing Temperature</td>
<td>25°C</td>
<td>1</td>
</tr>
<tr>
<td>Testing Replicates</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Number of Tested Specimens: 375
Specimen Type

- Laboratory mixed/compacted
- Field mixed/compacted
Sample Preparation

- Laboratory mixed/compacted

Shear
Sample Preparation

- Laboratory mixed/compacted
- Field mixed/compacted
 - Field test sections
 - LTRC Pavement Research Facility
 - Computerized tack coat distributor truck
 - Conventional paving equipment
Surface Texture

- LTRC Pavement Research Facility
- Surface texture measurement
 - ASTM E1845
 - HMA New: 0.63 mm
 - HMA Existing: 1.05 mm
 - HMA Milled: 1.25 mm
 - PCC: 1.19 mm
Lane Layout – Existing HMA Surface

<table>
<thead>
<tr>
<th></th>
<th>Access Section</th>
<th>Access Section</th>
<th>Access Section</th>
<th>Access Section</th>
<th>Access Section</th>
<th>Access Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRS-1</td>
<td>15.2 m</td>
<td>15.2 m</td>
<td>10.7 m</td>
<td>10.7 m</td>
<td>16.8 m</td>
<td>16.8 m</td>
</tr>
<tr>
<td>CRS-1</td>
<td>0.14 l/m²</td>
<td>0.28 l/m²</td>
<td>0.70 l/m²</td>
<td>0.70 l/m²</td>
<td>0.14 l/m²</td>
<td>0.14 l/m²</td>
</tr>
<tr>
<td>CRS-1</td>
<td>Dry-Clean</td>
<td>Dry-Clean</td>
<td>Dry-Clean</td>
<td>Dry-Clean</td>
<td>Dry-Clean</td>
<td>Dry-Clean</td>
</tr>
<tr>
<td>Trackless</td>
<td>15.2 m</td>
<td>15.2 m</td>
<td>10.7 m</td>
<td>10.7 m</td>
<td>16.8 m</td>
<td>16.8 m</td>
</tr>
<tr>
<td>Trackless</td>
<td>0.14 l/m²</td>
<td>0.28 l/m²</td>
<td>0.70 l/m²</td>
<td>0.70 l/m²</td>
<td>0.14 l/m²</td>
<td>0.14 l/m²</td>
</tr>
<tr>
<td>Trackless</td>
<td>Dry-Clean</td>
<td>Dry-Clean</td>
<td>Dry-Clean</td>
<td>Dry-Clean</td>
<td>Dry-Clean</td>
<td>Dry-Clean</td>
</tr>
<tr>
<td>SS-1h</td>
<td>15.2 m</td>
<td>15.2 m</td>
<td>15.2 m</td>
<td>15.2 m</td>
<td>22.9 m</td>
<td>22.9 m</td>
</tr>
<tr>
<td>SS-1h</td>
<td>0.14 l/m²</td>
<td>0.28 l/m²</td>
<td>0.28 l/m²</td>
<td>0.28 l/m²</td>
<td>0.14 l/m²</td>
<td>0.14 l/m²</td>
</tr>
<tr>
<td>SS-1h</td>
<td>Dry-Clean</td>
<td>Dry-Clean</td>
<td>Dry-Clean</td>
<td>Dry-Clean</td>
<td>Dry-Clean</td>
<td>Dry-Clean</td>
</tr>
<tr>
<td>SS-1h</td>
<td>0.14 l/m²</td>
<td>0.28 l/m²</td>
<td>0.28 l/m²</td>
<td>0.28 l/m²</td>
<td>0.14 l/m²</td>
<td>0.14 l/m²</td>
</tr>
<tr>
<td>SS-1h</td>
<td>Wet-Clean</td>
<td>Wet-Clean</td>
<td>Wet-Clean</td>
<td>Wet-Clean</td>
<td>Wet-Clean</td>
<td>Wet-Clean</td>
</tr>
<tr>
<td>SS-1h</td>
<td>0.14 l/m²</td>
<td>0.28 l/m²</td>
<td>0.28 l/m²</td>
<td>0.28 l/m²</td>
<td>0.14 l/m²</td>
<td>0.14 l/m²</td>
</tr>
<tr>
<td>SS-1h</td>
<td>Wet-Clean</td>
<td>Wet-Clean</td>
<td>Wet-Clean</td>
<td>Wet-Clean</td>
<td>Wet-Clean</td>
<td>Wet-Clean</td>
</tr>
</tbody>
</table>

Direction of Tack Coat Application

- **PG 64-22**
 - 0.14 l/m²
 - 0.28 l/m²
 - 0.70 l/m²
 - Dry-Dirty
 - Wet-Dirty
 - Dry-Clean
 - Wet-Clean

- **CRS-1**
 - 0.14 l/m²
 - 0.28 l/m²
 - 0.70 l/m²
 - Dry-Clean

- **Trackless**
 - 0.14 l/m²
 - 0.28 l/m²
 - 0.70 l/m²
 - Dry-Clean

- **SS-1h**
 - 0.14 l/m²
 - 0.28 l/m²
 - 0.70 l/m²
 - Dry-Clean
 - Wet-Clean

Note: All quantities in l/m².
Spray Application of Tack Coat

- Equipments
 - Etnyre, Model 2000
 - Computerized tack coat distributor truck
Verification of Spray Rates

- Geotextile Pad layout
 - ASTM 2995
 - One transverse direction
Spray Application of Tack Coat
Existing HMA Surface Type
100% Coverage

0.14 l/m² 0.28 l/m² 0.70 l/m²
Low Medium High
Typical Calibration Results
Milled Surface: SS-1h, SS-1
Construction Condition -- Wet

Rate $= 0.27 \text{ L/m}^2$
Overlay Construction

Material Transfer Vehicle
Coring Process

Shear
Direct Shear Test Device
Louisiana Interlayer Shear Strength Tester (LISST)

- Two Main Parts
 - Shearing frame,
 - Reaction frame
 - Frictionless linear bearing
 - Maintain vertical travel

- Easy to use
- Portable
- Adoptable to existing load frames
- Reasonable cost
- Accommodate both 100 and 150-mm sample diameter

- Comparison
 - Superpave Shear Tester
Interface Shear Strength (ISS) Test Results

- Interface Shear Strength
 - ISS
 - % CV < 15%
Effect of Residual Application Rates on ISS: Pavement Surface: Existing HMA Clean and Dry Condition, No Confinement

Sample failed during coring
0 Application Rate – All materials
Effect of Residual Application Rates on ISS: Pavement Surface: Existing PCC
Clean and Dry Condition, No Confinement

Sample failed during coring
0.14 l/m² SS-1
Effect of Residual Application Rates on ISS: Pavement Surface: Milled HMA
Clean and Dry Condition, No Confinement

![Graph showing the effect of residual application rates on interface shear strength](Image)
Effect of Pavement Surface Type on ISS Tack Coat Materials: SS-1h
Clean and Dry Condition, No Confinement

![Graph showing the relationship between residual application rate and interface shear strength for different types of pavement surfaces.](image)
Effect of Pavement Surface Type on ISS Tack Coat Materials: PG 64-22
Clean and Dry Condition, No Confinement

![Graph showing the effect of residual application rate on interface shear strength for Existing HMA and PCC. The graph indicates a positive correlation between the residual application rate and interface shear strength for both materials.](image-url)
Effect of Pavement Surface Type on ISS Tack Coat Materials: Trackless Clean and Dry Condition, No Confinement

![Graph showing the relationship between Residual Application Rate (l/m²) and Interface Shear Strength (kPa) for Existing HMA and PCC.]
Effect of Wet Condition of Existing HMA Surface on ISS -- Clean

![Graph showing the effect of wet condition on ISS](image)

- SS-1h
- PG 64-22

Interface Shear Strength (kPa)

- Wet / Clean
- Dry / Clean

Residual Application Rate (l/m²)

- 0.14
- 0.28
- 0.70

* indicates significant difference.
Effect of Wet Condition of PCC Surface on ISS -- Clean Condition

Interface Shear Strength (kPa)

Residual Application Rate (l/m²)

Wet / Clean
Dry / Clean

Trackless
SS-1h
PG 64-22
SS-1

*
Effect of Wet Condition of Milled HMA Surface on ISS -- SS-1h, Clean

![Graph showing the effect of wet condition on ISS. The graph compares interface shear strength (kPa) against residual application rate (l/m²) for wet/clean and dry/clean conditions. The graph highlights a significant difference at a certain application rate marked with an asterisk (*).]
Effect of Sample Preparation Method on ISS Tack Coat Materials: SS-1h
Clean and Dry Condition, No Confinement, New on New
Conclusions

- **Effect of tack coat materials type**
 - trackless exhibited the highest ISS at all application rates
 - Existing HMA, PCC
 - CRS-1 resulted in the lowest ISS
 - Existing HMA
 - SS-1 presented lowest ISS
 - PCC

- **Effect of application rate**
 - In general, ISS increased with an increase in the application rate
 - Existing HMA
 - Rate of increase: Trackless, SS-1h, PG 64-22, and CRS-1
 - PCC
 - Rate of increase: Trackless, SS-1h, SS-1
 - Except PG 64-22: Decrease
 - Milled HMA
 - ISS is not sensitive to increase in application rate
 - Texture is more dominant
Conclusions

● Effect of wetness condition
 – Majority of the cases: no statistically significant difference b/w dry and wet conditions.
 – Small amount of water can be flashed away by the hot HMA mat
 » inconsequential effects on the quality of the tack coat.

● Preparation method
 – Laboratory-prepared samples grossly overestimated the interface shear strength when compared to pavement cores.
 – While a decreasing trend was observed in the laboratory, an increasing trend in the measured interface shear strength was observed in the field.
Acknowledgement

- NCHRP
 - Project 9-40
 - Optimization of Tack Coat for HMA Placement
 - Technical Review Panel

- LDOTD

- Asphalt Products Unlimited
 - Distributor Truck
 - SS-1h, CRS-1

- Coastal Bridge
 - HMA
 - Construction

- Blacklidge
 - Trackless
Saints 28
Colts 17