Warm Mix Asphalt

(WMA 101)

What Is Warm Mix Asphalt?

A technology that allows the mixing, lay down, and compaction of asphalt mixes at significantly lower temperatures than current HMA.

Why Warm Asphalt?

- Reduce production and laydown temperatures
- Reduce emissions
- Reduce energy costs
- Reduce aging of binder
- Other Possible Benefits:
 - —Cool weather paving (extend season)
 - -Compaction aid for stiff mixes

We Can Reduce Temperatures Today with No Additives

- Pre-Superpave typical compaction temperature 275 °F
- ◆ Place Thicker Lifts NCHRP 9-27
 - -3 x NMAS for fine graded
 - -4 x NMAS for coarse graded
- Tarp Trucks
- Drier Aggregate pave under stockpiles

Comparison of Visible Emissions

Courtesy of Shell/Kolo Veidekke

Warm Asphalt Mix Technology

Several process have been developed to improve mixture workability allowing lower production and laydown temperatures

- -WAM Foam
- -Zeolite
- -Sasobit
- Evotherm

Where Did It Come From?

- European Technology
- Research started 1995
- Promoted in Europe and Australia since 2000
- European Scan tour 2002

How Do They Work?

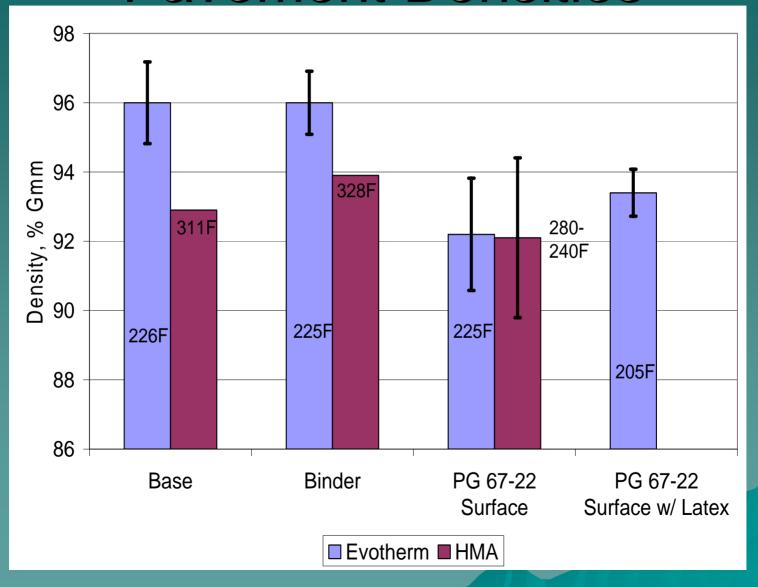
- Lubricate the mix
 - -Use of moisture to foam binder
 - Asphalt flow improver (paraffin wax)
 - Emulsion (chemistry package)

What Does It Take? (For Now)

- Mix Design
- Mixing Plant
- Lay Down

Mix Design

- Use existing mix design and design optimum binder content
- WMA will compact to lower air voids in the SGC
- Compaction temperature will be lower


Mixing Plant

- Modification may be required
- Process type determines modification
 - -Granulated material
 - -Flakes or prills
 - -Binder foaming or blending
 - Emulsion

Lay Down

- Proper transportation of mix
- Proper lay down of mix
- Proper compaction of mix

Pavement Densities

What has worked?

- 10 field trials done
- ◆ All additives work
- All mixes compactable at lower temperatures
- Emissions are lower
- Early opening to traffic

Concerns?

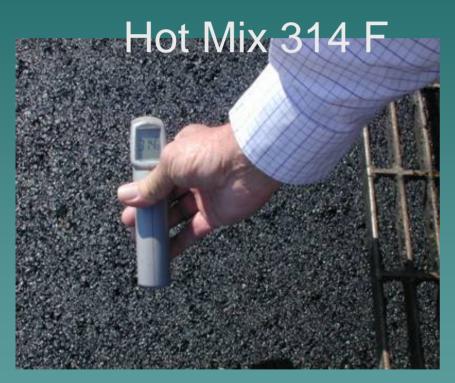
- Rutting
- Moisture in mix
- Moisture susceptibility
- Mix design method
- QC/QA procedures

Field Trails

German Autobahn Paving

Laydown of Polymer Modified Warm Asphalt with Zeolite at 250

F


followed by 4 vibratory passes, followed by state

4 passes of Rubber Tire, finish roller

U.S. Drum Plant Addition of Asphamin

Seeing is Believing!

138.1 pcf

138.5 pcf

Evotherm Field Trial Near Indianapolis, IN July 2005

MD SMA Sasobit Trial Capital Beltway

Questions to be answered

- Can technologies be adapted for use thought the US?
- What are the performance characteristics of these pavements?
- Will the binder age as much at the lower temperatures?
- Will the potential for thermal cracking be reduced?

Questions to be answered

- How will modified binders react in these mixes?
- What will need to be done to check the behavior of performance-graded binders in these mixes?
- Is this a true cost effective technology?

Questions?