

NCAUPG Workshop and Conference

St. Louis, Missouri January 10 – 12, 2006

HMA Mix Design Trend Analysis Snapshot of ... what?

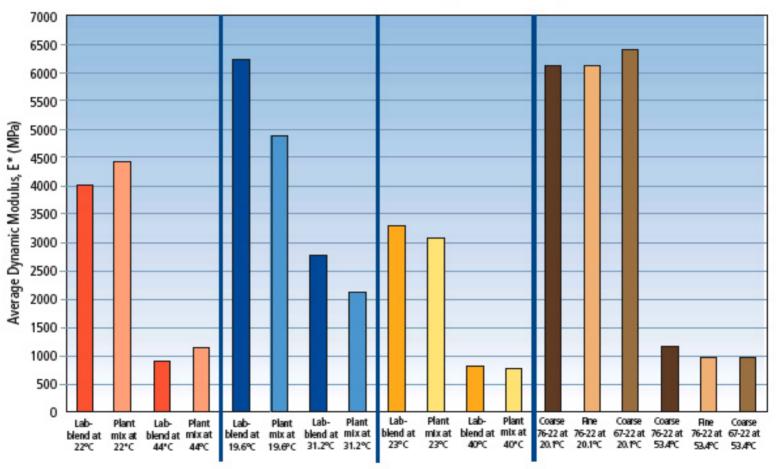
Past

- Tradition based on local materials and success
- Performance data exists

Present

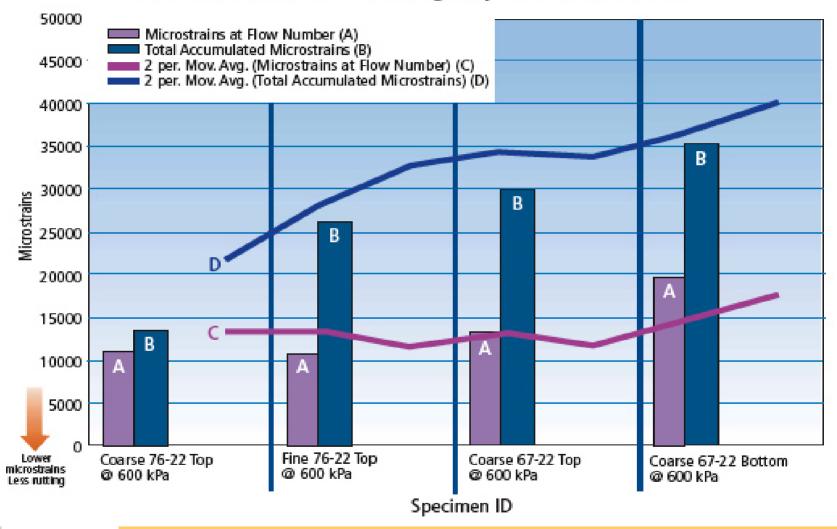
- Provides a reflection of any recent changes
- Comparison / Correlation

➢ Future


Allows forecasting and prediction

HMA Mix Design Trend Analysis

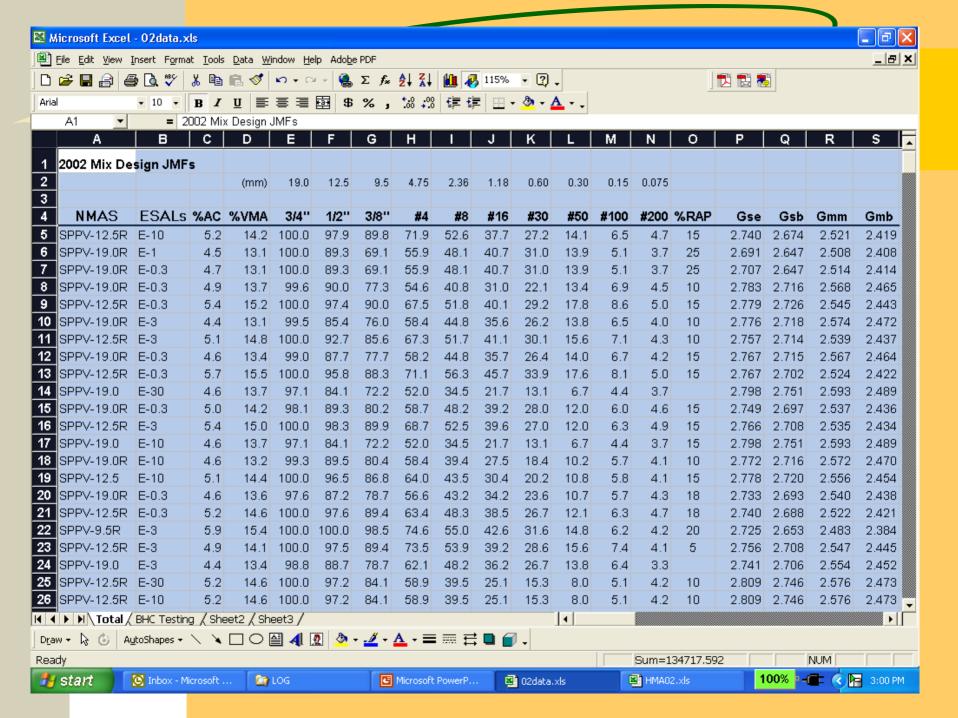
- Motivating factors for change?
 Define the goal and potential impact
- Identify key components of your mix designs
 What properties do you currently track


Listhere really only one true answer or solution?

Average Stiffness Values for Mix Design Lab-Blend and Plant-Produced Mix over Range of Frequencies

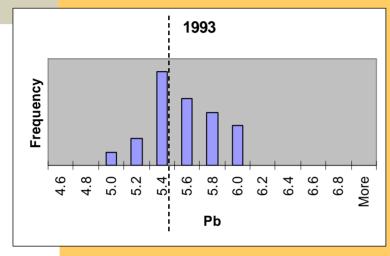
How do I design a mix to increase stiffness?

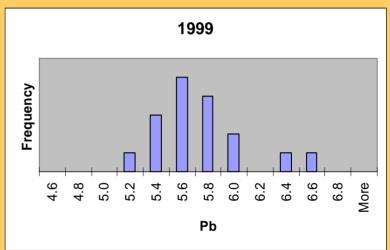
Characterizing Flow Behavior of Coarse and Fine Plant Mixtures Using Repeated Load Test

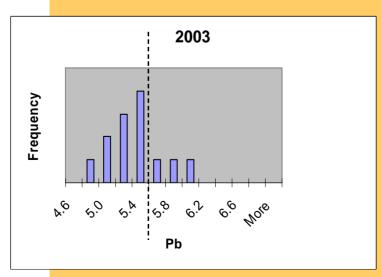


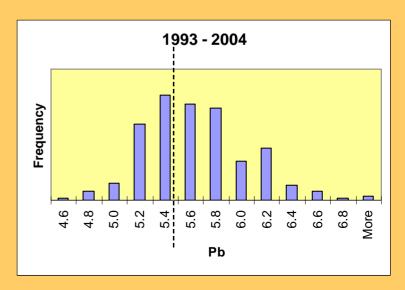
What do I change to affect a mix Flow Number?

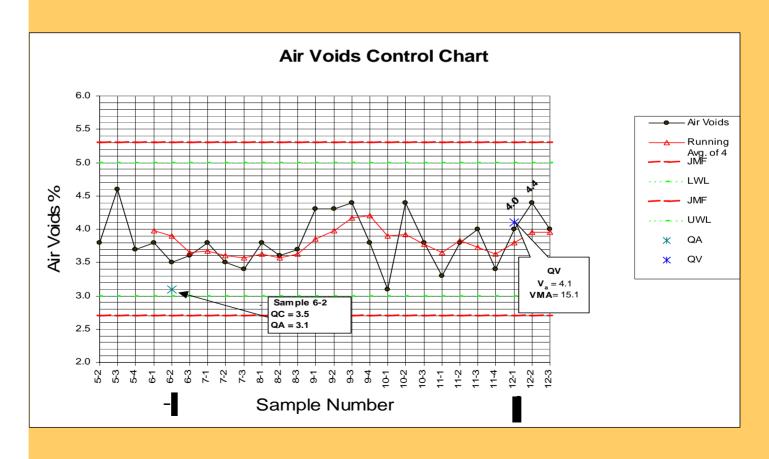
HMA Mix Design Data Collection

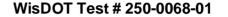

Start with a database (example: JMF targets)


- Simple spreadsheets
- All inclusive data vs. prioritize
- Track what you understand or measure now
- Biggest pay items (most economic impact)


Example Question:


Do we need to affect a change to increase Pb in mixes?


EX:
Same
mixtype
3-10mil
ESALs



Quality Management ProgramsSource of Data, Relating Lab to Field

Production Control ... Verification ... Assurance

Laboratory Data and Field Data Design Graphics

Aggregate Source: Bungartz, Chippewa County

Mix Type: 12.5mm - 1million ESALs

NI		co
INdee	=	υu

Sieve	Blend	Qc	Qa
19.0	100.0	100.0	100.0
12.5	94.5	96.3	93.6
9.5	83.6	89.8	84.0
4.75	64.6	71.2	69.0
2.36	51.4	57.2	54.3
1.18	41.6	45.7	42.1
0.60	31.6	33.1	31.2
0.30	18.9	18.2	16.9
0.15	8.4	8.8	8.5
0.075	5.4	5.6	5.6

	JMF	QC	QA
V _a	4.0	4.1	4.3
G _{mm}	2.529	2.527	2.530
G _{mb}	2.428	2.424	2.421
VMA %	16.3	16.1	16.3
P _b	5.4		
FAA	77.0		
G _{se}	2.759		
G _{sb}	2.744		
%Gmm _{Nini}	90.6		

Mix Property Evaluation (Related to Quality)

- From Mix Design to Production (Lab vs. Field)
 - How do the properties measured in the field correlate with the mix design JMF?
 - What is the affect on resultant performance?

- Other Properties to Evaluate
 - FAA (Fine Aggregate Angularity)
 - Compactability (Research Studies)

Mix Property Evaluation Study

- Begin with Mix Design Parameters (specs)
- Workplan Developed (Technical Teams)
 - Minimize additional efforts
 - Not looking to solve, rather initial fact-finding
- To determine:
 - Fine Aggregate Angularity (develop field test procedures)
 - Dust Proportion (DP Stiffer mixtures)
 - Voids Filled with Binder (VFB coating)

Mix Property Evaluation Study

Summary of Goals

- Should we modify the existing mix design requirements to reflect "field" testing capabilities?
- Should we develop a field testing tolerance table paralleling laboratory mix design requirements?
- Can the SGC (compactor) densification values predict performance?

Currently completing testing and ready to move to the analysis phase this winter

Change the way you look at things, and the things you look at will change (Dr. W. Dyer)

Certified Mixes and Mix Designs

Recent Past Practice

- Express and Comparative Submittals
- Report (JMF), Materials, Testing
- Log-in (tracking ID), Data Transfer Entry, Review Out

Current Tool Enhancements

- Electronic File Submittals
- E-mail Distribution Lists (inclusive)
- Reviews out as "Reply-All"

Certified Mixes and Mix Designs

- Does the system we have in-place enhance product improvement (quality)?
- Are we in a position to move into performancebased specifications if we continue on the same?
- Is there a different system to better allocate department resources and expertise?
- As we increase movement towards Warranty concepts, is there a transition/hybrid step we could be taking (some motion forward).

Certified Mixes and Mix Designs: *Vision*

- Contractor Entry to the WisDOT Database
- > Possible Requirements (no additional inspection)
 - Certified Mix Designers
 - Certified Production Control Personnel
 - Certified Verification Personnel
 - Certified Materials (Binder, Quality Aggregates)
 - Qualified Laboratories
- Materials Acceptance = Spot-Check Method
- Product Acceptance = Stiffness, Smoothness

Certified Mixes and Mix Designs *Potential Benefits*

- Shift Focus to Real Time Analysis of Data vs. Current Resources Devoted to Collection
- Agency Workforce Attention to Performance Causes and Affects
- Create a more Global Atmosphere or Understanding for HMA as a Product
- **A** System not as Dependent on Schedules
- **Dollar Investment Realized for Certifications**

Certified Mixes and Mix Designs **Issues**

- Different Expectations for Permanent Plants vs. Portable (dual-system)
- FHWA Requirements tied to "Project" Specific Acceptance
- Impacts of Non-Compliance or Failures
- Define "risk" involved
- How and When could we Affect a Change

Future Performance Challenges (video clip)

