Technician Issues Missouri

NCAUPG Workshop St. Louis, MO January 11, 2006

Percent-Within-Limits (PWL)

- Statistically Based Acceptance
- PWL Estimated by Fit of Bell Curve
- Element of Risk Involved
 - Eliminate Risk: Too Expensive
 - Too Much Risk: Poor Quality

Statistical Methods

- Random Samples to Establish Population
- Population Compared to Specification
- Quality Indices Calculated
- Pay Factor Based on PWL

Comparing to Specification

 Calculate Average and Standard Deviation $x_a = (\Sigma x_i)/n$ $s = (\Sigma (x_i - x_a)^2/(n - 1))^{1/2}$ Calculate Quality Indices $Q_{11} = (USL - x_{a})/s \quad Q_{1} = (x_{a} - LSL)/s$ Determine Percent-Within-Limits From Table (Sum of area under curve within spec.

Normal Distribution and Percent of Population in a Given Range Avg.=94.3 1.05 1.05 1.05 .05 s = 1.05 LSL **USL** f(x) 89.55 90.5 91.45 92.4 93.35 96.2 97.15 98.1 99.0: 94.3 95.25 х

Density PWL 95.69

Density PWL 99.84

Density PWL 95.69

Density PWL 80.00

Density PWL 50.00

Density PWL 18.79

Pay Factors

- Pay Factor for Each Item
 When PWL_t is greater than or equal to 70: PF = 0.5 PWL_t + 55
 When PWL_t is less than 70: PF = 2 PWL_t - 50
- As Quality Decreases; Penalty Increases More Quickly

	Density	Asph. Cont.	VMA	Air Voids			
Standard Deviation							
Average	0.83	0.12	0.39	0.43			
High	2.7	0.45	2.05	2.02			
Low	0.01	0	0.04	0			
2 Std. Dev.	1.66	0.24	0.78	0.86			
Spec.	94.0 ± 2.0	± 0.3	+ 2.0 / -0.5	4.0 ± 1.0			

Pay Factors					
Average	99	101.4	100.8	99.9	100.3
High	105	105	105	105	105
Low	0	0	0	0	34.7

Tons	2858666
Projects	123
Projects Bonus	64
Projects Deduct	57

Mineral Fillers AASHTO M17

Challenges
Local Sources
High Hauling Costs
Consistent Supply
Lost Production
Mix Redesigns

Mineral Fillers

Types

- Fine Rock Dust (Traditional)
 - Inadequate Supply
 - Regionally Available
- Fly Ash
 - Chemical Differences
 - High Loss-on-Ignition?
- Cement Kiln Dust (CKD)
 - Chemical Differences
 - Can't Use AASHTO T 100
 - But Wait, There's More...

CKD

- High CaO (Quicklime)
 Antistripping Capabilities?
 - Antioxidant?
- Angular Particles
 - Initial Stiffness of Mixture
 - Limited Amount in SMA

Dust Angularity Measure (Rigden Voids)

· AASHTO MP 8

- Asphalt Institute, Information Series (IS) 127
- 403.2.5.1 Filler Restriction. Rigden void content determined in accordance with MoDOT Test Method TM-73 shall be no greater than 50 percent.

Rigden Voids of Fillers

- Mineral Filler 39 - 47%
 Hydrated Lime 66 - 71%
 Fly Ash
 - , 37 - 57%

CKD 54 - 64%
Baghouse Fines 30 - 60%

Recycled Asphalt Shingles

Manufacturing Waste

Post-Consumer (Tear-Off)

Shingle Components

Asphalt ⇒ 20%-40%

Stiffen Roadway Asphalt

Aggregate ⇒ ≈30%

Good Stuff

Fiberglass or Paper Mat ⇒ ≈30%

No Harm if Well Dispersed

MoDOT Goals

Engineering Properties First

- Harmful Effects of Deleterious Material
- Asphalt Binder Properties
- Traffic Safety Nails, etc.
- If Everything Else Works Out, Landfilling is Reduced

Why Should We Pursue Shingles?

High Asphalt Content
Granules Are Hard and Durable

Recycling CO\$T

Concerns

 How Will Deleterious Material Affect the Mixture

 Can the Low Temperature Grading be Maintained at Various Blending Ratios

Binder After Blending with Shingle Asphalt

Resist Rutting

Resist Fatigue Cracking

Resist Cold-Weather Cracking

Asphalt Modifications PG 64-22 Required

Stiffer at High Temperature - OK
 Stiffer at Low Temperature

 Use Lower Percentage of Shingles
 Use Softer Roadway Asphalt

Deleterious Evaluation

Specification for Aggregate

0.5% "Other Foreign Material"
Sticks, mud balls, deer fur, etc.

Shingle "OFM"

Approximately 3% Total

Deleterious Material

- Nails
- Wood
- Plastic
- Cellophane
- Paper
- Fiber Board

No Difference

 Standard Mixture Tests

Placement

Big Difference

Rut Resistance

 Cold Temperature Tests

OFM in Fraction

Where Are We? The "Ex" Factor

Extrinsic Material Allowance Raised

- 3.0% Total
- 1.5% Wood
- Expect PG 64-22 met w/ PG 58-28
 - Extra grades optional w/ testing
 - Examining various proportions and asphalts
- Exuberant Contractors

Joe Schroer 573-526-4353 Joe.Schroer@modot.mo.gov www.modot.org

