Illinois' Efforts to Reduce HMA Permeability

Reducing HMA Permeability

- What is Permeability?
- How is it measured?
- Why are we concerned about Permeability?
- Problem Areas
- Illinois' Efforts to reduce Permeability

What is Permeability?

 Permeability is the measure of flow of a liquid or gas through a porous medium.

Function of:
 In-Place Density
 Aggregate Size
 Thickness

How is Permeability of HMA Measured?

 Lab Permeameter

 Used to measure the flow of water vertically through a 6" core or lab compacted specimen.

How is Permeability of HMA Measured?

Field
 Permeameter
 Measures the flow of water through HMA

pavement

What is Considered High Permeability?

Critical In-Place Air Voids and Permeability ~ 9.5 and 12.5 mm NMAS Mixes

In-Place Air Voids vs. Permeability - 19.0 NMAS Mixes

High Permeability When:

 Surface Mixes > 100 x 10⁻⁵ cm/sec

 Binder Mixes > 120 x 10⁻⁵ cm/sec

Why are we concerned about Permeability?

Permeability allows air and water to penetrate the pavement structure causing: - Oxidation • Cracking & Raveling - Stripping • Rutting, Shoving & Raveling

Where do we have Permeability Problems?

Segregated Areas
Mainline Binder
Longitudinal Joints
Level Binder

Segregated Areas

Illinois' Efforts to Minimize Segregation

 Provided Laydown training to Contractors

Developed Segregation Spec

Began Requiring M.T.D.'s

Mainline Binder

Very Permeable when:
 – placed 1-3/4 inch thick &
 – placed at 92.0% density

Mainline Binder

Mainline Binder

187 points

Mainline Binder - Close-up

Efforts to Reduce Permeability in Mainline Binder Mixes

 Increased Binder Thickness from 1-3/4 in. to 2-1/4 in.

 Increased Minimum Density for 19.0 mm mixes to 93.0%

Longitudinal Joints

• Unconfined Edge Lack of Rolling due to Density not being Measured Densities typically 84 to 88% for binders, & 86 to 90% for surfaces Permeabilities typically 13,000 to 26,000 for binders, & 1,500 to 7,000 for surfaces

Efforts to Minimize Permeability along Longitudinal Joints

 Longitudinal Joint Sealants

 IDOT working w/ Two companies to develop a Longitudinal Joint Sealant
 Here is How it Works

Joint Sealant Concept Band melts up into the joint thus: Increasing density Decreasing permeability Increasing joint life

Unconfined

Melt & Migrate

Level Binder

• 9.5 mm C.G. mix placed 3/4 inch thick

- No Density Requirement
- Lack of Compactive Effort because of No Density Requirement
- Densities typically 85 to 92%
- Permeabilities typically 300 to 10,000 (2250)

Efforts to Minimize Permeability in Level Binders

- 1L-4.75 mm Mix
 - Mix made up of mostly Man. Sand & High AC
 - 3/4 inch thick = 3 X N.M.A.S => 94%
 Min. Density Requirement
 - 2003 Demo Projects (Dists. 2,3,4,&5)
 - Density Ranged from 90 to 97
 - Permeability Ranged from 0 to 200 (20)

Benefits of using IL-4.75mm

In-Place Density & Better Stability

Helps Retard Reflective Cracking

Waterproof

Typical Mix Design

Aggregate:FMM-2064%FMM-0230%Natural SandMineral Filler6%

Asphalt Cement:SBS PG 76-288%

<u>Air Voids:</u> 2.5% @ N50 (VMA \geq 19.0%)

Cheaper Alternative?

Fine Graded 9.5 mm

 Little or no CA particle contact
 Fine aggregate carries most of the load
 Gradations typically plot above Max density line of 0.45 Power Curve

Fine Graded

Coarse Graded

Fine Graded Mixes

 Anticipated benefits:

 Higher achievable density at ¾ inch than conventional level binder
 Density spec ≥ 91.0%
 Lower permeability than conventional level binder
 Cheaper than IL-4.75

Questions?