Test Method for Measuring for Quality in Milling Operations

Lee Gallivan
Pavement & Materials Engineer
FHWA – Indiana Division
January 28, 2005

NCAUPG HMA Conference Lafayette, Indiana

Milling Questions, Contact

Matt Corrigan

Co-Authors

Joe Gundersen

INDOT

Lee Gallivan

FHWA

Indiana's Quality Journey

- 1986 QC/QA for Marshall Mixtures
- 1992 Sampling from Roadway
- 1994 QC/QA for Superpave Mixtures
- 1994 QC/QA for Aggregates
- 1995 QCP for HMA Plant Operations
- 1996 QC/QA for Binders
- 1996 Warranties
- 2000 Volumetric Acceptance
- 2003 Quality Testing for Milling

Indiana's Milling Experience

- 1979 Started Milling Operations
- 1985 Standard Specifications
- 2000 Specs modified to require equipment "automatic control devices to establish profile grades"
- 2003 Surface Macrotexture requirements added

CUTTING PATTERN

TEXTURE TESTING

POOR CONDITIONS

Problems

BAD TEETH AND HOLDERS

1 SENSOR

Specifications for Milling w/Macrotexture

- 1. Asphalt Scarification/Profile Milling. Asphalt scarification milling is used to provide roughened texture to an existing surface. (1/4-1/2 in.)
- 2. Asphalt Milling. Asphalt milling is used to remove material from an existing pavement to a specified average depth by milling the surface and creating a uniform profile. (1.0, 1.5, 2.0, 3.0 or 4.0 in.)

Specifications Con't No Macrotexture

3. Asphalt Removal Milling. Asphalt removal milling is used to remove an entire asphalt overlay.

4. Transition Milling. Transition milling is used to provide a connection between an HMA overlay and an adjoining pavement. (>1.5 in.)

Basis for Macrotexture Testing

• ASTM E 965-01, Standard Test Method for Measuring Pavement Macrotexture Depth using a Volumetric Technique. Referred to as the "Sand Patch Test".

 Note 1 – ".... This test method is not considered suitable for use on grooved surfaces or pavements with large (≥ 1.0 in. (25 mm)) surface voids."

Testing Equipment

Select Area

- Random Number Generation
- Representative Milled Area
- Free of localizedFeatures
 - Cracking
 - Spalling
 - ► Repairs, etc.
 - Special Milling

Clean Area

- Power Broom
- Wire Brush
- Soft Bristle Brush

Set up Wind Screen

Pour Glass Beads

- Type of Beads
 - Coarse Glass
 - AASHTO M 247, Type I Glass Beads Used in Traffic Paints
- Quantity (200 ml)
 - Pre-measured
- Pour Height
 - > 2-4 inches

Spread Glass Beads

- Circular Motion
- Slow Motion
- Defined Edges

Measure the Area

- Standard Ruler 12 inch
- Measure four times at 90 Degrees
- Calculate Average Diameter
- Compare Macrotexture Ratio to Specifications
 - ▶ 1.8 for Single HMA Lays
 - ▶ 2.2 for Multiple HMA Lays

Benefits of Milling Specifications to Indiana

- Testing operations are not complicated, are quick and repeatable
- Visual observations can be correlated with Macrotexture Testing
- Minimal Testing Costs
 - Time (Few minutes)
 - Materials (Standard)

Benefits of Milling Con:t

- Measurement Procedures and results are not "too" sensitive to field techniques -> (± ¼ in.)
- Plate Sampling for mixture acceptance is more consistent
- Improved working platform has improved the densities of the mixtures

INDOT Milling for 2004

- QUALITY NOT QUANTITY
- FIRST TIME
- ➤ GROUND SPEED
 w/ GRADE AND
 SLOPE CONTROLS

- FULL WIDTH MILLING
- > AVERAGING SYSTEMS
- > KNOWLEDGEABLE FIELD CREWS

Mank Mou!

