Emerging HMA Technologies

2004 NCAUPG Annual Meeting

Brian D. Prowell, P.E.

Emerging Technologies

- Warm Asphalt
- SMA Compaction Levels
- Use of RAP with SMA
- Real Time Quality Control

Why Warm Asphalt?

Research by Stroup-Gardiner and Lange at AU ndicates increased emissions with increased temp.

Why Warm Asphalt?

Why Warm Asphalt?

- Reduce production and laydown temperatures
- Reduce emissions
- Reduce energy costs
- Reduce aging of binder
- Cool weather paving?

Lower the Temperatures

0

The goals produce, lay and compact

tures 20

without loosing quality and compaction time (SMA at 250 °F in the paver)

Temperatures

C/O Dr. Els

What are Warm Asphalt Mixes?

Several process have been developed to improve mixture workability allowing lower production and laydown temperatures

- WAM Foam Shell/Kolo Veidekke
- Zeolite Eurovia/Hubbard Construction
- Sasobit Sasol Int./Moore and Munger

WAM-Foam

- Two Phase addition of asphalt
 - Aggregate coated with "soft" asphalt
 - Hard asphalt foamed to mix with pre-coated aggregate
 - Soft asphalt controls minimum placement temperature
 - Material placed as low as 80 C (176 F), 50 60 C (90 108 F) reduction
 - Requires plant modification for foaming, estimated at \$70,000
 - Special asphalt feeds may be required

Two phase bitumen mixing method

Zeolite

- Zeolites are crystalline hydrated aluminium silicates
- aspha-min®, is a special Zeolite added to the hot mix asphalt in the temperature range of 100 to 200 °C (212 to 392 °F)
- When the Zeolite is heated, it gives up its internal moisture, approximately 21% by weight, foaming the asphalt

Granulated aspha-min®

Addition of aspha-min[®]

- Aspha-min is typically added at an addition rate of 0.3% by weight of mix
- Expected to increase mix cost by \$1.50 per ton
- Can be added to the mineral filler or fed separately
- Batch plants are more commonly used than drum plants in Europe
- Aspha-min has been added through the RAP collar into a drum plant in France

Proposed Addition Method for U.S. Market

Manual Addition

Weigh Bucket for aspha-min

Laydown of Polymer Modified Warm Asphalt with Zeolite at 250 F

94% Gmm 55 F Air Temp.

passes of Rubber Tire

Followed by 4 vibratory Passes with static finish roller

Organic Additives

- Synthetic Fischer-Tropsch paraffin waxes Sasobit
 - Added to binder
 - Can incorporate an SBS modifier (Sasoflex)
 - Does not require high-shear blending
 - May negatively impact low temperature properties
- Low molecular weight ester compounds (not included in the study at this time)

Fischer-Tropsch paraffins are

long-chained aliphatic hydrocarbons from coal gasification with the Fischer-Tropsch process

Clear differences:

	Bitumen wax	Synthetic wax
Melting point, $^\circ$ C	70	100
Penetration at 25 °C,	120	< 1
0,1 m m		
Viscosity at 135 °C	8	15
mm² /s		
Average molecular	800	1600
weight, g / mol		
n-paraffins, %	14	73

C/O Dr. E

Ways to lower temperatures

How organic additives work

temperature

Organic additives

C/O Dr. E

Study Objectives

Evaluate Warm Asphalt Technologies for U.S. Paving Practices - High production - Rapid Turn-over to traffic Potential Concerns - "Curing" Time - Increased Potential for Moisture Damage – Binder effects

German Autobahn Paving

emiT eruO

- Europeans allow pavement to "cure" before allowing traffic on roadway
- Germans specify a minimum of 24 hours for SMA
- When does Warm asphalt's workability end?
- Will pavements rut if traffic allowed on an hour or so after placement?

German Plants

Five Binder Tanks

Production Concerns

- WAM Foam may not use standard PG grades
 - Contractor may need extra tanks
 - Will agency accept blend?
- Predominance of batch plants
- How will silo storage effect workability?
- Lower production rates
 - Will absorptive aggregates dry at lower temperatures?

Summary

- Three warm asphalt processes used in Europe for up to 5 years
- Allows compaction at lower temperatures
- Concerns about U.S. production rates and turn over to traffic
- A Tool for the Tool Box!

SMA Compaction Levels

Stone Mastic Asphalt (SMA)

- Technology transfer from Europe in 1990
- Georgia and Maryland DOT early leaders
 - Initially designed with 50 blow Marshall
 - MD adopted 100 gyrations in 1996
- Research Efforts
 - NCHRP 9-8
 - On-going Research for FHWA

SMA Aggregate Composition

Example

70%	#7	
13%	#89	
10%	#810	
7%	Min. Fil	

er

Darse Aggregate ne Aggregate ineral Filler + AC + <u>Fiber</u>

Compaction Methods

50 Blows 75 or 100 Gyrations

12.5 mm SMA 1-64 VA

12.5 mm SMA 1-64 VA

NCHRP 9-8

NCHRP 9-8

LA Abrasion, % Loss: -- 20 -- 30 -- 40

Voids in Coarse Aggregate (VCA)

- VCA is used to ensure stone-onstone contact
- VCA dry rodded condition (DRC) is obtained by compacting blended coarse aggregate fraction according to AASHTO T19

VCA - Continued

$$VCA_{Mix} = 100 - \left(\frac{G_{mb}}{G_{CA}} \times P_{CA}\right)$$

VCA of compacted SMA sample (VCA_{mix}) must be less than VCA_{DRC} or mastic may be pushing stone skeleton apart, causing mix instability
VCA_{Mix} at 75 and 100 Gyrations

Prowell, Cooley & Schreck, TRR 1813, 2002

Prowell, Cooley & Schreck, TRR 1813, 2002

Evaluation of Compaction Levels for SMA

Sponsored by FHWA

Relationship Between Aggregate Breakdown and Compaction Level

- High coarse aggregate content
- Stone on stone contact
- Higher stress than dense graded mix under compaction or traffic
- Current NCAT study, sponsored by FHWA, to evaluate compaction as it relates to degradation

Aggregate Properties

Aggregate properties related to degradation - LA Abrasion European < 20 • AASHTO < 30 Georgia < 45 - F&E Content • 3:1 ratio < 20% • 5:1 ratio < 5%

Materials

5 Aggregates

Aggregate Type	Bulk Specific Gravity ¹	LA Abrasion Loss, % ²	F&E Content at 3:1 ratio, $\%^{1}$
Crushed Gravel	2.60	30.7	35.2
L. Granite	2.67	36.4	28.1
Limestone	2.73	26.4	25.5
R. Granite	2.70	20.6	23.4
Traprock	2.93	16.6	17.7

 The bulk specific gravity and F&E content depends on the combined gradation and NMAS; a 12.5mm NMAS was used to represent it.
 LA abrasion values are based on B grading.

Gradations

Typical Breakdown

0.45 Power Sieve Size, mm

Critical (Breakpoint) Sieve Size

- For 19 mm and 12.5 mm NMAS SMA, No.4 sieve (4.75 mm) was chosen.
- For 9.5 mm NMAS SMA, No.8 sieve (2.36 mm) was chosen.

Summary of Breakdown

Aggregate Type and NMAS

Influence of LA Abrasion on Degradation (Combined data)

Influence of F&E Content on Degradation

F&E content 3:1 ratio, %

Optimum Asphalt Content Summary

VMA Summary

For More Information on SMA Compaction Levels

Contact:
Donald E. Watson
<u>Watsode@eng.auburn.edu</u>
Or
Hongbin Xie

Complications of Using RAP in SMA

- Most existing asphalt pavements were made with dense graded mixes, therefore, most RAP is dense graded.
- Aggregate quality may not be compatible with SMA or Superpave criteria.
- Mix sensitivity requires high level of materials' quality control, including RAP.

Current industry practice is a crusher run approach to recycling

Can RAP be effectively incorporated into gap-graded Superpave and SMA mixes? Yes, by RAP fractionation or recycling existing SMA Pavements!

RAP fractionation

- Processing and screening (fractionating) RAP into three different materials through the use of high frequency screen decks:
- Resulting Products:
 - 2" (50 mm) to 1/2" (12.5 mm)
 - 1/2" (12.5 mm) to #16 (1.18 mm)
 - #16 (1.18 mm)

Gradations After Ignition for Virginia RAP Millings

Automated QC & Real-Time Testing

Utilization of Automation and Real-Time Testing to Improve QC/QA Procedures For Hot Mix Asphalt

QC/QC State of Practice

- Most QC/QA specifications for HMA have become quite complex
 - Every sublot of mix- 5 to 6 physical tests used to calculate a dozen or so characteristics for pay factors and other control criteria.
- Technician overload and getting worse
- Management time to address problems

Example AC% - Ignition Furnace Results

Mean = 5.29, Actual 5.30 Standard Deviation = 0.06

The Whole Truth! – Effect of Splitting a Sample

Standard Deviation = 0.15

Alabama DOT Study Asks?

- Can we assure ourselves and the agency's of product quality in a simpler and more efficient manner?
- What do we need to measure?
- Can we automate those measurements (remove the human element)?
 - minimize sampling & testing errors
 - increase frequency of measurements
 - provide rapid feedback (data acquisition and output) of the process

Proposed Automated QC Methods

- . Belt Sampling
- 2. Moisture Content
- B. Gradation
- Binder Viscosity
- 5. Binder Flow Meter
- B. HMA Temperature

Project Objectives

- Set up and evaluate the equipment and data collection
- Compare data to standard QC sampling & testing
- Evaluate feasibility of systems
- Host Open House / Demo Project

Belt Sampling Device

- a.k.a. belt sweeper
- Removes a sample of aggregate while the plant is running.
- Plan to have a belt sampler on the aggregate incline conveyor and the RAP conveyor
- ~ \$11,000

Aggregate Sample Drier

 Receives aggregate or RAP sample from belt sampler and dries it before the automated gradation device.

• ~ \$14,000

Automatic Gradation Unit

N/

- Sieves and weighs aggregate to produce a gradation.
- Currently does not sieve fine sizes (below No.8 sieve)
- Data sent to PC in control house or lab
- **~**\$35,000

Automated Asphalt Content Using a Plant's Controls

We already measure binder flow rate (gal./min. \rightarrow tons/hr) with a flow meter or non powered positive displacement pump.

And we measure feed rates of aggregates and RAP (tons/hr) with belt scales, tachometers and a computer integrator

Asphalt Meter Calibration

- Calibration Tank used to calibrate and check the asphalt meter
- Hands-free, therefore safer and more accurate

• ~ \$15,000

Belt Scale Calibration

- Proper calibration of belt scales using material over the weigh bridge and diverted to a tared truck.
- Need better training on this.
- Need moisture content
Moisture Content Gage

- Measures moisture content of aggregate on belt or in a bin.
- Requires calibration for each different material.
- Data is used to adjust weight reading of the belt scale.
- ~ \$3360 per probe

In-Line Viscometer & Temperature System

- Measures the viscosity & temperature of the binder.
- Mounts on a by-pass line from AC tank to injection point.
- ~\$17,000

Mix Temperature Gage

- Mix temperature is often monitored by the plant operator, usually at the point of discharge from the mixer.
- Analog chart recorder is common, but we want a digital record.

Robotic Truck Sampler

- Obtains a large sample of HMA from a truck load of HMA.
- Safer because the technician does dot have to get in the truck bed.
- Samples should be more representative of the load avoid sampling of segregated material

For More Information on Automation, please contact:

Randy West westran@eng.auburn.edu Questions?

National Center for Asphalt Technology

Lank You