FHWA Research and Equipment Update

ALF Test Site Final Test Matrix

AZ CRM 70-22 70-22 Control Air Blown SBS SBS T-P Fibers PG SBS Air 70-22 PG SBS Air SBS Air SBS T-P

8

9

10

6

5

A

2

3

Completed Test

Shakedown Test

*Initial Strain Measurements: 100% Complete *Rutting Tests: Shakedown Tests Complete (5, 9) *Rutting Tests: 5 of 12 Lanes Complete *Fatigue Tests: Shakedown Test Complete (1)

Superpave Gyratory Compactor Calibration

The Angle Evolution

Standard Method of Test for

Preparing and Determining the Density of Hot-Mix Asphalt (HMA) Specimens by Means of the Superpave Gyratory Compactor

AASHTO Designation: T 312-03

REFERENCED DOCUMENTS

 TP, Evaluation of the Superpave Gyratory Compactor (SCG) Internal Angle of Gyration

Separate standard for DAV operations

Average Dynamic Internal Angle (DIA)

DAV on Top

to measure α_{T}

CLASS CONTROLS LT

Studies indicate internal angle 1.16°±0.02° reduces data bias among compactors

DIA is a function of mix stiffness
 We need a standard mix

DAV is time consuming
 – Up to 8 hours for SGC calibration

Evolution

 Pine RAM (Rapid Angle Measurement)

 Brovold HMS (Hot Mix Simulator) For use with the DAV

Evaluating the Evolution

FHWA Study

 Asphalt Institute
 University of Arkansas

 "Evaluation of the Effectiveness of Mechanical Mixture Simulation Devices for Determination and Calibration of the Dynamic Internal Angle of Gyration" Study Objectives 6 Month Project

 Determine the relationship between mix stiffness and eccentricity.

Establish and average mix eccentricity – "Standard Mix Stiffness" for calibration
Compare the RAM and the HMS
Evaluate Mix-less procedures to DAV

New Equipment Evaluation

Compactor Comparison

Sarvopac

Superpave Performance Tester

Performance Sample Preparation

Specimen Preparation

 Specimen fixed in place

 Sawing & coring took approximately 10 minutes

Specimen Tolerances

Parameter	Recommended Specification
Diameter (mm)	100 to 104
Height (mm)	147.5 to 152.5
Diameter Std Deviation	SD < 1
End Parallelism (deg)	± 1° 1.3 mm
End Flatness (mm)	± 0.3

Dynamic Modulus Test

Time ⁰
Rutting

Min |E*| at High Temp

Fatigue Cracking

Max |E*| at Intermediate Temp

Stress

Strain

 $|E^*| = \frac{\sigma_0}{\varepsilon_0}$

Mix Performance at T_{eff} for Rutting

Repeated Load Permanent Deformation Test

Rutting
 – Min FN at High Temp

Flow Number

Aggregate Imaging

Aggregate Imaging

 Coarse aggregates Fine aggregates

Stockpiles#1 Stone1/2" chip3/8" chipSourceWLS west quarry

Types Natural Sand Manufactured Sand JMF Blend <u>Sources</u> WLS west quarry **Honey Creek pit**

AIMS Image Device capture Fine Agg

Fine aggregate

Angularity "Gradient Method"

Sub-Angular

Sub-

No. 30 aggregs

644

No. 16 aggregs

Coarse Aggregate Analysis

Coarse Aggregate

#1 Stone exhibits highest angularity

Small agg mostly sub-rounded

Coarse Aggregate

Texture

Compare 3 aggregate sizes: • 3/4-inch • 1/2-inch • 3/8-inch

#1 Stone stockpile has highest texture, but no real difference among aggreg stockpiles

#1 Stone exhibits higher texture, but all aggs rated as Smooth in video analysis

Coarse Aggregate Shape Index - Sphericity

Shape Index = 1Aggregate is perfect sphere

Superpave F:E 1:5 Ratio 6% 1:3 Ratio 22%

Aggregate from #1 Stone appears more flat & elongated

3/8-inch (9.5mm) aggregates

3/4-inch (19.5mm) aggregates

Short/ Intermediate = Flatness Ratio

1/2-inch (12.5mm) aggregates

Short/ Intermediate = Flatness Ratio

Aggregate Imaging

So what?

Time savings – rapid return on test results
Comparable with Superpave F:E test results
Potential ties to performance test data
Production monitoring of aggregates

Summary

How can data from SPT be used?

Pavement distress predictions in AASHTO design software are based on <u>actual</u> measured asphalt mix properties

Mechanistic-Empirical W

Other testing

Questions