Ground Tire Rubber in Asphalt Paving Applications

Cliff Ashcroft Rubber Pavements Association Vice President FNF Construction

Presentation Outline

Processes
Research
Successful long-term performance
New programs build on success
Future Applications

The Processes

The Wet Process – adds rubber to the binder, gets the rubber wet Field Blend – Coarse rubber added to binder at the hot plant, a binder and mix modifier Terminal Blend – Fine rubber added to the binder at the asphalt terminal, rubber is mostly dissolved, used to promote polymer linking Dry Process – Rubber replaces some of the fin aggregate

The Processes

Field Blend – Coarse rubber added to binder at the hot plant, a binder and mix modifier

Advantages of Asphalt Rubber Binder

The increased viscosity allows for increased asphalt film thickness which enhances:

- Aggregate retention
- Eliminates drain-down problems
- Increases resistance to moisture damage
- Increases resistance to bleeding, flushing and deformation
- Reduces aging of the mix.

Asphalt Rubber Chip Seal

Whole Tire Shredded Down to 2 Inch Chips

Secondary Granulation ³/₄ Inch Being Reduced to ³/₈ Inch While Separating Fabric and Steel

Finish Product and Bagging

08/20/2002

CALL NO. BOAN

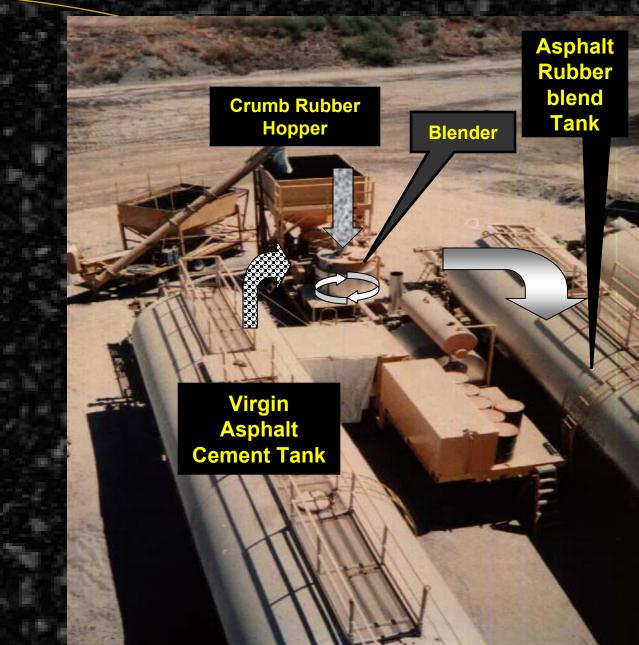
08/20/2002

Rubber is delivered to the jobsite in Super Sacks

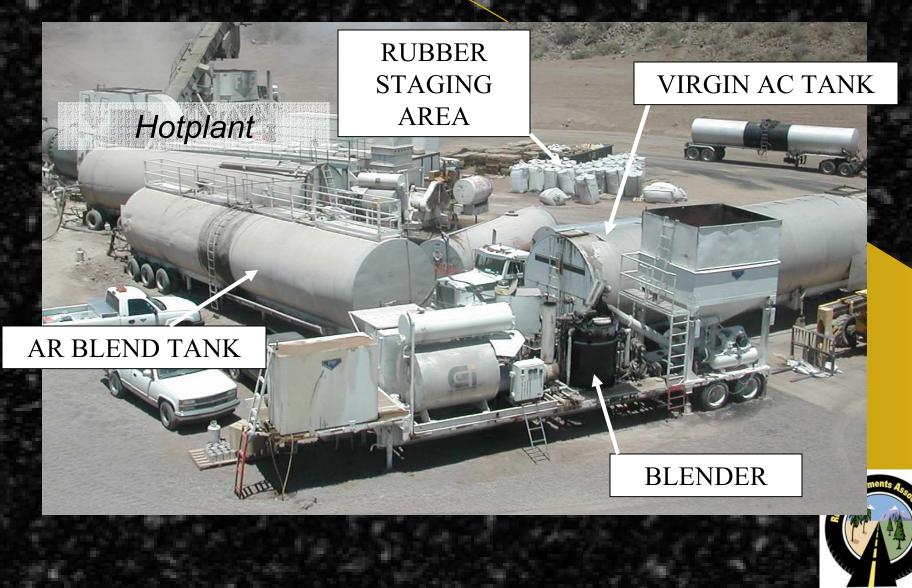
Rubber is added to the weigh hopper

Rubber is fed from the weigh hopper into a high shear mixer.

27

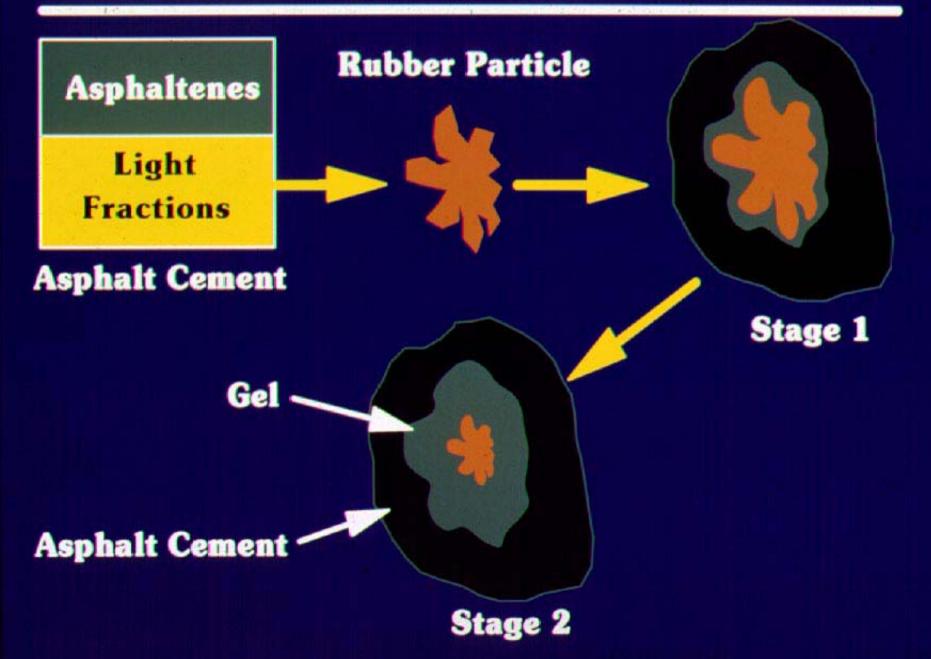

Ē

Rubber is blended with liquid asphalt heated in excess of 350° F.

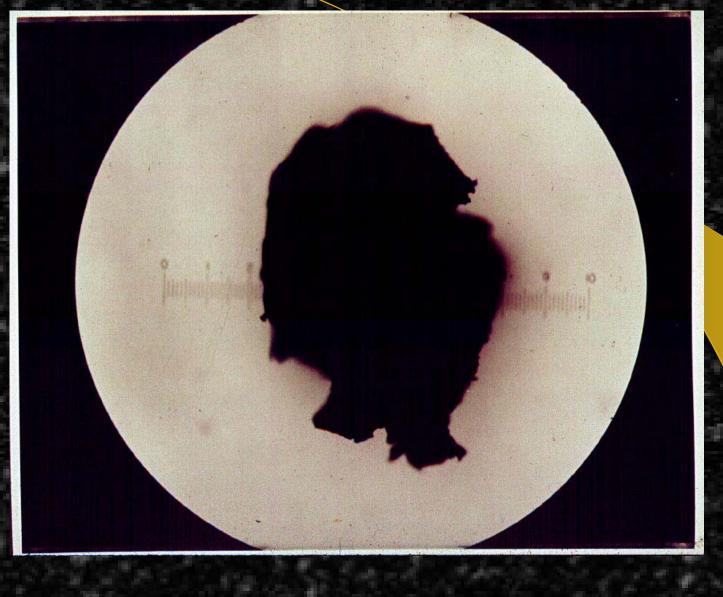


Once blended, the Asphalt-Rubber binder is reacted in agitated tanks for 45-60 minutes depending on specifications.

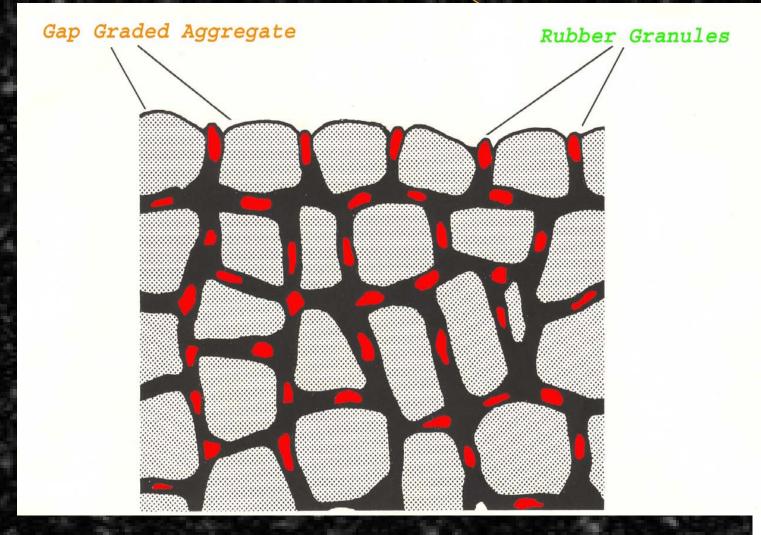
An aerial view of a portable Asphalt-Rubber Plant setup at a Hotplant.



Augers keep the material blended and the rubber in suspension.


Reaction Stages of Asphalt & Rubber

Rubber Particle Before Interaction


Rubber Particle After Interaction

Binder Quality Control Monitored by the Handheld Viscometer

Field Blend Rubber Hot Mix -Rubber Modifies Binder and Mixture

Metric Ton of Mix

Mix Type	Kgs of Asphalt	Kgs of Rubber	Kgs of Stone
HMA	42	0	958
Gap Graded	48	12	940
Open Graded	66	16	918

Asphalt Is Good!

Rubber Mixes Use More Of It! 30-60% More in Hot Mixes

I-17 2.5 cm ARFC over PCCP

Advantages of Asphalt Rubber OGFC

- Increased skid resistance
- Noise reduction
- Reduced vehicle spray on wet surfaces
- Increased draining characteristics
- Increased durability
- Resistance to cracking
- Improved smoothness

Heavy Vehicle Simulator Testing 1993

- UC Berkeley
- Dynatest
- Caltrans
 - South Africa Council of Scientific and Industrial Research

Heavy Vehicle Simulator

HVS Loading

Performance

Repetitions	Wheel Load	AC Overlay Section (75mm)	ARHM-GG Section (38mm)	ARHM-GG Section (25mm)
0-100,000	40kN	Fine cracks at 100,000		
100,000 to 175,000	40kN	Block cracks at 175,000		
	Wheel I	oad Changed	to 80 kN	
175,000 to 200,000	80kN	Completely cracked		Fine cracks
200,000 to 237,000	80kN	Test stopped		Completely cracked
	Surface Ten	nperature Red	luced to -5 C	
237,000 to 250,000	80kN	Test stopped	1/2 of section cracked	Test stopped

100

CALTRANS Structural Equivalency Tables (Thickness in feet)

DGAC	ARHM-GG1	ARHM-GG w/SAMI	
0.15	0.10 ^a		
0.20	0.10	a - The minimum allowable ARHM-	
0.25	0.15	0.10 GG lift thickness is	
0.30	0.15	0.10	
0.35	0.20	0.15 b - Place 0.15' of	
0.40	0.20	0.15 new DGAC first.	
0.45	0.15 ^b	0.20 c - Place 0.20' of	
0.50	0.15 ^c	new DGAC first.	
0.55	0.20 ^b	0.15 ^b	
0.60	0.20 ^c	0.15 ^c	20;

Notes: The maximum allowable non-experimental equivalency for ARHM-GG is 2:, ARHM-GG may not prevent cold weather induced transverse cracks.

CALTRANS Crack Reflection Retardation Equivalencies

JUAC			
0.15	0.10 ª		
0.20	0.10		
0.25	0.15		
0.30	0.15		
0.35 ^b	0.15 or 0.20°		

DGAC

0.10^d

ARHM-GG w/SAMI

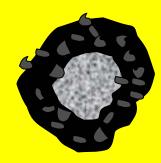
a - The minimum allowable thickness is 0.10'

b - A DGAC thickness of 0.35' is the maximum recommended by Caltrans for reflection crack retardation

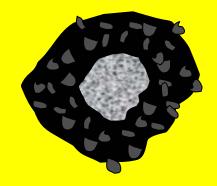
- c Use 0.15' if the crack width is< 1/8" and 0.20' if the crack is >= 1/8"
- d Use if the crack width is >= 1/8". If < 1/8", use another strategy
- ARHM-GG may not prevent cold weather induced transverse cracks

Recent Projects

- Mechanistic Overlay Design Method for Hot Mix -Sousa, Pias
- Influence of Aging on Fatigue Behavior Raad
- A-R Design and Construction Guidelines Hicks, Stonex
- LCCA of Asphalt Rubber Materials Hicks, Epps
- Traffic Noise Analysis Before and After Paving with AR – Zhu, Carlson
- Stack Emissions with AR and Conventional AC Stout, Carlson



Film Thickness on the Aggregate


Dense Graded 4.6% HMA 9 Micron

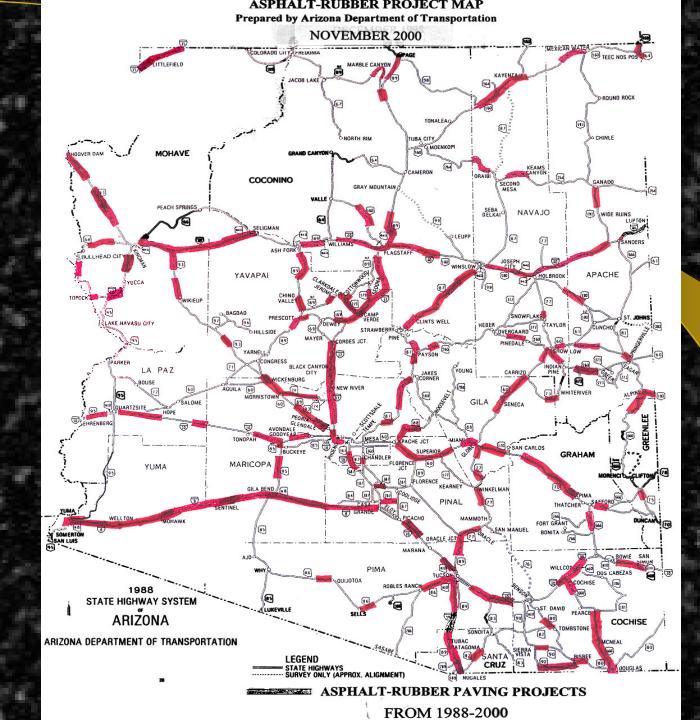
Gap Graded 7.4% Asphalt Rubber 18 Micron

Open Graded 9.2% Asphalt Rubber 36 Micron

Long Term Performance

Aged Project Performance Evaluations

California


Texas

Arizona A-R Project Review 2000

20 projects 10 years or older
OGFC and GG over PCCP and AC
Almost all performing with very little maintenance
I-19, I-40 and I-17 most notable

Asphalt-Rubber Projects 1988-2000

California A-R Project Review

- 113 Projects built after 1995 examined in 1999.
- Only 11 with any distress, most nonbinder related.
- Caltrans now routinely specifying 1.6 million tons each year.

Texas A-R Project Review

Projects built after 1992 (patents expired) examined in 2001 • 18 Seal Coats • 10 Hot Mix Projects • 5 Porous Friction Courses Aggregate Gradation is key to Binder Success in the mixture.

New Program Developments

Nebraska 2001
Alberta, Canada 2002
Colorado 2003

Nebraska Demonstration 2001

A Unique Nebraska Application

Highway 2 - Lincoln, Nebraska

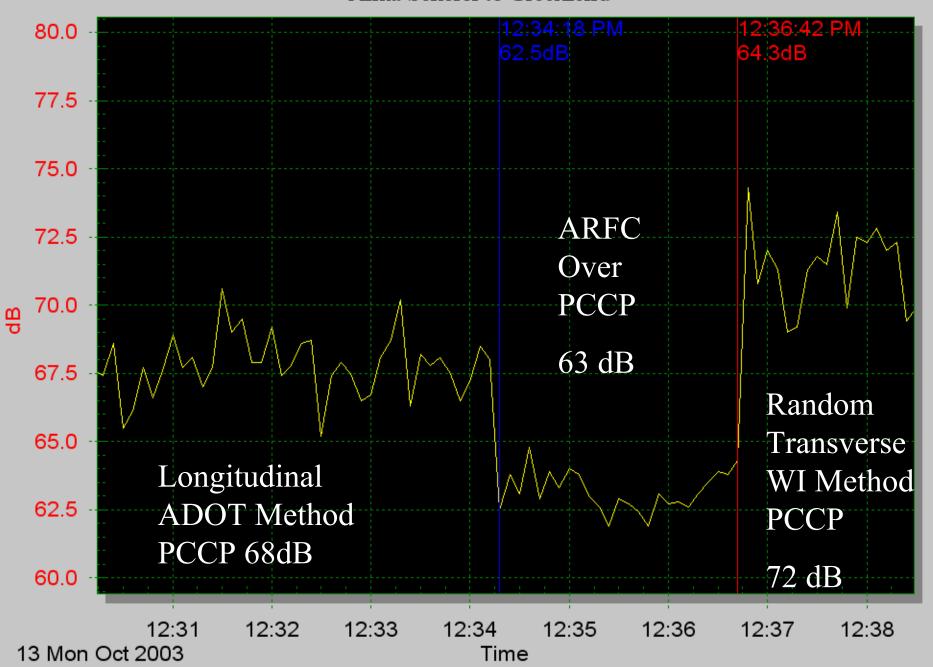
(1) STATE RESEARCH ROAD BUILT WITH 16.400 RECYCLED TIRES 84TH TO 56TH STREET

Nebraska Demo 2002

Alberta Demonstration Project 2002

ASPHALT RUBBER MADE RIGHT

Mary .



Future Applications

- Continued use in conventional paving applications
- Quiet Pavements Program very promising
- Dust Control on dirt roads in urban areas –Bituminous Surface Treatments

East Bound 202 In-Car-Recording Alma Scholol to Greenfeild

ADOT Uses ARFC to Provide Quiet Pavements

- The ARFC is Minus 9.5mm & 9-9.5% Binder
- 12.5 mm Thick When Used on Flexible Pavement
- 25 mm Thick When Used on PCCP
 ADOT Uses Pavement Type (ARFC) as a Noise Mitigation Strategy (4 dBA)

Noise Levels By Surface Type

104.9	Random Transverse (Wisconsin Method)
102.5	Uniform Transverse (ADOT Method-3/4")
99.1	Longitudinal (ADOT Method- 3/4")
95.5	Whisper Grind (Industry Method)
91.8	ARFC (ADOT Method)

BST Program Purpose To Reduce Dust

Asphalt-Rubber Application Over Dirt Surface

Phoenix BST Program

Paved 65 miles of dirt roads and alleys within the City of Phoenix to reduce dust. 65,000 old tires were used The roads are expected to last 5-7 years Project cost \$ 4 million.

Bituminous Surface Treatment

Thank You!

Resources online at:

www.rubberpavements.org

