2002 Design Guide Preparing for Implementation

By Monte Symons 2003 NCUAPG Annual Meeting Excerpts from the 2002 Guide Implementation Package

2002 Design Guide Presentation Overview

Need for Design Guide
NCHRP 1-37A - Status
Guide Basics
Asphalt
Implementation Steps

Change Is Needed!

If we keep doing things the way we have been doing them, we will continue to get the same results we have been getting.

 - "No one I know is satisfied with the performance and costs of our pavements".

Changes in our approach!

- The 2002 Design Guide represents a major change in the way we do design. It brings the designer closer to reality and considers traffic, structural features, materials, construction, and climate far more than ever before.
- This means the designer now will be more involved in the design and expected performance of their pavements.

Future Changes!

The 2002 Design Guide provides a framework for continuous improvement over the years to come to keep up with changes in trucking, materials, computers, construction, design concepts, and so on.

1. Structural response models

2002

- 2. Materials characterization
- 3. Traffic characterization
- 4. Climate effects
- 5. Mechanistic distress models
- 6. Smoothness models
- 7. Calibration of models
- 8. Rehabilitation design
- 9. Design reliability
- 10. Design Guide text
- 11. Software

12. Training-Implementation

Finalizing 2002 Guide Finalizing Training Materials & Implementation

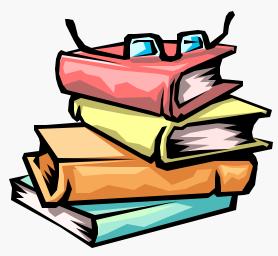
So What's Left?

Debugging Software

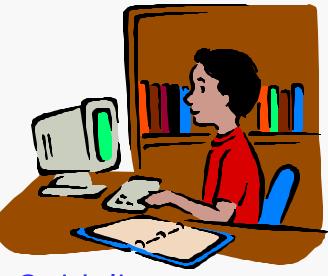
Completion of Calibration

Finalizing Reliability

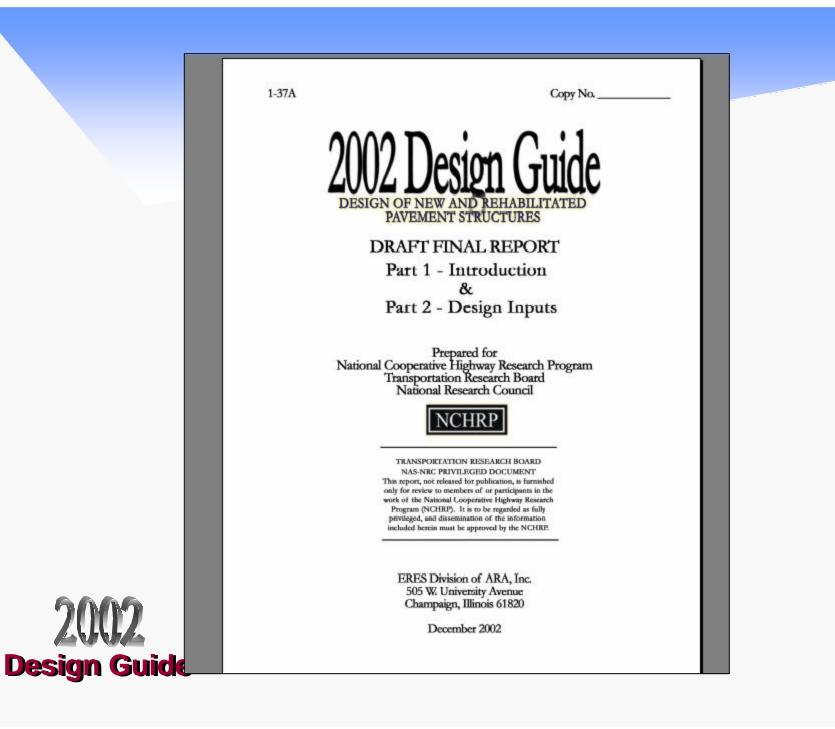
Guide Basics: Development Requirements


- Apply/enhance of existing state-ofthe-art technology.
- Common design parameters across pavement types:
 - Materials & soils characterization
 - Climate parameters
 - Traffic characterization
 - Design reliability

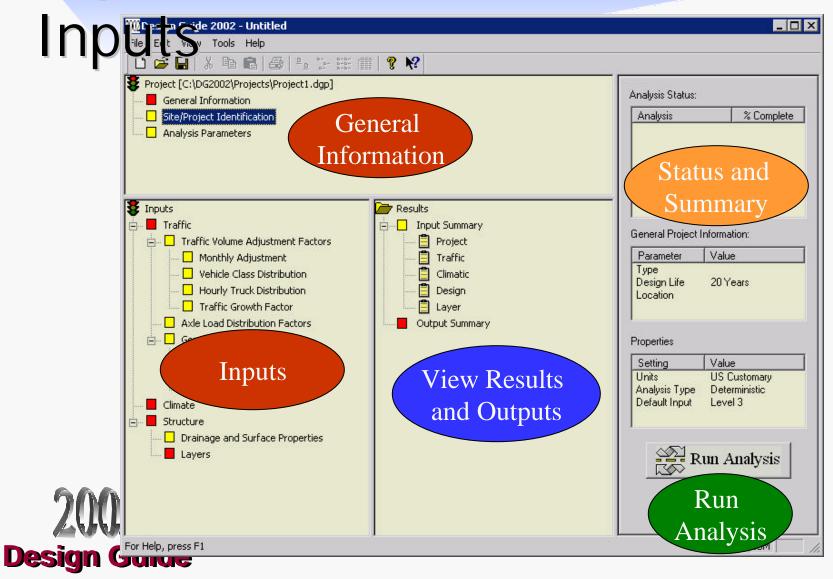
Design Guide


Asphalt & PCC Pavements Treated Alike As Far As Possible!

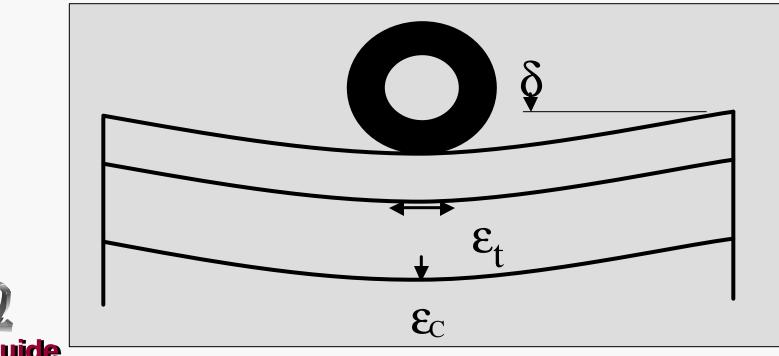
Products You Will See:


- Manuals
- Software

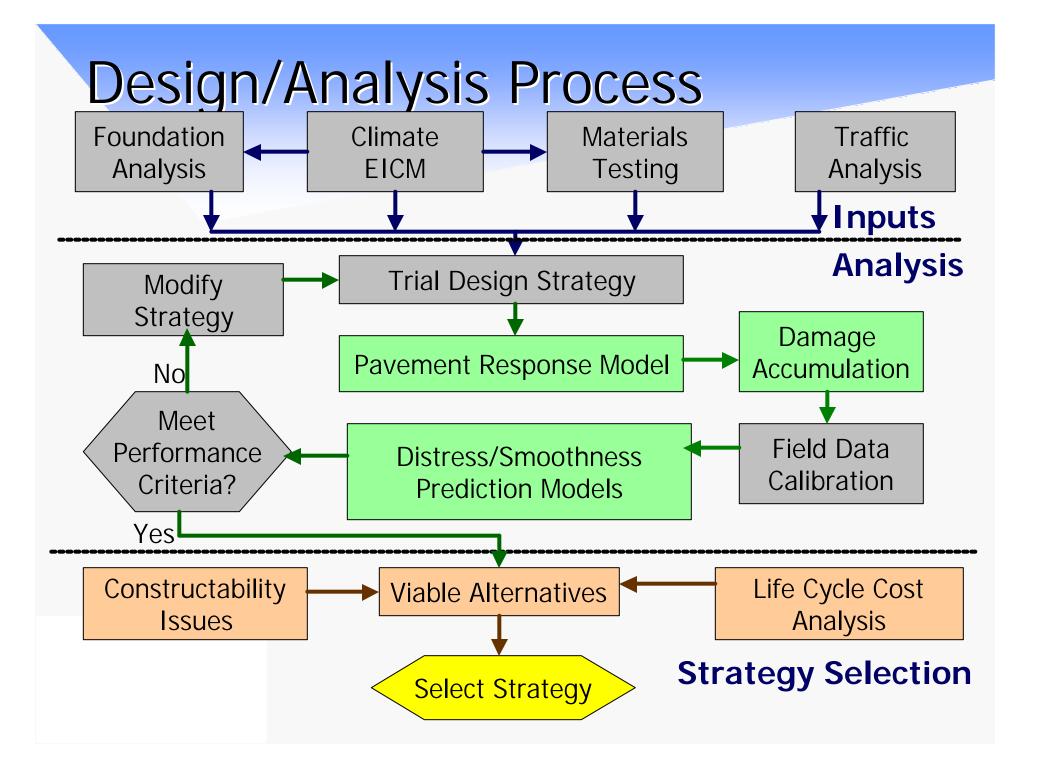
- Guidelines
- Recommended tests
- Implementation Materials
- Training Materials



2002 DESIGN GUIDE SOFTWARE



Layout Convenient for Providing



Guide Basics:

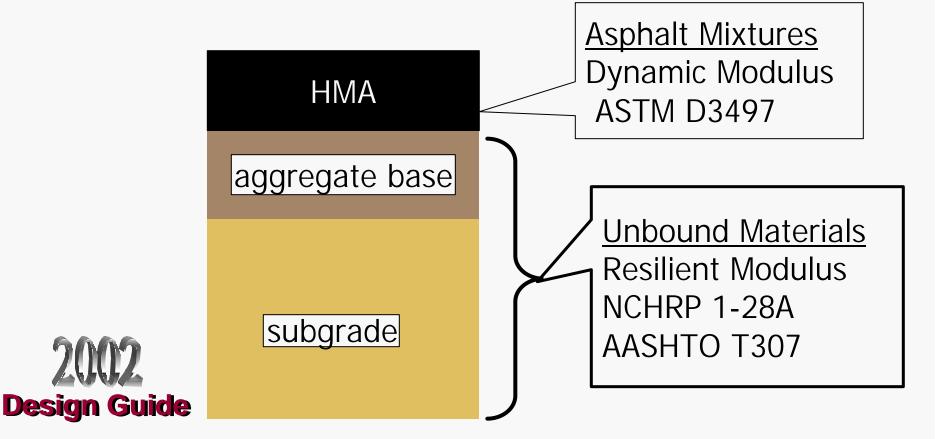
Develop the 2002 Guide for design of new and rehabilitated pavement structures based on M-E principles.

Flexible Pavement Performance

Design Inputs: The 2002 Guide will use a hierarchical approach to determine design inputs.

Input Level	Determination of Input Values	Knowledge of Input Parameter			
1	Project/Segment Specific Measurements	Excellent			
2	Correlations/Regression equations, Regional values	Good			
3	Defaults, Educated Guess	Fair - Poor			

Input Parameter Categories:

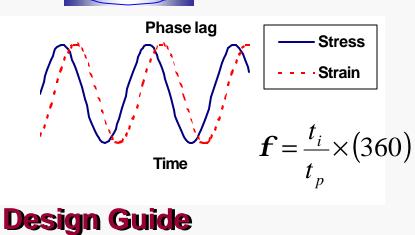

- 1. Traffic
- 2. Materials
- 3. Climate
- 4. Design reliability
- 5. Structure/trial design
- 6. Performance

Materials Characterization HMAC

Modulus of Elasticity

HMA Mixture: Dynamic (Complex) Modulus

$$|E^*| = \frac{\boldsymbol{S}_0}{\boldsymbol{e}_0}$$


E*

 σ_0

 \mathbf{E}_{0}

Adjusted for temperature & time of loading.

- = Dynamic modulus
 - = Maximum (peak) dynamic stress
- = Peak recoverable axial strain

HMA Materials Data:

Material	Parameter	Level 1	Level 2	Level 3
Mix	Master Curve	Mix Specific	Not Required	Not Required
	IDT- Creep/Strengt h	Mix Specific	Reduced Testing	Reduced Testing
	Air Voids	Not Required	Mix Design	Specification
Asphalt	G*/Phase	AASHTO MP1	AASHTO MP1	Not Required
	Angle	Binder Test	Binder Test	
	Pen./Vis./SG.	Not Required	Mix Design	Not Required
	Type (PG, Vis.)	Not Required	Not Required	Specification
Aggr.	Effective SG.	Not Required	Mix Design	Quarry Specific
	Gradation	Not Required	Mix Design	Specification

Poisson's Ratio

• Moisture Susceptibility

Predictive Equation for Dynamic Modulus

$$\begin{split} \log E^* &= -1.249937 + 0.02932\rho_{200} - 0.001767(\rho_{200})^2 - 0.002841\rho_4 - 0.058097V_a \\ &- 0.802208 \Biggl(\frac{V_{beff}}{V_{beff} + V_a} \Biggr) + \frac{3.871977 - 0.0021\rho_4 + 0.003958\rho_{38} - 0.000017(\rho_{38})^2 + 0.005470\rho_{34}}{1 + e^{(-0.603313 - 0.313351\log(f) - 0.393532\log(\eta))}} \end{split}$$

where:

E	 dv	namic	modulus,	10° psi
			and the second second	Lan

$$V_a$$
 = air void content, %.

$$V_{\text{beff}}$$
 = effective bitumen content, % by volume.

$$\rho_{34}$$
 = cumulative % retained on the ³/₄ in sieve.

$$\rho_{38}$$
 = cumulative % retained on the 3/8 in sieve.

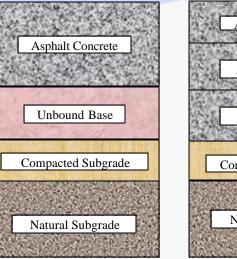
$$\rho_4 = \text{cumulative }\% \text{ retained on the No. 4 sieve.}$$

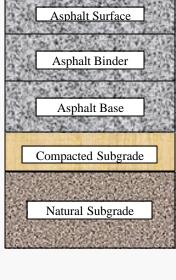
$$\rho_{200} = \%$$
 passing the No. 200 sieve.

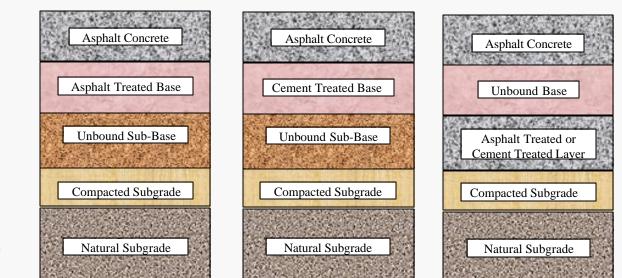
Material Testing Required – AC Binder Characterization

Test	Level	Specification
Penetration	1, 2	ASTM D 5
		AASHTO T 49
Viscosity at 60°C	1, 2	ASTM D 2171
		AASHTO T 202
Viscosity at 135°C	1, 2	ASTM D 2170
		AASHTO T 201
Brookfield Viscosity	1, 2	AASHTO T P48
Softening Point	1, 2	AASHTO T 3
		ASTM D 36
Shear Modulus	1, 2	AASHTO T P5
	Penetration Viscosity at 60°C Viscosity at 135°C Brookfield Viscosity Softening Point	Penetration1, 2Viscosity at 60°C1, 2Viscosity at 135°C1, 2Brookfield Viscosity1, 2Softening Point1, 2Shear Modulus1, 2

Des

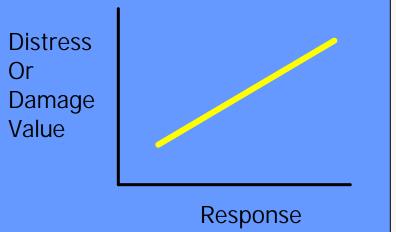

Material Testing Required – Asphalt Mix Characterization


Test	Level	Explanation
Complex Modulus	1	(On gyratory compacted specimens)
Indirect Creep	1	Needed for thermal cracking analysis (on gyratory compacted specimens)
Permanent Deformation	Special analysis	Needed for regional calibration (on gyratory compacted specimens)
Fatigue Cracking	Special analysis	Needed for regional calibration (on flexural beam samples)

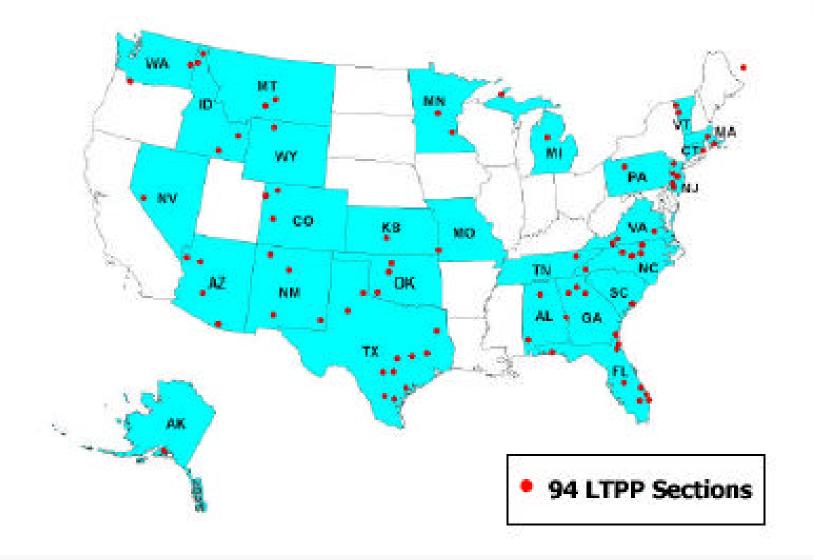

Des

Flexible Pavement Structures

	Asphalt Concrete	語言
Ster Law	nyanganan karangan menuru ngahis	50
	Unbound Base	4.5
·王山下了。	a ca se a tara ca	22
Γt	Inbound Sub-Base	
inter.	the sufficiency	i),
Co	ompacted Subgrade	
	Natural Subgrade	1111
	San Carl	100



Predicted Performance Flexible Pavements ➢ Fatigue cracking **Bottom-up and Top-down** Permanent Deformation (rutting) **Bound and unbound layers** >Thermal Fracture Smoothness, IRI



Implementation Steps

- 1. Agency acceptance/adoption
- 2. Training on design procedure
- 3. Establish design input procedures
- 4. Obtain needed equipment
- 5. State validation & calibration

LTPP Sections Used to Calibrate New Asphalt Concrete Pavement Design

Website: www.2002designguide.com

For more information see the Design Guide Website and NCHRP 1-37A project reports

