Gyratory Superpave Mix Design for Local Governments Low Volume Roads

Iowa Department of Transportation
Implementing the Gyratory Mix Design System for Low Volume Routes

Michael Heitzman
Shane Tymkowicz
John Hinrichsen
Ed Engle
Brenda Boell
Why change to gyratory?

- Superior mix design process
- Eliminate duplicate design systems
Iowa Gyratory System Implementation

PG-Binder Full Implementation Jan 1997

- **Mix Design State Routes**
 - ’97 - 10%
 - ’98 - 25%
 - ’99 - 50%
 - ’00 - 100%

All other routes 2004
Iowa’s Implementation Process

• 1999 Identified need, formed team
• 2000 Data collection
• 2001 Analysis, develop guidelines
Team Approach

• DOT/County/industry
• Agency concerns
• Industry practice
• 7 activities outlined

• Training
• Public relations
• Mixture analysis
• Quality control
• Constructibility
• Cost
• Plan validation
PUBLIC RELATIONS

Implementation Bulletin
No. 1 - The Plan

No. 2 - Training Sessions
No. 3 - Send Marshall Mixes
No. 4 - Mix Analysis
No. 5 - Specification
No. 6 - Mix Selection Guide
Mixture Analysis Input Data Fields

- Project Identification
- Traffic
- Marshall Mix
- Requirements
- Gyratory Compaction Curves
- Marshall Mix Volumetrics
- Aggregate Characteristics
Getting the Data!

- 102 Mixes
- 170 Split Samples
- Huge Data Base
 - 8500 Data Entries
 - 16200 Calculations
- Over 2000 hours of work
Gradation Curves - 3/4"

Percent Passing vs. Sieve Size

Sieve Sizes:
- 0.0
- 10.0
- 20.0
- 30.0
- 40.0
- 50.0
- 60.0
- 70.0
- 80.0
- 90.0
- 100.0
Gyratory Density

Gyrations vs. %Gmm
Normalized to 4% at 68 Gyrations
Mixture Levels

Less than 100,000 ESALs (40 trucks/day)
100,000 to 300,000 ESALS (40-125 T/day)
300,000 to 1,000,000 ESALS (125-350 T/day)
Normalizing the Database

<table>
<thead>
<tr>
<th>Voids</th>
<th>50</th>
<th>60</th>
<th>68</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3.5</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
< 100,000 ESALs, Filtered
Normalized to 3.0 Voids at 68 Gyrations
100,000 to 300,000 ESALs, Filtered
Normalized to 3.5 Voids at 68 Gyrations

%Gmm vs Gyrations for 50 Mixes
> 300,000 ESALs, Filtered
Normalized to 4.0 Voids at 75 Gyrations

27 Mixes
Mix Criteria for Lab Density

Surface and Intermediate Lifts

<table>
<thead>
<tr>
<th>ESALs</th>
<th>N_{ini}</th>
<th>N_{des}</th>
<th>N_{max}</th>
<th>N_{ini}</th>
<th>N_{des}</th>
<th>N_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td><100k</td>
<td>7</td>
<td>68</td>
<td>104</td>
<td>92.5</td>
<td>97</td>
<td>98.5</td>
</tr>
<tr>
<td>100k – 300k</td>
<td>7</td>
<td>68</td>
<td>104</td>
<td>92.0</td>
<td>96.5</td>
<td>98.5</td>
</tr>
<tr>
<td>>300k</td>
<td>7</td>
<td>76</td>
<td>117</td>
<td>90.5</td>
<td>96.0</td>
<td>98</td>
</tr>
</tbody>
</table>
Table of Data

<table>
<thead>
<tr>
<th>ESALs</th>
<th>N_{initial}</th>
<th>N_{design}</th>
<th>N_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 100k</td>
<td>92.5</td>
<td>97.0</td>
<td>98.5</td>
</tr>
<tr>
<td>100 - 300k</td>
<td>92.0</td>
<td>96.5</td>
<td>98.0</td>
</tr>
<tr>
<td>300k - 1M</td>
<td>90.5</td>
<td>96.0</td>
<td>98.0</td>
</tr>
<tr>
<td>AASHTO</td>
<td>91.5</td>
<td>96.0</td>
<td>98.0</td>
</tr>
</tbody>
</table>
Gyratory Mix Design System

Material Selection Guide

- Part 1- Design Checklist
- Part 2- Material Properties
- Part 3- Mixture Guide Overview
- Part 4- Example Plans
- App A- Terms & Definitions
- App B- Determining ESALs
- App C- Mixture Selection Guide
- App D- Bid Item List
Mix Selection Guide

• Design Checklist - 8 step process
 – Step 1 - traffic forecast
 – Step 2 - pavement rehabilitation strategy
 – Step 3 - climate
 – Step 4 - 20-year pavement loading
 – Step 5 - special conditions
 – Step 6 - select mixture criteria
 – Step 7 - check for non-standard criteria
 – Step 8 - prepare plans & proposal
Implementation Progress

• 5 pilot projects in 2001
• 40+ projects in 2002
• Initiate study for cities in 2003
Gyratory Superpave Mix Design for Local Governments Low Volume Roads

Iowa Department of Transportation