Putting the Puzzle Together On Our National Asphalt RD&T Activities

Thomas HarmanAsphalt Pavement Team Leader, R&DFederal Highway Administration

**National C**'ooperative Highway Research Program

> Dr. Edward Harrigan, Ph.D. 9-Series, Fall 2002



# NAS - AASHTO's Research Program Since 1962

For Project Status Reports, Requests for Proposals, Online Documents, Products Developed for AASHTO Committees, and Other Information, Visit the Web at:

www4.trb.org/trb/crp.nsf/

# Structural





# NCHRP 1-37(A) Proposed AASHTO 2002 PDG...





NCHRP 1-37(A) July 20 3... Develop and deliver a guide for design of new and rehabilitated pavement structures

 Based on mechanistic-empirical principles
 Accompanied by the necessary computational software
 For adoption and distribution by AASHTO

#### 9-9(1): Verification of Gyration Levels in the N<sub>design</sub> Table...

How well does densification at the N<sub>design</sub> in PP28 match the field under traffic? NCAT (August 2003)

#### 9-9(1): Verification of Gyration Levels in the N<sub>design</sub> Table...

Independent Variables:
Gyration level
Aggregate gradation, fine & coarse
Binder grade "bump"
Lift thickness to NMAS ratio

#### 9-9(1): Verification of Gyration Levels in the N<sub>design</sub> Table.

 Average as-constructed air voids of 40 projects is 8.4 ± 1.9%

At 1 year, average for 14 projects decreased from 8.5 ± 2.2% to 5.8 ± 1.9%

No relationships yet apparent

# 9-16(1): Validation of 9-16 Findings for HMA QC...

Validate the use of N-SR<sub>max</sub>
 <u># of gyrations at max stress ratio</u>
 measured with the SGC as a tool
 for field QC of HMA production.

# NCHRP 9-16 Issues... (1) N-SR<sub>max</sub> is not a standard capability (2) Relatively insensitive to AC stiffness (3) Researchers have developed a new approach





#### Something New

Dynamic Evaluation of Specification Compliance

Determination of N-SR<sub>max</sub>

Test Quip / Gilson Pressure Response Indicator (PRI) 9-19: Superpave Support and Performance Models Management, Task C...

Candidate simple performance tests:
Dynamic modulus: E\*/sinF (PD/FC)

Static creep: flow time (PD)

 Triaxial repeated load permanent deformation: flow number (PD) 9-19: Superpave Support and Performance Models Management, Task C.

SPT Validation: Correlate test results with field performance of selected field sections - IN SPS-9, NV I-80, AZ I-10, NCAT Track (10), MnRoad, FHWA ALF, WesTrack

SPT Criteria: Develop with aid of performance models in the 2002 pavement design guide (1-37A) 9-29: Simple Performance Tester for Superpave Mix Design...

 First-article simple performance testers from Interlaken and ShedWorks/IPC under evaluation by AAT and FHWA.

Advanced Asphalt Technologies (April 2003)

# Simple Performance Test First Articles (9-29)...









# E\* Pooled Fund Preliminary Results.



9-23: Environmental Effects in Pavement Mix & Structural Design Systems...

Validate the latest version of Integrated Climatic Model (ICM) developed in NCHRP Project 1-37A
Verify the estimated period or rate of in-service aging simulated by AASHTO PP1 and PP2

Arizona State University (August 2003)

9-23: Environmental Effects in Pavement Mix & Structural Design Systems.

 All field work for <u>ICM validation</u> completed at 27 LTPP sites, MnRoad, and WesTrack

 Field samples obtained for verification of AASHTO PP1 & PP2

# 9-22: Beta-Testing and Validation of HMA PRS...

In 2001, beta tested HMA SPEC v. 1.0 (done) and tested PRS as "shadow spec" on five field projects *Fugro-BRE, Inc. (December 2003)* 

#### Arizona, Colorado, Florida, Maryland, Illinois...





# 9-22: Beta-Testing and Validation of HMA PRS.

 HMASpec V. 2.0: Incorporate requisite PRS elements and original WesTrack performance models into the 2002 Pavement Design Guide software program

 Preliminary LCC/PRS analysis of field projects complete.

# 9-22: Beta-Testing and Validation of HMA PRS...

| Project | Lots | Pay Factor      |
|---------|------|-----------------|
| A       | 7    | $1.35 \pm 0.26$ |
| B       | 7    | 1.17 ± 0.15     |
| С       | 7    | 1.16 ± 0.21     |
| D       | 9    | 0.85 ± 0.18     |
| Ε       | 9    | $0.22 \pm 0.20$ |

LCCA based on Level I WesTrack models 9-25: Requirements for Voids in Mineral Aggregate for Superpave Mixtures +

Which volumetric design criterion best ensures adequate durability and performance: VMA, VFA, or calculated binder film thickness?

Advanced Asphalt Technologies (October 2003)

# 9-31: Air Void Requirements for Superpave Mix Design...

Should the design air void content vary with traffic loading and climatic conditions?

Advanced Asphalt Technologies (October 2003)

**Advanced Asphalt Technologies, LLC** 

"Engineering Services for the Asphalt Industry"

# 9-25/9-31 Preliminary Findings.

- Defining optimum binder content at 4% air voids appears reasonable and effective in producing stable, durable HMA mixes
- Rut resistance increases with decreasing VMA, increasing compaction, increasing aggregate surface area
- Fatigue resistance is strongly correlated with binder content only

### 9-30: Plan for Calibration and Validation of HMA Models

Q. What does the validation of the HMA performance models in the 2002 Guide with laboratory-measured properties entail in time, money, and materials?

Fugro-BRE, Inc. (April 2003)

# 9-33: A Mix Design Manual for Hot Mix Asphalt

Update the 1993 method and manual:
Simple performance test(s).
<u>As-delivered</u> 2002 design guide performance models and software.
Spreadsheets for volumetric design, performance testing, and design optimization.

(RFP Issue: April 2003 or later)

9-34: Improved Conditioning Procedure for Predicting HMA Moisture Susceptibility

Improved conditioning procedure based on the environmental conditioning system (ECS) for use with the validated SPT.

Pennsylvania Transportation Institute (March 2004) 9-35: Aggregate Properties & Their Relationship to the Performance: A Critical Review +

Identify consensus, source, and other aggregate properties that significantly impact HMA performance. NCAT (June 2003) 4-30: Improved Testing Methods for Critical Aggregate Shape/Texture Factors...

Identify or develop methods for measuring shape, texture, and angularity characteristics of aggregates used in hot-mix asphalt and hydraulic cement concrete

Washington State University (July 2004)

# Aggregate IMaging System...



# AIMS





9-36: Improved Procedure for Laboratory Aging of Asphalt Binders in Pavements...

Develop and validate a recommended procedure for short-term laboratory aging of asphalt binders usable in a purchase specification such as AASHTO M320: (1) neat and modified binders; (2) quantifies binder volatility; (3) extendible to long-term aging; (4) mimics PP2 mix aging

Agency Selection, December 2002

#### Superpave<sup>®</sup> Binder Specification Short Term Aging



<u>Issue</u>: Within procedure post-aging handling practices



# "The Puzzle"

| 9-9         9-9         9-16         9-19         9-25         9-33         9-34           Manual         9-16         9-16         9-31         Manual         9-34 |                                                    |                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------|
| 9-22<br>PRSNSRMax9-29<br>SPTVoids<br>(PRS)                                                                                                                           | 9-33<br>esign<br>anual $H_2O$ 9-35<br>4-30<br>Agg. | 9-36<br>Aging<br>Binder |







NCHRP 90-series Conducted by FHWA



#### 90-01: Mobile Asphalt Labs

Provide "Hands-on" of Superpave System

 Volumetric Mix Design
 Field QC/QA Procedures, NCHRP 9-7
 Dynamic Angle Validation (DAV)
 Performance Related Specifications 9-22

- Simple Performance Test 9-29
- 4 to 6 week visits Data used to support ETG's







#### 90-02: Binder lab

Continuous support to the States:
 – Training / Ruggedness / Development / Validation

Trouble shooting of binder problems

Farther Development of the DT

### 90-03 Mix Tenderness.



#### 90-05 Fine Aggregate Specific Gravity Test

Issue:
 – VMA Field QC















Understanding the Performance of Modified Asphalts in Mixtures NCHRP 90-07, TPF 5-(019)

Asphalt Pavement Team, R&D

#### REFINEMENT Superpave<sup>™</sup>





## NCHRP 90-07, TPF 5-(019) Accelerated Load Facility





#### FHWA ALF '93 - Key Findings

Tested at 58°C



#### Final Test Matrix



1 2 3 4 5 6 7 8 9 10 11 12

### Analysis Goal



# "So what?"



#### Superpave® Binder Specification Rutting, Fatigue, and Low-Temp. Cracking

| WHEN                     | WHAT                             | HOW                                             | WHERE                            |
|--------------------------|----------------------------------|-------------------------------------------------|----------------------------------|
| Construction             | Safety<br>Pumpability<br>Rutting | Flash Point<br>Rot Visc<br>$G^* / \sin \bowtie$ | 230 min<br>3 Pa-s max<br>T(high) |
| Early<br>( <i>RTFO</i> ) | Rutting                          | $G^*$ / sin $\boxtimes$                         | T(high)                          |
| Late (+PAV)              | Fatigue<br>Low Temp              | $G^* \sin \boxtimes BBR/DTT$                    | T(inter)<br>T <sub>CR</sub>      |

#### Superpave® Binder Spec. II PG based on Degree Days

| WHEN                      | WHAT        | HOW                                      | WHERE           |
|---------------------------|-------------|------------------------------------------|-----------------|
| Construction              | Safety      | Flash Point                              | 230 min         |
|                           | Pumpability | Rot Visc                                 | 3 Pa-s max      |
|                           | Rutting     | $f(G^* \boxtimes ZSV)$                   | T(high)         |
| Early<br><i>Tx Device</i> | Rutting     | $f(\mathbf{G}^* \boxtimes \mathbf{ZSV})$ | T(high)         |
| Late (+ <i>MW</i> )       | Fatigue     | $f"(G^* \boxtimes DT)$                   | T(inter)        |
|                           | Low Temp    | DT / ABC                                 | T <sub>CR</sub> |

#### "So What?"

To better handle neat asphalts
To address modifiers
To do it faster, better, and more economical!

**TESTS NEED TO BE:** 

\*\*\* **RULES** \*\*\*

🗞 EASY TO SET UP



A EASY TO ANALYZE

