

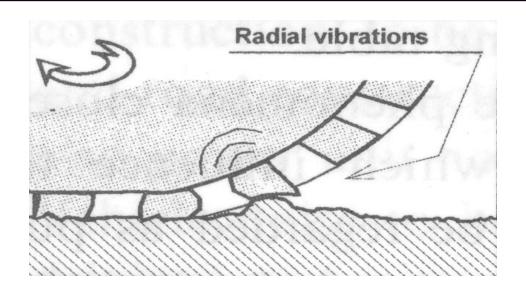
Sound Generation of Pavements

Robert J. Bernhard

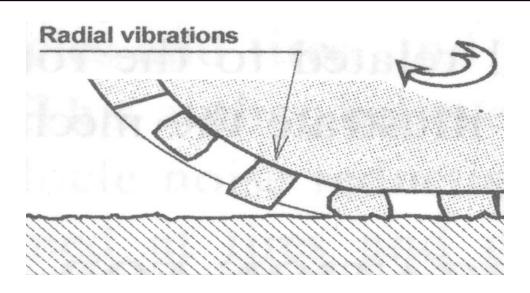
Institute for Safe, Quiet and Durable Highways
Purdue University

Presentation

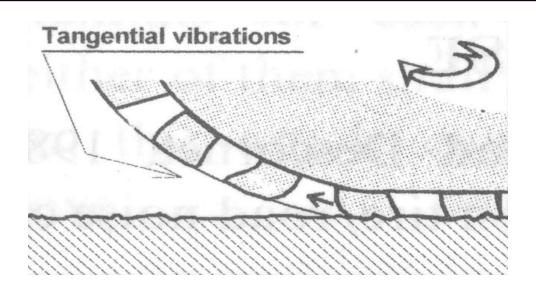
Noise control at the source (focused on pavement) – reduce need for barriers


- Noise generation mechanisms
 (using Sandberg's seminal paper,
 Acoustical Soc. of Japan, 1999)
- Current implementations of quiet highway technology
- Research for better solutions

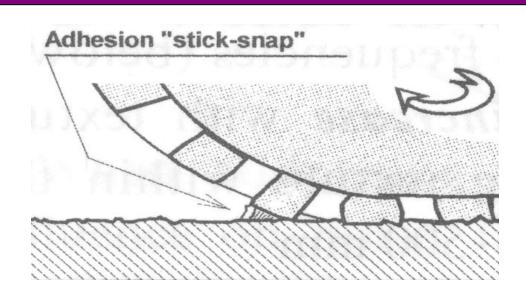
Tread Compression


- Highway texture and tread block induce vibration of the tire carcass
- Affected by texture and tire construction
- ◆ Important at low frequency

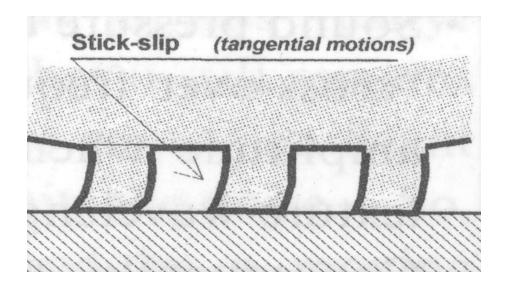
Tread Vibration


- Occurs at contact patch, tread blocks act as little loud speakers
- Affected by pavement texture and tread block materials
- ♦ Important at high frequency.

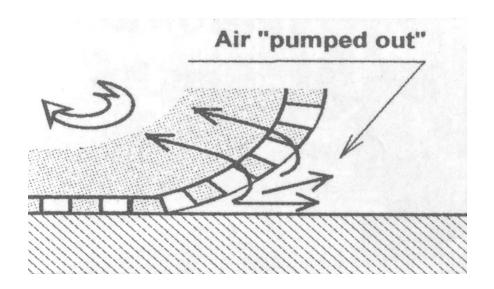
Tread Oscillation


- Due to tangential strain on tread blocks and impact of pavement
- Affected by load, pavement texture and tread compounds
- Important at high frequency

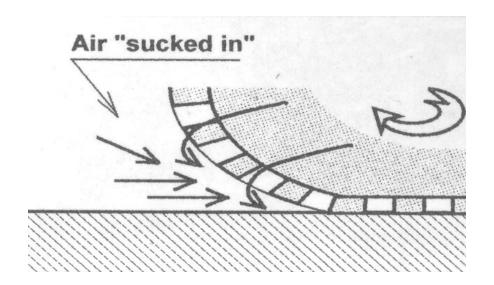
Tread Adhesion


- Causes tread and carcass vibration
- Depends on the adhesive forces between the tread and the pavement
- Important at low and high frequency

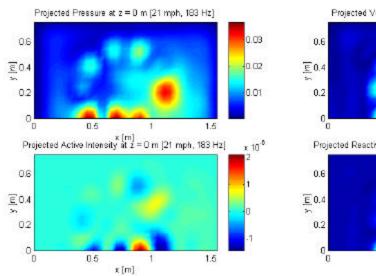
Stick-Slip

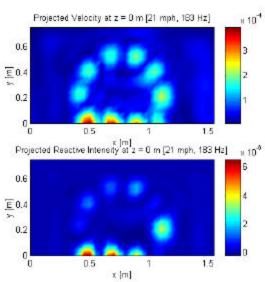

- Causes squeaks and squeals high frequency
- ◆ Local radiation
- Depends on load and tread/pavement adhesion

Air Pumping

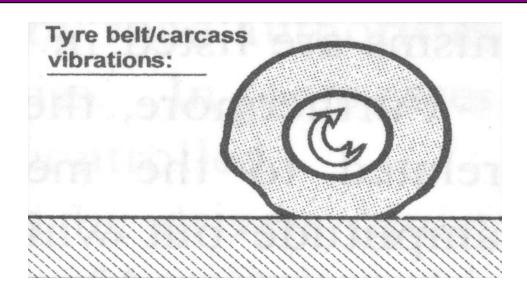

- At entrance to contact patch
- Dependent on tread passages and pavement porosity
- ◆ Important at high frequency

Air Pumping

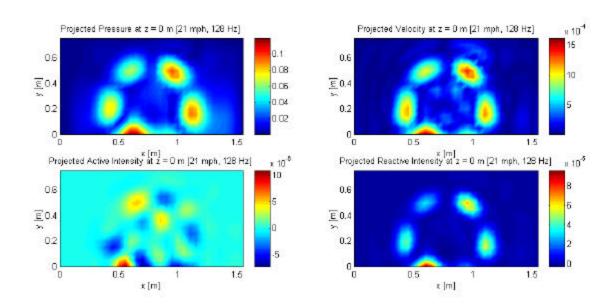

- ◆ Important at contact patch exit
- Dependent on tread pattern and pavement flow resistivity
- High frequency



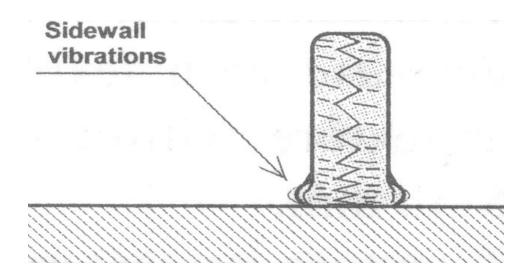
Acoustical Hologram


- ♦ From *Kim and Bolton*
- ◆ 21 mph
- ♦ 183 Hz
- Radiation from contact patch

Carcass Radiation


- ♦ Source amplification, low frequency
- Depends on carcass construction
- ♦ Important to sideline radiation

Acoustical Holography

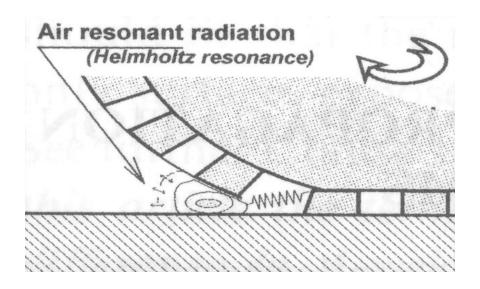

- ◆ Acoustical hologram of a rolling tire (from *Kim and Bolton*)
- Speed 21 mph
- ♦ Frequency 128 Hz (low frequency)

Sidewall Radiation

- Source amplification
- ♦ Important to sideline radiation
- ◆ Depends on tire construction

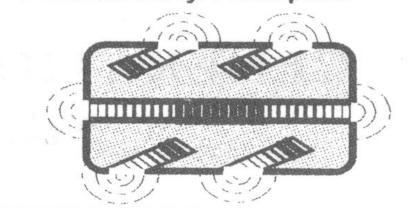
Horn Effect

Amplification effect by the horn


- Source amplification of air pumping and tread vibration
- Dependent on width of tire and pavement acoustical characteristics
- ♦ High frequency, directive effect

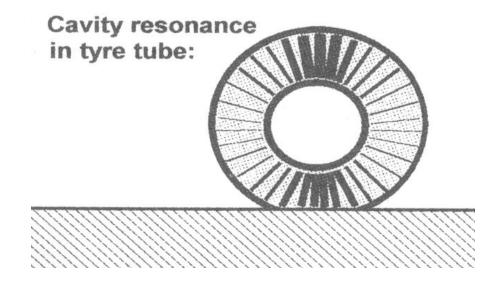
Helmholtz Resonance

- Source amplification near entrance and exit of contact patch
- High frequency effect



Channel Resonance

Pipe resonances in channels formed in the tyre foot-print:


- ♦ Source amplification mechanism
- ◆ The organ pipe resonance effect
- Mid frequency

Cavity Resonance

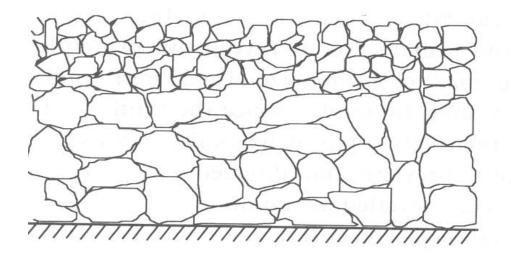
- Lightly damped resonance near 250
 Hz
- Very evident both internal to the vehicle and externally

Quiet Pavement Literature

- ◆ NCHRP Synthesis 268 "Relationship Between Pavement Surface Texture and Highway Traffic Noise", R. Wayson et al.
- ♦ PCC porous concrete, exposed aggregate concrete, tining concepts
- Asphaltic concrete porous asphalt, open-graded asphalt, rubberized asphalt, twin-lay

Quiet Asphalt Europe

Porous Asphalt


- 20%+ porosity, various aggregate sizes
- Durability OK
- Lost noise reduction effect due to plugging
- ◆ Twin-lay
 - 2 layers
 - Durability OK
 - Self cleaning from tire pumping

Twin-Lay

Top layer Small chippings

Bottom layer Big chippings

- ♦ Top layer 6-10 mm aggregate
- ♦ Second layer 15-20 mm aggregate
- ◆ 20-25% porosity

Cost/Benefit

- ◆ Study done in the Netherlands (*Larsen and Bendtsen, Inter-Noise 2001*)
- ♦ NPV in euros for 3 roads, 3 noise mitigation solutions (twin-lay, barriers, home insulation)

		City street	Ring road	Freeway
Asphalt	30 year cost	296,000	360,000	477,000
	dB reduction	5	6	7
	NEF reduction	103,2	153,2	215.8
	Cost/dB/dwelling	89	150	157
	Cost/NEF	2,870	2,350	2,210
Barrier	30 year cost		1,335,000	1,590,000
	dB reduction	127	0-12 (average: 3.9)	4-13 (average: 8.5)
	NEF reduction	120	75.5	218,6
	Cost/dB/dwelling	120	851	430
	Cost/NEF		17,680	7,270
Insulation	30 year cost	2,685,000	1,607,000	578,000
	dB reduction	9	9	9
	NEF reduction	99,0	170.0	124.3
	Cost/dB/dwelling	449	448	148
	Cost/NEF	27,120	9,450	4,650

Quiet Highways Europe

- "Rubberized" highway
 - Rubber as part of the binder
 - Seems to affect tread vibration mechanisms
 - Durability OK
- "Poro-elastic" Concepts
 - Small proof of concepts tests only in Sweden, Italy and Japan
 - Affects tread vibration and air pumping and horn effect mechanisms

Quiet Pavement USA

- Georgia, Alabama, and Florida
 - Utilize open-graded asphalt for noise and splash control
 - 1-3 dB better than dense graded asphalt
- Arizona
 - Rubberized asphalt pavement extensive investigation ongoing
- California
 - Sacramento rubberized highway (3-4 dB)
 - Open-graded asphalt
 - Advanced PCC
- Wisconsin
 - PCC tining reduced annoyance

SQDH Research

- Measurement and Evaluation of Roadside Noise Generated by Transit Buses, E. Mockensturm, B. Kulakowski; The Pennsylvania State University
- 2. Study of the Performance of Acoustic Barriers for Indiana Toll Roads, L. Mongeau, J.S. Bolton; Purdue University
- 3. Development of Porous, Modified Asphalt Mixes for Noise Control Applications, R. McDaniel, J. Olek; Purdue University
- 4. Fundamentals of Tire/Road Interaction Noise, J. S. Bolton, J. Olek, R. Bernhard; Purdue University

SQDH Research

- 5. Development of Quiet and Durable Porous Portland Cement Concrete Paving Materials, J. Olek, W. J. Weiss; Purdue University
- 6. Concrete Mixtures that Incorporate
 Inclusions to Reduce the Sound
 Generated on Portland Cement
 Pavements, J. Olek, W. J. Weiss; Purdue
 University / B. Magee; University of
 New Hampshire
- 7. Tire/Pavement Interaction Noise
 Generation and Radiation Mechanisms,
 C. Burroughs; The Pennsylvania State
 University

SQDH Research

- 8. Investigation of Novel Acoustic Barrier Concepts, Phase I: Concept Development and Preliminary Evaluation, L. Mongeau, J.S. Bolton; Purdue University
- 9. A Guide for the Construction of Reduced Noise Pavement, R. Bernhard; Purdue Univ. & R. Wayson; Univ. of Central Florida
- 10. Identification of Laboratory Techniques to Optimize Superpave HMA Surface Friction Characteristics, R. McDaniel, NCSC, & B. Coree, Iowa State Univ.

TPTA - Objectives

To understand fundamental generation mechanisms of tire/road interaction noise

- Construct a test apparatus to measure tire and pavement responses due to a rolling tire on a realistic pavement
- Examine tire and pavement
 behavior to determine the impact of
 tire and pavement design
 combinations on noise generation

TPTA - Specs

- Two rolling tires
- Realistic pavement on the exterior of the drum
- Motor rated for 60 hp for braking capability
- Speeds up to 30 mph
- ♦ Loading capacity up to 1000 lbs
- Drum diameter of 12 feet
- ♦ Pavement depths of either 8" or 16"

TPTA - Status

- ◆ Tire/Pavement Test Apparatus (TPTA) was delivered in July, 2001.
- Recent studies of
 - PCC tining and texturing
 - Tire sidewall and treadband designs

TPTA – 30 mph

MECHANICAL ENGINEERING

TPTA Pavement

- Typical PCC samples
- Smooth, textured, and porous samples available
- Asphalt samples this spring

Conclusions

- ♦ Existing solutions 1-4 dB better than traditional pavement of same type:
 - Longitudinal tining on PCC
 - Open-graded or porous asphalt
- ♦ 5-10 dB should be possible when we resolve the challenges of
 - Understanding noise generation
 - Controlling pavement construction
 - Maintaining safety (friction)
 - Maintaining durability

