Algorithm 1 The pseudocode for Evaluate

1: num = 0, push(root, S)
2: DFN[root] = num; LOW[root] = num; ST_SIZE[root] = 1
3: VISITED[root] = true; num = num + 1
4: repeat
5: Vertex v = peek(S)
6: y = next unvisited neighbor of v
7: if y exists then
8: mark y as visited, push(y, S)
9: DFN[y] = num; LOW[y] = DFN[y]; PARENT[y] = v;
10: ST_SIZE[y] = 1; IMPACT[y] = 0
11: else
12: pop(S)
13: for all neighbors w of v do
14: if DFN[w] < DFN[v} and PARENT[v] ≠ w then
15: LOW[v] = min(LOW[v], DFN[w])
16: else if PARENT[w] == v then
17: LOW[v] = min(LOW[v], LOW[w])
18: if !COUNTED[w] and (PARENT[v] ≠ w or v is root) then
19: COUNTED[w] = true
21: end if
22: if LOW[w] ≥ DFN[v] and v ≠ root then
23: mark v as an articulation point
25: IMPACT[v] = IMPACT[v] + f(ST_SIZE[w])
26: end if
27: end if
28: end for
29: end if
30: until Stack is empty
31: for each visited and counted vertex v do
32: if v is an articulation point then
33: IMPACT[v] = IMPACT[v] + f(num - CUT_SIZE[v])
34: else
35: IMPACT[v] = IMPACT[v] + f(num - 1)
36: end if
37: end for
38: Maintain the vertex v* with the minimum IMPACT value
39: return v*