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RCS of Corner Reflectors
A corner reflector is a radar target 
constructed by letting a number of planar 
surfaces come together, forming a corner.


Corner reflectors tend to have the 
property that they reflect strongly back 
in the direction of the incident wave.


For this reason, they are also called retro-
reflectors.


One common corner reflector is the 
“corner cube,” used to construct optical 
bicycle reflectors.
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Another Recreational Use...

A typical sailboat 

corner reflector


(hung from mast)

A typical

situation


where they 

are useful!
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Common Corner Reflector Geometries
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Fresnel’s Law of Reflection

θ iθr

“The angle of incidence equals

the angle of reflection.” 

θi = Angle of Incidence

θr = Angle of Reflection

n.b., We assume surface is large compared to a 
wavelength (Ray Optics Approximation)
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Consider a Dihedral Corner Reflector

From the Law of Reflection, simple geometry indicates that a 
ray is reflected back in the direction from which it came.
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Consider a Trihedral Corner Reflector

Thought Experiment: Can you convince

yourself that if the walls of this room

were mirrors, that a laser bean shining

into a corner would be reflected back

in the direction from which it came.

Geometry Exercise: Can you show this

mathematically in 3-D space using 

vectors to represent the rays.

See Ruck et al., Chapter 8, for more on corner reflectors
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Thermal Noise in Microwave Receivers
Thermal motion of charges in any 
conducting or lossy body produces 
fluctuating currents and voltages.


Nyquist (1927) by considering the average 
energy in a resonator in thermal 
equlibrium with its environment.


For a derivation, see any good book on 
Radio Astronomy (e.g., Krauss, Radio 
Astronomy, 1986) or for a brief outline, 
see Minkoff, Signals, Noise and Active 
Sensors, 1992.
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∆Pn =
hf

ehf/kT
− 1

∆f

Using Nyquist’s approach, it can be shown that if an

antenna is pointing at a black body at absolute

temperature T , the power in a band of width ∆f

centered about frequency f , the power out of

the antenna is

Pn(f) =
hf

ehf/kT
− 1

Equivalently, the one-sided power spectral density

(PSD) of the noise is

k = Boltzmann’s constant = 1.38 × 10−23(J/K)
h = Planck’s constant = 6.62 × 10−34 (J-sec)
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∆Pn =
hf

ehf/kT
− 1

∆f

This is independent of antenna gain, as 
long as the antenna sees a source of 
constant temperature.

This would occur if the antenna was in a 
box with walls that were a black body at 
constant temperature T.

This is well approximated if an object of 
temperature T fills the main beam.

Not all sources encountered satisfy this 
(e.g. Radio Astronomy)
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When hf/kT ! 1

Pn(f) =
hf

1 + hf
kT

+ o( hf
kT

) − 1

≈
hf

hf/kT

= kT

Pn(f) =
hf

ehf/kT
− 1
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At microwave frequencies hf ! kT ⇒ hf/kT ! 1, so

Pn(f) = kT

White Noise Approximation
Not a function of frequency

This is where the white noise assumption 
in microwave communications comes from.

This is only a low frequency 

Clearly not true when hf ≈ kT
(Average energy per mode approaches energy per photon)
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At microwave frequencies...
hf/kT ! 1 for T = 300◦K

hf = energy per photon at frequency f

kT = energy per second per hertz
= energy (averge energy per mode)

kT/hf = average number of photons per mode

kT/hf ! 1 ⇒ Central Limit Theorem holds

⇒ Gaussian noise

So we can see where the white Gaussian

Noise model comes from.
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Noise Temperature and Noise Figure
Recall:

T° K

B

H(f)

f

1 Pn

When hf/kT ! 1

Pn(f) =
hf

ehf/kT
− 1

∆Pn =
hf

ehf/kT
− 1

∆f

Pn(f) =
hf

1 + hf
kT

+ o( hf
kT

) − 1
≈

hf

hf/kT
= kT

(true at microwave for T = 300◦ K)
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Assume antenna pointing at object of temperature T .

T° K
Pn

Receiver
Power Gain = G
Bandwidth = B

Assume receiver has bandwidth B and power gain G.

The noise power at the output of the receiver is

Pn = kTGB

where

GB = Gain-Bandwidth Product of the receiver.
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Gain-Bandwidth Product

Generally, the power gain of a receiver is a function

of frequency.

We write the power gain as G(f).

Then the gain-bandwidth product is

GB =

∫
∞

0

G(f) df (Gain-Bandwidth Product)
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0° K
Pn,1

Receiver 1
(noisy)

Noise Temperature
(Characterizing Microwave System Noise)

pointed at a black body of temperature T = 0◦ K.
Receiver 1 is an actual noisy receiver. Its antenna

Assume we can adjust Tn in second scenario until

Pn,1 = Pn,2

We call the TN achieving this the noise temperature
of Receiver 1.

Receiver 2 is a hypothetical noiseless receiver. Its antenna

is pointing at a black body of temperature Tn.

Tn° K
Pn,2

Receiver 2
(noiseless)
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0° K
Pn,1

Receiver 1
(noisy)

Tn° K
Pn,2

Receiver 2
(noiseless)

Pn,1 = Pn,2

When we quote a noise temperature for a 
real receiver, we are referring internal 
receiver noise to a hypothetical external 
noise source.


This is a convenient accounting trick, as it 
allows us to look at all noise contributions 
at the same location—the input to the 
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