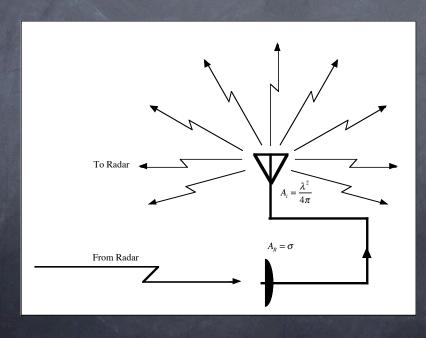


6.2

Target Scattering Characteristics



Assume target has following characteristics:

- (i) As a receive aperture, it has $A_R = \sigma$ (m²);
- (ii) It reradiates all of this received energy isotropically.

Assumed Target Characteristics

- (i) As a receive aperture, it has $A_R = \sigma$ (m²);
- (ii) It reradiates all of this received energy isotropically.

The power received by the target is given by

$$\frac{P_{\sigma}}{P_{T}} = \frac{A\sigma}{\lambda^{2}R^{2}}$$

The fraction of the reradiated power received is

$$\frac{P_R}{P_\sigma} = \frac{A_i A}{\lambda^2 R^2} = \frac{(\lambda^2 / 4\pi) A}{\lambda^2 R^2} = \frac{A}{4\pi R^2}$$

It follows that

$$\frac{P_R}{P_T} = \frac{P_R}{P_\sigma} \cdot \frac{P_\sigma}{P_T} = \frac{A^2 \sigma}{4\pi \lambda^2 R^4}$$

6.5

The Radar Equation

$$\frac{P_R}{P_T} = \frac{A^2 \sigma}{4\pi \lambda^2 R^4}$$

(i)
$$\frac{P_R}{P_T}$$
 proportional to $\frac{1}{R^4}$

(ii)
$$\frac{P_R}{P_T}$$
 proportional to σ

Notes on Radar Equation

- Alternative form using antenna gain(s) instead of effective area can be derived.
- Bistatic version with different transmit and receive ranges and effective areas can be derived (requires generalization of radar cross section.)
- As we will see, radar cross section and geometric cross section can be quite different—don't let this throw you for now.

Radar Targets

- RCS is used to characterize the scattering characteristics of target.
- Defined in terms of hypothetical target defines an equivalence class of targets.
- Is used to describe physical targets that behave nothing like the hypothetical target that defines it. This is OK!

RCS Contributing Factors

- Size of Object
- Shape of Object
- Wavelength of Radiation
- Material(s) Object is Made of
- Orientation w.r.t. Radar

Table 4.1: Typical Values fo the Radar Cross Section of some Common Objects.

	•	

Object	RCS (m ²)	
Small Insect (fly)	10^{-5}	
Large Insect (locust)	10^{-4}	
Medium-Sized Bird	0.001	
Large Bird	0.01	
Small Open Boat	0.02	
Small Missile	0.1	
Man	1	
Small Single-engine Airplane	1	
Small Fighter or Four-Passenger Jet	2	
Helicopter	2	
Bicycle	2	
Small Pleasure Boat (20–30 ft.)	2	
Large Tactical Fighter Airplane	6	
Cabin Cruiser (40–50 ft.)	10	
Large Bomber or Commercial Airliner	40	
Jumbo Jet	100	
Automobile	100	
Pickup Truck	200	
Ship	3000-1000000	

6.10

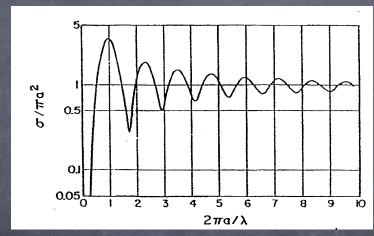
For real targets, we almost never know the value of the RCS a priori.

We may know a range of values that σ may lie in:

$$\sigma_L \le \sigma \le \sigma_U$$

Sometimes it makes sense to treat σ as a random variable:

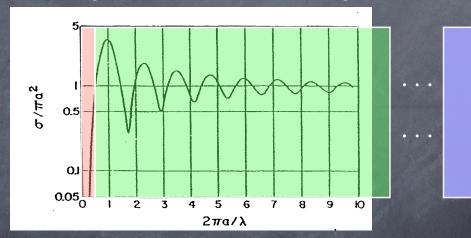
$$\sigma(\omega)$$
 defined on $(\mathcal{S}, \mathcal{F}, P)$


Sometimes it makes sense to treat σ as a random process:

$$\sigma(t,\omega)$$
 defined on $(\mathcal{S},\mathcal{F},P)$

6.11

RCS of a Sphere


A strong function of wavelength

The Optical Region, where $2\pi a/\lambda > 20$

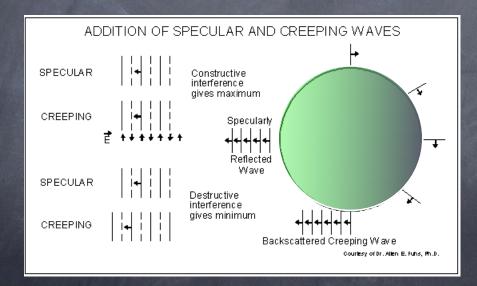
A strong function of wavelength

The Rayleigh Region, where $2\pi a/\lambda < 0.4$ The Mie Region, where $0.4 < 2\pi a/\lambda < 20$ The Optical Region, where $2\pi a/\lambda > 20$

RCS of a (Perfectly Conducting) Sphere

In the Optical Region, $\sigma \approx \pi a^2$. This is the geometric cross section of a sphere.

Because a sphere is invariant to changes in its orientation, it makes a convenient calibration target.


In the Rayleigh Region, where $\lambda >> a$,

$$\sigma \approx 9\pi a^2 \left(\frac{2\pi a}{\lambda}\right)^4 = \pi a^2 \left[9(ka)^4\right]$$

6.14

RCS of a (Perfectly Conducting) Sphere

In the Mie Region, where $\lambda \approx a$, "creeping waves" travel around the sphere and interfere with the specular reflection:

This gives rise to the "resonance" seen in this region.