

- $>$ Friis equation derived using scalar diffraction—scalar wave equation describes propagation.
- $>$ Valid in other situations descibed by scalar wave equation:
- $>$ Acoustic radiation (in non-viscous media)
- $>$ Polarized light

- Uniformly illuminated aperture focuses objects at infinity.
- $>$ If we look at an antenna from close in, the edges appear farther away than the

This bad situation occurs when
\n
$$
\frac{D/2}{P/2}
$$
\n
$$
R + \lambda/2
$$
\nThis bad situation occurs when
\n
$$
\left(R + \frac{\lambda}{2}\right)^2 = \left(\frac{D}{2}\right)^2 + R^2
$$
\n
$$
\Rightarrow R = \frac{D^2 - \lambda^2}{4\lambda} \approx \frac{D^2}{4\lambda}, \text{ because } D \gg \lambda
$$

Thus we want

$$
R \gg \frac{D^2}{4\lambda}
$$

Maybe 10 times bigger—or more!

A common approach is to consider a point to be in the far-field when the center and edges of the aperture differ by no more than $\lambda/8$

If our calculations show

 P_R $\overline{P_T}$ $= \frac{A_T A_R}{2 \Omega R^2}$ $\frac{ATAR}{\lambda^2 R^2} > 1 \Rightarrow$ Something is wrong!

When such a situation occurs, a large fraction of the transmitted power is received by the receive aperture:

"Hertzian Cable"

This will not occur when R is such that the antennas are in each others far field.

Effective Area of an Antenna

- $>$ In deriving the Friis equation, we have assumed uniform aperture illumination.
- $>$ Practically, this is hard to achieve.
- When we do not have uniform illumination, the effective size of the aperture is smaller than the geometric area.

 $>$ How much smaller?

Suppose $E(x, y)$ is the field over the aperture (i.e., $E(x, y) \neq E_0$.)

The power P_T flowing out over the aperture is

$$
P_T = \frac{1}{Z_{FS}} \int \int_{A_{TG}} |E(x, y)|^2 dx dy,
$$

The electric field at the receive aperture is

$$
E_R = B \int \int_{A_{TG}} E(x, y) \, dx \, dy
$$
\n
$$
\uparrow
$$
\n
$$
\text{constant}
$$

The total power at the receive aperture is

$$
P_R = \frac{|E_R|^2}{Z_{FS}} A_R = \frac{A_R B^2}{Z_{FS}} \left| \int \int_{A_{TG}} E(x, y) dx dy \right|^2
$$

Thus we have

$$
\frac{P_R}{P_T} = B^2 A_R \frac{\left| \int \int_{A_{TG}} E(x, y) \, dx \, dy \right|^2}{\int \int_{A_{TG}} |E(x, y)|^2 \, dx \, dy}
$$

Now define the spatial average field across \mathcal{A}_{TG}

$$
\overline{E} = \frac{1}{A_{TG}} \int \int_{A_{TG}} E(x, y) \, dx \, dy
$$

and the spatial mean-square field across the aperture as

$$
\overline{|E|^2} = \frac{1}{A_{TG}} \int \int_{A_{TG}} |E(x, y)|^2 dx dy
$$

Hence

$$
\frac{P_R}{P_T} = B^2 A_R A_{TG} \left[\frac{|\overline{E}|^2}{|\overline{E|^2}} \right]
$$

To find B in

$$
\frac{P_R}{P_T} = B^2 A_R A_{TG} \left[\frac{|\overline{E}|^2}{|\overline{E}|^2} \right]
$$

we note that when $E(x, y) = E_0$ (uniform illum. $\Rightarrow A_{TG} = A_T$)

$$
|\overline{E}|^2 = |\overline{E}|^2 \qquad \Rightarrow \qquad B^2 = \frac{P_R}{P_T} \cdot \frac{1}{A_T A_R}
$$

Thus A_T in the Friis equation is

Effective Area

- Even antennas that don't have well defined apertures can be assigned effective areas for use in the Friis equation.
- **EXT** Here we can use EM field theory to compute the field strength due to the transmit antenna at the receive aperture:

$$
A_T = \frac{\lambda^2 R^2}{A_R} \cdot \frac{P_R}{P_T}
$$

For example, for a half-wave dipole

 $A_T \approx 0.130\lambda^2$

$$
A_i = \frac{\lambda^2}{4\pi}
$$

Note that the usual requirements for
aperture size are not met. aperture size are not met.

However, it works in the Friis equation.

For this reason we will find it useful.

The gain of A_T over A_i is

$$
G = \frac{(P_R/P_T)_T}{(P_R/P_T)_i} = \frac{(P_R)_T}{(P_R)_i} = \frac{4\pi A_T}{\lambda^2}
$$

So in general, the relation between the effective area A and gain G of antenna is

Gain is often expressed in dB:

$$
G(\text{dB}) = 10 \log_{10} G \quad (\text{dB})
$$

Antenna Gain...

By reciprocity, the gain of an antenna on transmit is equal to the gain of an antenna on receive.

The Friis Equation can be written in terms of antenna gains:

Antenna Directivity and Beam Pattern

For a uniformly illuminated aperture

$$
G_T = \frac{4\pi A_{TG}}{\lambda^2}
$$

If A_{TG} is not uniformly illuminated

$$
G_T = \frac{4\pi A_T}{\lambda^2} = \frac{4\pi A_{TG}}{\lambda^2} \eta
$$

If we go off axis by θ (azimuth) and ϕ (elevation) the gain is not as large as in direction $(\theta, \phi) = (0, 0)$. It can be written as

$$
G(\theta,\phi) = \frac{4\pi A_{\text{TG}}}{\lambda^2} \underbrace{\left(f(\theta,\phi)\right)} \longleftarrow \text{Efficiency?}
$$

Looking back at the aperture off-axis we see a "virtual aperture" with a phase shift across it.

In general, at angle (θ, ϕ) we have

$$
G(\theta, \phi) = \frac{4\pi A_{\text{TG}}}{\lambda^2} \cdot f(\theta, \phi)
$$

 $f(\theta, \phi) = \left(\frac{1}{A_{\text{TG}}}\right)$ $\overline{}$ # \overline{a} $\int\int_{A_{\rm TG}} \exp\left\{i\frac{2\pi}{\lambda}[x\sin\theta+y\sin\phi]\right\}E(x,y)\,dx\,dy$ l \overline{a} $\overline{2}$ $\int \int_{A_{\text{TG}}} \left| E(x, y) \right|^2 dx dy$.

$$
f(\theta, \phi) = \left(\frac{1}{A_{\text{TG}}}\right) \frac{\left| \int \int_{A_{\text{TG}}} \exp \left\{ i \frac{2\pi}{\lambda} [x \sin \theta + y \sin \phi] \right\} E(x, y) dx dy \right|^2}{\int \int_{A_{\text{TG}}} |E(x, y)|^2 dx dy}
$$

This expression acts like an efficiency, taking on values between 0 and 1.
If provides a measure of the directivity of the antenna for transmitting and receiving power.
We call this quantity the beam pattern of the antenna.

Given that power P_T is transmitted, what is the received power P_R ?

To answer this, we must understand the target's behavior.

