

Order Statistics 42.2 Given i.i.d. RVs X, ..., Xn, we can order these as $X_{(1)} \leq X_{(2)} \leq X_{(3)} \leq \cdots \leq X_{(n)}$ $\begin{array}{c} X_{1} \longrightarrow \\ X_{2} \longrightarrow \\ \vdots \\ \vdots \\ X_{n} \longrightarrow \end{array} \xrightarrow{\text{Sort}} \begin{array}{c} \longrightarrow \\ X_{(1)} \\ \longrightarrow \\ X_{(2)} \\ \vdots \\ \vdots \\ X_{(n)} \end{array}$ we call this ordering of the RVs X1, ..., Xn The order statistics of X,,..., Xn. 42.3 Suppose X, J..., Xn are i.i.d. RVs with pdf fx (x) and Fx (x). Assume the Xx are absolutely continuous RVs. what is the p. d.f. of the k-th order statistic X(k) 7 Let's call the pdf of X(K) f, (x). We want to find fr (x).

For any of the n i.i.d. RVs 42.6 ×, ..., ×, . $\mathcal{P}(A_1) = \mathcal{P}(\{ \{ \} \} \leq \times \}) = F_{\mathcal{N}}(x)$ $P(A_2) = P(\frac{2}{2} \times 4 \times \frac{2}{3} \times 4 \times \frac{3}{3}) = f_{*}(x) \cdot dx$ $P(A_3) = P(\{x > x + dx\}) = 1 - F_x(x + dx)$ $\simeq 1 - F_{x}(x)$, $F_{x}(x)$ is continuous For the n i.i.d. RVs X, ..., X, 42.7 We know that BK oncurs iff 1. A, occurs K-1 times, Z. Az occurs once, 3. Az occurs n-k times. We can compute the probability of Br using the multinomial distribution for 3 events.

 $P(B_{k}) = \frac{n!}{(k-1)! 1! (n-k)!} P(A_{k}) P(A_{2}) P(A_{3}) + \frac{12.8}{2}$ $= \frac{n!}{(k-1)!(n-k)!} \left[F_{*}(x) \right]^{k-1} \left[f_{*}(x) dx \right] \left[I - F_{*}(x) \right]^{n-k}$ = f(x) dx $f_{k}(x) = \frac{n!}{(k-1)!(n-k)!} F_{k}^{k-1} [1 - F_{k}(x)] f_{k}(x)$ When n is odd, we can set $k = \frac{n+1}{2}$, 42.9 and we get the order statistic called the sample median $X_{(\frac{n+1}{2})}$ of X_{1}, \ldots, X_{n} . Equal numbers of RVs lie above and below the sample median. Order statistics are used in (1) Median Filters (2) Order Statistic Filters (3) OS CFAR Processors

Example: i.i.d Cauchy Random Variables $f_{\mathbf{x}}(\mathbf{x}) = f_{\mathbf{y}_n}(\mathbf{x}) = \frac{1}{\mathrm{Tr}(1+\mathbf{x}^2)}, \quad \forall_n = \frac{1}{n} \sum_{j=1}^n \mathbf{x}_j$ 42. D $S_{y_n}(\gamma) = \frac{1}{\pi(1+\chi^2)} \quad \text{for all } n = 1, 2, 3, \dots \quad \text{Computing The}$ Sourple mean is use less. $\int_{1.0}^{(23)} \mathcal{L} \mathcal{L} \mathcal{L}^{(23)}$ But order Statistics Converge in deusity to the median $\frac{f_{(5)}^{(9)}(x)}{-f_{(5)}^{(5)}(x)}$ 0.8 0.4 0.2 42.11 Order-Statistic CFAR (OS-CFAR) Cell Under Test (CUT) Square-Law Input Signal $X_{N/2}$ X_1 Detector Comparator Detection Decision Sort and select k-th cell, $X_{(k)}$. In OS-CFAR, the reference noise samples X_1, \ldots, X_N are sorted from smallest to largest and designated $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(N)}.$ The k-th order statistic $X_{(k)}$ —or some scaled version of it—can then be used as the mean power estimate. While the median seems like a logical choice, selecting values of k in the area of 3N/4 to 4N/5 have been shown to work well.*

^{*} See: Michael F. Rimbert, Constant False Alarm Rate Detection Techniques Based on Empirical Distribution Function Statistics, Ph.D Thesis, School of Electrical and Computer Engineering, Purdue University, August 2005.

 OS-CFAR is robust to outliers deviating from a set of homogeneous i.i.d. samples in the reference window because order statistics — especially centra order statistics near the median — are robust to outliers. This is in fact why statistician John W. Tukey developed and advocated statistical estimation techniques based on them. More general results from the theory of <i>order statistic filters</i> may also yield interesting new CFAR techniques. How well do they behave compared to optimal CA CFAR when the noise reference samples are i.i.d. Statistic of <i>F(x)</i>. If we form the order statistics <i>X</i>(1) ≤ <i>X</i>(2) ≤ ··· ≤ <i>X</i>(<i>N</i>), it can be shown that (See Papoulis, Ch. 8) the pdf of <i>X</i>(<i>k</i>) is <i>f</i>(<i>k</i>(<i>x</i>)) = <i>n</i>! <i>(F(x))</i>^{<i>k</i>-1}<i>f</i>(<i>x</i>)[1 − <i>F(x</i>)]^{<i>N</i>−<i>k</i>} 	42.12	Behavior of OS-CFAR
 This is in fact why statistician John W. Tukey developed and advocated statistical estimation techniques based on them. More general results from the theory of <i>order statistic filters</i> may also yield interesting new CFAR techniques. How well do they behave compared to optimal CA CFAR when the noise reference samples are i.i.d. Statistic of <i>CFAR</i> when the noise reference samples are i.i.d. Statistic or <i>Analysis of OS-CFAR</i> Assume that <i>X</i>₁,,<i>X</i>_N are i.i.d. samples from a common pdf <i>f</i>(<i>x</i> corresponding cdf <i>F</i>(<i>x</i>). If we form the order statistics <i>X</i>₍₁₎ ≤ <i>X</i>₍₂₎ ≤ ··· ≤ <i>X</i>_(N), it can be shown that (See Papoulis, Ch. 8) the pdf of <i>X</i>_(k) is <i>f</i>_k(<i>x</i>) = <i>n</i>! <i>I</i>(<i>x</i>) = <i>I</i>(<i>x</i>) = <i>I</i>(<i>x</i>	1	• OS-CFAR is robust to outliers deviating from a set of homogeneous i.i.d. samples in the reference window because order statistics—especially central order statistics near the median— are robust to outliers.
 More general results from the theory of <i>order</i> statistic filters may also yield interesting new CFAR techniques. How well do they behave compared to optimal CA CFAR when the noise reference samples are i.i.d. S Analysis of OS-CFAR Assume that X ₁ ,,X _N are i.i.d. samples from a common pdf f(x corresponding cdf F(x). If we form the order statistics X ₍₁₎ ≤ X ₍₂₎ ≤ ··· ≤ X _(N) , it can be shown that (See Papoulis, Ch. 8) the pdf of X _(k) is f _k (x) = n!/(1-1)![F(x)] ^{k-1} f(x)[1-F(x)] ^{N-k}		• This is in fact why statistician John W. Tukey developed and advocated statistical estimation techniques based on them.
• How well do they behave compared to optimal CA CFAR when the noise reference samples are i.i.d. $\frac{\text{Analysis of OS-CFAR}}{\text{Assume that } X_1, \dots, X_N \text{ are i.i.d. samples from a common pdf } f(x \text{ corresponding cdf } F(x). If we form the order statistics}$ $X_{(1)} \leq X_{(2)} \leq \dots \leq X_{(N)},$ it can be shown that (See Papoulis, Ch. 8) the pdf of $X_{(k)}$ is $f_k(x) = \frac{n!}{(l-1)!((-1)!)} [F(x)]^{k-1} f(x)[1-F(x)]^{N-k}$		• More general results from the theory of <i>order</i> <i>statistic filters</i> may also yield interesting new CFAR techniques.
Assume that X_1, \ldots, X_N are i.i.d. samples from a common pdf $f(x)$ corresponding cdf $F(x)$. If we form the order statistics $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(N)},$ it can be shown that (See Papoulis, Ch. 8) the pdf of $X_{(k)}$ is $f_k(x) = \frac{n!}{(1-1)!(1-1)!} [F(x)]^{k-1} f(x) [1-F(x)]^{N-k}$		• How well do they behave compared to optimal CA- CFAR when the noise reference samples are i.i.d. ?
Assume that X_1, \ldots, X_N are i.i.d. samples from a common pdf $f(x)$ corresponding cdf $F(x)$. If we form the order statistics $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(N)},$ it can be shown that (See Papoulis, Ch. 8) the pdf of $X_{(k)}$ is $f_k(x) = \frac{n!}{(l-1)!(r-l)!} [F(x)]^{k-1} f(x) [1-F(x)]^{N-k}$	42.12	Analysis of OS-CFAR
$X_{(1)} \leq X_{(2)} \leq \dots \leq X_{(N)},$ it can be shown that (See Papoulis, Ch. 8) the pdf of $X_{(k)}$ is $f_k(x) = \frac{n!}{(l-1)!(-l)!} [F(x)]^{k-1} f(x) [1-F(x)]^{N-k}$) having	Assume that X_1, \ldots, X_N are i.i.d. samples from a common pdf $f(x)$ corresponding cdf $F(x)$. If we form the order statistics
it can be shown that (See Papoulis, Ch. 8) the pdf of $X_{(k)}$ is $f_k(x) = \frac{n!}{(l-1)!(k-1)!} [F(x)]^{k-1} f(x) [1-F(x)]^{N-k}$		$X_{(1)} \le X_{(2)} \le \dots \le X_{(N)},$
$f_k(x) = \frac{n!}{(l-1)!(-l)!} [F(x)]^{k-1} f(x) [1-F(x)]^{N-k}$		it can be shown that (See Papoulis, Ch. 8) the pdf of $X_{(k)}$ is
(k-1)!(n-k)!		$f_k(x) = \frac{n!}{(k-1)!(n-k)!} [F(x)]^{k-1} f(x) [1-F(x)]^{N-k}$
$= k \binom{n}{k} [F(x)]^{k-1} f(x) [1 - F(x)]^{N-k}.$		$= k \binom{n}{k} [F(x)]^{k-1} f(x) [1 - F(x)]^{N-k}.$
* We just showed this.		
		* We just showed this.

Now if the X_i are i.i.d. with pdf

$$f(x) = \frac{1}{\mu} e^{-x/\mu} \cdot 1_{[0,\infty)}(x),$$

as we have been assuming under H_0 , then this becomes

$$f_k(x) = \frac{n!}{(k-1)!(n-k)!} [1 - e^{-x/\mu}]^{k-1} \cdot \frac{1}{\mu} e^{-x/\mu} \cdot \mathbb{1}_{[0,\infty)}(x) \cdot [e^{-y/\mu}]^{N-k} \cdot \mathbb{1}_{[0,\infty)}(x)$$
$$= \frac{k}{\mu} \binom{n}{k} [e^{-x/\mu}]^{N-k+1} [1 - e^{-x/\mu}]^{k-1} \cdot \mathbb{1}_{[0,\infty)}(x).$$

Thus the pdf of the OS-CFAR statistic ${\cal Z}=X_{(k)}$ is Equivalently, the p.d.f. of ${\cal Z}$ is given by

$$f_Z(z) = \frac{k}{\sigma^2} \binom{n}{k} [e^{-z/\mu}]^{N-k+1} [1 - e^{-z/\mu}]^{k-1} \cdot 1_{[0,\infty)}(z).$$

Thus the probability of false alarm for OS-CFAR is given by

$$\alpha = E_{Z} [P[Y > TZ|H_{0}]]$$

$$= E_{Z} [exp\{-TZ/\mu\}]$$

$$= \frac{k}{\mu} {N \choose k} \int_{0}^{\infty} e^{(-T+N-k+1)z/\mu} (1 - e^{-z/\mu})^{k-1} dz$$

$$= k {N \choose k} \int_{0}^{\infty} e^{(-T+N-k+1)z/\mu} (1 - e^{-z/\mu})^{k-1} dz$$

$$= k {N \choose k} \int_{0}^{\infty} e^{(-T+N-k+1)z/\mu} (1 - e^{-z/\mu})^{k-1} dz$$

$$= k {N \choose k} \int_{0}^{\infty} e^{(-T+N-k+1)z/\mu} (1 - e^{-z/\mu})^{k-1} dz$$

$$= k {N \choose k} \int_{0}^{\infty} e^{(-T+N-k+1)z/\mu} (1 - e^{-z/\mu})^{k-1} dz$$

$$= k {N \choose k} \int_{0}^{\infty} e^{(-T+N-k+1)z/\mu} (1 - e^{-z/\mu})^{k-1} dz$$

$$= k {N \choose k} \int_{0}^{\infty} e^{(-T+N-k+1)z/\mu} (1 - e^{-z/\mu})^{k-1} dz$$

$$= k {N \choose k} \int_{0}^{\infty} e^{(-T+N-k+1)z/\mu} (1 - e^{-z/\mu})^{k-1} dz$$

$$= k {N \choose k} \int_{0}^{\infty} e^{(-T+N-k+1)z/\mu} (1 - e^{-z/\mu})^{k-1} dz$$

$$= k {N \choose k} \int_{0}^{\infty} e^{(-T+N-k+1)z/\mu} (1 - e^{-z/\mu})^{k-1} dz$$

$$= k {N \choose k} \int_{0}^{\infty} e^{(-T+N-k+1)z/\mu} (1 - e^{-z/\mu})^{k-1} dz$$

$$= k {N \choose k} \int_{0}^{\infty} e^{(-T+N-k+1)z/\mu} (1 - e^{-z/\mu})^{k-1} dz$$

$$= k {N \choose k} \int_{0}^{\infty} e^{(-T+N-k+1)z/\mu} (1 - e^{-z/\mu})^{k-1} dz$$

$$= k {N \choose k} \int_{0}^{\infty} e^{(-T+N-k+1)z/\mu} (1 - e^{-z/\mu})^{k-1} dz$$

$$= k {N \choose k} \int_{0}^{\infty} e^{(-T+N-k+1)z/\mu} (1 - e^{-z/\mu})^{k-1} dz$$

$$= k {N \choose k} \int_{0}^{\infty} e^{(-T+N-k+1)z/\mu} (1 - e^{-z/\mu})^{k-1} dz$$

$$= k {N \choose k} \int_{0}^{\infty} e^{(-T+N-k+1)z/\mu} (1 - e^{-z/\mu})^{k-1} dz$$

$$= k {N \choose k} \int_{0}^{\infty} e^{(-T+N-k+1)z/\mu} (1 - e^{-z/\mu})^{k-1} dz$$

$$= k {N \choose k} \int_{0}^{\infty} e^{(-T+N-k+1)z/\mu} (1 - e^{-z/\mu})^{k-1} dz$$

$$= k {N \choose k} \int_{0}^{\infty} e^{(-T+N-k+1)z/\mu} (1 - e^{-z/\mu})^{k-1} dz$$

$$= k {N \choose k} \int_{0}^{\infty} e^{(-T+N-k+1)z/\mu} (1 - e^{-z/\mu})^{k-1} dz$$

$$= k {N \choose k} \int_{0}^{\infty} e^{(-T+N-k+1)z/\mu} (1 - e^{-z/\mu})^{k-1} dz$$

$$= k {N \choose k} \int_{0}^{\infty} e^{(-T+N-k+1)z/\mu} (1 - e^{-z/\mu})^{k-1} dz$$

$$= k {N \choose k} \int_{0}^{\infty} e^{(-T+N-k+1)z/\mu} dz$$

$$=$$

Stretch Processing for Low-Complexity Radar Signal Processing

Wideband waveforms using LFM, phase coding or frequency coding are used in radar when high range resolution is needed.

These waveforms are often processed using a digital matched filter.

This requires sampling of the received signal at very high sampling rates (twice the waveform bandwidth.)

Stretch-processing makes use of the distinct structure of LFM waveforms to reduce the required sampling rate.

Stretch Processing allows for high resolution LFM measurements over a restricted range interval with much lower sampling rates than sampling the waveform bandwidth at the Nyquist rate as required by a digital matched filter.

Properly implemented, the range resolution is equivalent to that of the matched filter and the SNR is equivalent to the matched filter response of the LFM waveform.

range of 100 meters.) $\Delta f = k\Delta t = \frac{150 \text{Mhz}}{2.5 \text{ms}} \times \frac{2 \times 400}{3 \times 10^8} = 80 \text{Khz}$ \Rightarrow Sampling Frequency = 2x80 Khz = 160 Khz