

Order Statistics | 42.2 $Given$ *i.i.d.* RVs $X_1, ..., X_n$, we can order these a s $\mathbb{X}_{(1)} \leq \mathbb{X}_{(2)} \leq \mathbb{X}_{(3)} \leq \cdots \leq \mathbb{X}_{(n)}$ $\boldsymbol{\mathsf{X}}$ $\begin{array}{ccc}\nX_1 & \longrightarrow & \searrow & \searrow & \searrow \\
X_2 & \longrightarrow & \searrow & \searrow & \searrow \\
\vdots & \vdots & \vdots & \vdots \\
X_n & \longrightarrow & X_n\n\end{array}$: $X_n \longrightarrow$ $\longrightarrow X_{n}$ we call this ordering of the RUs $x_1,...,x_n$ the order statistics of $X_1, ..., X_n$. $Suppose \ X_{1}, \ldots, X_{n}$ are i.i.d. RVs 42.3 with pdf $f_x(x)$ and $F_x(x)$. Assume the \mathbb{X}_{k} are absolutely continuous RVs. $what + is the$ P df of the k-th order statistic X_{ck} 7 Let's call the pdf of $X_{(k)}$ f_k (x). We want to find $f(x)$.

$f_k(x)$ dX = P{X×X _(k) ≤ x+dx} } 42.4	
a small position number	P(E)
where	$B_k = \{x < X_{(k)} \leq x + dx\}$.
7ke event	B_k occurs iff
(i) k-1 RVs are less from X	
(ii) one RV is in $(X, x + dx)$	
(iii) The remaining $n-kRUs$ take on values greater than X+dx	
(iv) x values greater than X+dx	
Exercise 1.2	
For any of the n RVs X ₁ ,..., X _n = 42.5	
Before the use selected by X	
Define the words	
$A_1 \triangleq \{X \leq X\}$	
$A_2 \triangleq \{X \leq X \leq X + dx\}$	
$A_3 \triangleq \{X > X + dx\}$	
$A_2 \triangleq \{X \leq X \leq X + dx\}$	
$A_3 \triangleq \{X > X + dx\}$	
$A_2 \triangleq \{X \leq X \leq X + dx\}$	
$A_3 \triangleq \{X \leq X + dx\}$	

For any of the n i.i.d. RVs 42.6 $\mathbb{X}_{1}, \ldots, \mathbb{X}_{n}$. $P(A_1) = P(\{X \le x\}) = F(x)$ $P(A_2) = P(\frac{1}{2} \times 1 \times 10^{12} \text{ s}) = f_{*}(x) \cdot dx$ $P(A_3) = P(\{x \times x + dx\}) = 1-F(x+dx)$ \approx $1-F_{\mathbf{x}}(x)$, $F_{\mathbf{x}}(x)$ is continuous For the n i.i.d. RVs $X_1, ..., X_n$ 42.7 We know that B_{κ} occurs iff 1 . A_1 occurs $k-1$ times, $Z.$ A_{Z} occurs once, $-3.$ A_3 occurs $n-k$ times. We can compute the probability of B_k using the multinomial $distri$ bution V for 3 events.

 $P(B_k) = \frac{n!}{(A_k)^k} P(A_k) P(A_k) P(A_k)^{n-k} 42.8$ \overline{a} $\frac{n!}{(k-1)!(n-k)!}\left[\mathsf{F}_{\mathbf{x}}(x)\right]^{k-1}\left[\mathsf{F}_{\mathbf{x}}(x)\,dx\right]\left[1-\mathsf{F}_{\mathbf{x}}(x)\right]^{n-k}$ $=$ \int_K (k) dx $f(x) = \frac{n!}{(k)!!(n-k)!} F_{\mathbf{x}}^{k-1}[-F_{\mathbf{x}}(x)]^{n-k} f_{\mathbf{x}}(x)$ When n is odd, we can set $k=\frac{n+1}{2}$, 42.9 and we get the order statistic called the sample median $X_{(\frac{n+1}{2})}$ of $X_{1},...,X_{n}$ Equal numbers of RVs lie above and below the sample median. Order statistics are used i n (1) Median Filters (2) Order statistic F . Hers (3) OS CFAR Processors

Example:	$i.i.d$ Cardy Random Vartableles	4/2.10
$f_k(x) = f_{\gamma_k}(x) = \frac{1}{\pi(1+x^2)} + \frac{1}{\pi} \sum_{i=1}^{n} x_i$		
$f_{\gamma_k}(y) = \frac{1}{\pi(1+x^2)} + \sum_{i=1}^{n} x_i$	Sample normal is	
$3\pi x + \sum_{i=1}^{n} x_i$	Sample normal is	
$3\pi x + \sum_{i=1}^{n} x_i$	Sample normal is	
$3\pi x + \sum_{i=1}^{n} x_i$	Sample normal is	
$3\pi x + \sum_{i=1}^{n} x_i$	Step 11	
$4\pi x + \sum_{i=1}^{n} x_i$	Step 22	
$4\pi x + \sum_{i=1}^{n} x_i$	Step 32	
$4\pi x + \sum_{i=1}^{n} x_i$	Step 42	
$4\pi x + \sum_{i=1}^{n} x_i$	Step 52	
$4\pi x + \sum_{i=1}^{n} x_i$	Step 63	
$4\pi x + \sum_{i=1}^{n} x_i$	Step 64	
$4\pi x + \sum_{i=1}^{n} x_i$	Step 65	
$4\pi x + \sum_{i=1}^{n} x_i$	Step 66	
$4\pi x + \sum_{i=1}^{n} x_i$	Step 67	
$4\pi x + \sum_{i=1}^{n$		

 $\mathcal{F}_\mathcal{A}$ is typical OS-CFAR processor. There are only two significant processor. There are only two significant processor.

42.14

Now if the X_i are i.i.d. with pdf

$$
f(x) = \frac{1}{\mu} e^{-x/\mu} \cdot 1_{[0,\infty)}(x),
$$

as we have been assuming under H_0 , then this becomes

$$
f_k(x) = \frac{n!}{(k-1)!(n-k)!} [1 - e^{-x/\mu}]^{k-1} \cdot \frac{1}{\mu} e^{-x/\mu} \cdot 1_{[0,\infty)}(x) \cdot [e^{-y/\mu}]^{N-k} \cdot 1_{[0,\infty)}(x)
$$

$$
= \frac{k}{\mu} {n \choose k} [e^{-x/\mu}]^{N-k+1} [1 - e^{-x/\mu}]^{k-1} \cdot 1_{[0,\infty)}(x).
$$

Thus the pdf of the OS-CFAR statistic $Z = X_{(k)}$ is Equivalently, the p.d.f. of *Z* is given by

$$
f_Z(z) = \frac{k}{\sigma^2} {n \choose k} [e^{-z/\mu}]^{N-k+1} [1 - e^{-z/\mu}]^{k-1} \cdot 1_{[0,\infty)}(z).
$$

Thus the probability of false alarm for OS-CFAR is given by
\n
$$
\alpha = E_Z[P[Y > TZ|H_0]]
$$
\n
$$
= E_Z[\exp{-TZ/\mu}]
$$
\n
$$
= \frac{k}{\mu} {N \choose k} \int_0^\infty e^{(-T+N-k+1)z/\mu} (1 - e^{-z/\mu})^{k-1} dz
$$
\n
$$
= k {N \choose k} \frac{(k-1)!(T+N-k)!}{(T+N)!}
$$
\n
$$
= \prod_{i=0}^{k-1} \left(\frac{N-i}{N-i+T} \right).
$$
\nSimilarly, we can derive the probability of detection as
\n
$$
P_D = E_Z[P[Y > TZ|H_1]]
$$
\n
$$
= E_Z[\exp(-TZ/\mu(1+S))]
$$
\n
$$
= \prod_{i=0}^{k-1} \left(\frac{N-i}{N-i+T/(1+S)} \right).
$$

42.24

Stretch Processing for Low-Complexity Radar Signal Processing

Wideband waveforms using LFM, phase coding or frequency coding are used in radar when high range resolution is needed.

These waveforms are often processed using a digital matched filter.

This requires sampling of the received signal at very high sampling rates (twice the waveform bandwidth.)

Stretch-processing makes use of the distinct structure of LFM waveforms to reduce the required sampling rate.

Stretch Processing allows for high resolution LFM measurements over a restricted range interval with much lower sampling rates than sampling the waveform bandwidth at the Nyquist rate as required by a digital matched filter.

Properly implemented, the range resolution is equivalent to that of the matched filter and the SNR is equivalent to the matched filter response of the LFM waveform.

