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• In OS-CFAR, the average noise power in a region is 
estimated  using an order statistic, or ranked sample 
of the noise power samples in the reference window.

• For example, we might use the sample median 
instead of the sample mean to estimate the average 
noise power.

• While an order statistic estimate is not the 
maximum likelihood estimate if the samples are 
independent and statistically homogeneous (i.i.d.), 
order statistics (e.g., the sample median) are much 
more robust to deviations from this ideal.

Order-Statistic CFAR (OS-CFAR)
Herman Rohling, “Radar CFAR Thresholding in Clutter and Multiple Target Situations,” 
IEEE Transactions on Aerospace and Electronic Systems, vol. 19, pp. 608–621, 1983.
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Fig. 4.1. Order-Statistic CFAR Processor.

[13] made the observation that threshold determination in OS-CFAR is similar to

modified median filtering [21]. In that respect, OS-CFAR processing shares common

traits with stack filtering [22] as well.

4.1 OS-CFAR System Description

Fig. 4.1 shows a typical OS-CFAR processor. There are only two significant

di�erences between the OS-CFAR processor and the CA-CFAR processor. First,

the clutter power estimate Z is made from the k-th order statistic by sorting the

observations in the reference window in ascending order, and selecting the k-th one:

Z = X(k). (4.1)

The rank of the order statistic to be used is determined in advance. It can be

any value 1 � k � N , as is typically chosen to maximize detection performance.

Rohling [1] suggests a value of k near 3N/4. Analysis presented in chapter 6 suggests

that a value of k near 4N/5, in general, optimizes detection performance.

The second di�erence between OS-CFAR and CA-CFAR is the method with

which the threshold scaling factor T is selected, required by the use of a di�erent

clutter power estimator. In CA-CFAR, T is a function of the reference window size

In OS-CFAR, the reference noise samples X1, . . . , XN are sorted from smallest
to largest and designated

X(1) ⇥ X(2) ⇥ · · · ⇥ X(N).

The k-th order statistic X(k)—or some scaled version of it—can then be used
as the mean power estimate.

* See: Michael F. Rimbert, Constant False Alarm Rate Detection Techniques Based on Empirical Distribution Function Statistics, Ph.D Thesis,
           School of Electrical and Computer Engineering, Purdue University, August 2005.

While the median seems like a logical choice, selecting values of k in the area of
3N/4 to 4N/5 have been shown to work well.�
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Behavior of OS-CFAR
• OS-CFAR is robust to outliers deviating from a set 

of homogeneous i.i.d. samples in the reference 
window because order statistics—especially central 
order statistics near the median— are robust to 
outliers.

• This is in fact why statistician John W. Tukey 
developed and advocated statistical estimation 
techniques based on them. 

• More general results from the theory of order 
statistic filters  may also yield interesting new 
CFAR techniques.

• How well do they behave compared to optimal CA-
CFAR when the noise reference samples are i.i.d. ?

4 2 . 1 2

Analysis of OS-CFAR

Assume that X1, . . . , XN are i.i.d. samples from a common pdf f(x) having
corresponding cdf F (x). If we form the order statistics

X(1) ⇤ X(2) ⇤ · · · ⇤ X(N),

it can be shown that (See Papoulis, Ch. 8) the pdf of X(k) is

fk(x) =
n!

(k � 1)!(n� k)!
[F (x)]k�1f(x)[1� F (x)]N�k

= k

�
n

k

⇥
[F (x)]k�1f(x)[1� F (x)]N�k.
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Now if the Xi are i.i.d. with pdf

f(x) =
1
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Thus the pdf of the OS-CFAR statistic Z = X(k) is Equivalently, the p.d.f. of
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Thus the probability of false alarm for OS-CFAR is given by

� = EZ [P [Y > TZ|H0]]
= EZ [exp{�TZ/µ}]

=
k

µ
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N
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Similarly, we can derive the probability of detection as

PD = EZ [P [Y > TZ|H1]}
= EZ [exp(�TZ/µ(1 + S))}

=
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.
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OS-CFAR, Pfa = 1e-06
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Fig. 4.3. PD as a function of N and SNR for desired PFA = 1� 10�6.

Table 4.1
Threshold Scaling Factor, N = 8, Pfa = 0.5.

k T ADT

1 8.000000 1.000000

2 3.094810 0.828967

3 1.797094 0.780880

4 1.195722 0.758714

5 0.843966 0.746508

6 0.607335 0.739648

7 0.429121 0.737169

8 0.273518 0.743384

k⇥ = 7
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In[1]:=osPfa[n_,k_,t_]:=Module[{i}, 
    Product[(n-i)/(n-i+t),{i,0,k-1}]]

In[2]:=osPd[n_,k_,t_,s_]:=Module[{i}, 
    Product[(n-i)/(n-i+t/(1+s)),{i,0,k-1}]]

In[3]:=findOS[n_,quantile_]:=Module[{}, Round[n*quantile]]

In[4]:=findT[n_,k_,pfa_]:=Module[{sol,r},
    sol=FindRoot[osPfa[n,k,r]==0.000001,{r,1}];
    r/.sol]

In[5]:=caPd[n_,pfa_,s_]:=Module[{}, ((1+s)/(pfa^(-1/n)+s))^n]

Mathematica Code to Generate Plots
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n=16
k=findOS[n,4/5]
Out[7]=13
t=findT[n,k,0.000001]
Out[8]=16.9527

LogPlot[{0.000001^(1/(1 + s)), caPd[n, 0.000001, s], osPd[n, 
    k, t, s]}, {s, 0, 20}]

A Typical Run
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OS-CFAR/CA-CFAR Comparison ( N = 24, k = 19, α = 10^(-6) )
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OS-CFAR/CA-CFAR Comparison ( N = 5, k = 4, α = 10^(-6) )
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OS-CFAR/CA-CFAR Comparison ( N = 10, k = 8, α = 10^(-6) )
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OS-CFAR/CA-CFAR Comparison ( N = 16, k = 13, α = 10^(-6) )
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Table 3.1
CFAR Processor Performance Comparison

Processor
Problem

CA-CFAR GO-CFAR SO-CFAR OS-CFAR

Clutter Edges Poor Good Poor Good

Interfering Targets Poor Poor Good Good

better able to resolve closely spaced targets, but su�ers from higher false-alarm rates

at clutter edges. Order-Statistic CFAR, on the other hand, has been shown to be

robust in both the presence of statistical outliers (interfering targets) and clutter

edges [1], and is the subject of chapter 4. This behavior is summarized in Table 3.1.
Figure from: Michael F. Rimbert, Constant False Alarm Rate Detection Techniques Based on Empirical Distribution Function Statistics, Ph.D Thesis,
                     School of Electrical and Computer Engineering, Purdue University, August 2005.
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Stretch Processing for Low-Complexity 
Radar Signal Processing

Wideband waveforms using LFM, phase coding or frequency coding are used in 
radar when high range resolution is needed.

These waveforms are often processed using a digital matched filter.

This requires sampling of the received signal at very high sampling rates (twice 
the waveform bandwidth.)

Stretch-processing makes use of the distinct structure of LFM waveforms to 
reduce the required sampling rate.

Stretch Processing allows for high resolution LFM measurements over a 
restricted range interval with much lower sampling rates than sampling the 
waveform bandwidth at the Nyquist rate as required by a digital matched filter.

Properly implemented, the range resolution is equivalent to that of the matched 
filter and the SNR is equivalent to the matched filter response of the LFM 
waveform.

42.24

The Basic Idea of Stretch Processing
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Stretch Processing can be Modified for Additional Flexibility
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Automotive Radar Example (Rohling)
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