Session 36

36.1

Phase-Coded Waveforms

If for a coded waveform

$$s(t) = \frac{1}{\sqrt{NT}} \sum_{n=0}^{N-1} p(t - nT) \exp\{i2\pi d_n t/T\} \exp\{j\phi_n\},\$$

where

$$p(t) = 1_{[0,T]}(t),$$

we take

$$d_0 = d_1 = d_2 = \dots = d_{N-1} = 0,$$

we get

$$s(t) = \frac{1}{\sqrt{NT}} \sum_{n=0}^{N-1} p(t - nT) \exp\{j\phi_n\}.$$

Such a signal is called a phase-coded waveform.

Such a waveform is characterized by the set of phases

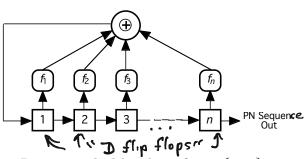
$$\{\phi_0, \phi_1, \phi_2, \dots, \phi_{N-1}\}.$$

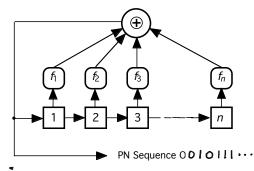
- There are a number of interesting Phase-Coded Waveforms. We will look at two:
 - Maximal Length Linear Feedback Shift Register (LFSR) sequences
 - Complementary Sequences

Maximum Length Linear Feedback Shift Register (LSRS) Sequences

Key references:

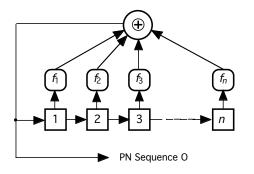
- 1. Solomon W. Golomb, *Shift Register Sequences*, Revised Edition, Aegian Park Press, 1982.
- 2. Robert J. McEliece, Finite Fields for Computer Scientists and Engineers, Kluwer, 1987.



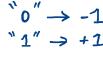


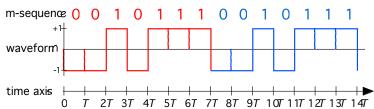
- 1. Registers hold values from $\{0,1\}$.
- 2. Binary arithmetic (modulo-2 arithmetic).
- 3. Correct selection of binary coefficients f_1, \ldots, f_n yields periodic sequences with period $N = 2^n 1$.

Maximum Length Linear Feedback Shift Register (LSRS) Sequences



For n = 3, $f_1 = 0$, $f_2 = f_3 = 1$, we get the following length 7 periodic sequence when the initial state is not all zeros:

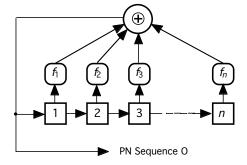




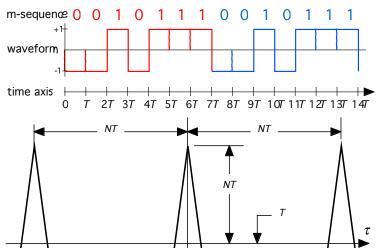
Here we map

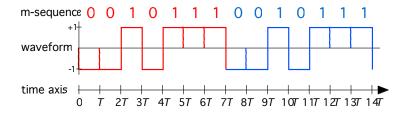
- "0" \rightarrow "-1", or phase $\phi_n = \pi$,
- "1" \rightarrow "+1", or phase $\phi_n = 0$.

Maximum Length Linear Feedback Shift Register (LSRS) Sequences 36.5



For n = 3, $f_1 = 0$, $f_2 = f_3 = 1$, we get the following length 7 periodic sequence when the initial state is not all zeros:

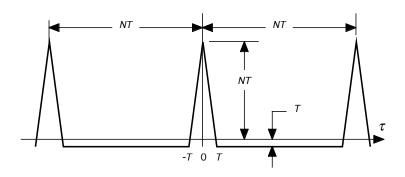


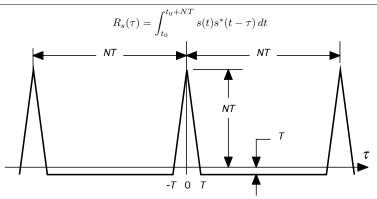


The time-autocorrelation function

$$R_s(\tau) = \int_{t_0}^{t_0 + NT} s(t) s^*(t - \tau) dt$$

appears as follows:





36.7

- With proper selection of *N* and *T*, periodic waveforms for high range resolution CW radar can be achieved.
- These waveforms are used in direct-sequence spread-spectrum systems as "pseudo-noise spreading sequences".
- Can be used for "spread spectrum radar systems".
- Multi-access characteristics of families of these waveforms useful for multistatic radar.
- Useful for Low Probability of Intercept (LPI) radar.
- Doppler ambiguity characteristics can be problematic.

Golay Complementary Sequences

- Complementary Sequences are two (or more)
 phase coded sequences that can be used
 together to yield good range resolution
 results.
- Initially introduced by Marcel Golay for the design of optical spectrometers (see Harwit and Sloane, *Hadamard Transform Optics.*)
- One of the first examples of diversity waveform techniques.