

The Ambiguity Function of Frequency-Coded Waveforms

The ambiguity function of $s(t) = \sum_{l=0}^{N-1} p(t-lT)e^{-j2\pi\Omega_l t}$

$$\chi_s(\tau,\nu) = \chi_s^{(1)}(\tau,\nu) + \chi_s^{(2)}(\tau,\nu),$$

$$\chi_s(\tau,\nu) \stackrel{\triangle}{=} \int_{-\infty}^{\infty} s(t) s^*(t-\tau) e^{+i2\pi y t} dt$$

where

$$\chi_s^{(1)}(\tau,\nu) = \sum_{m=0}^{N-1} e^{-j2\pi m\nu T} e^{-j2\pi\Omega_m \tau} \chi_p(\tau,\nu),$$

and

$$\chi_s^{(2)}(\tau,\nu) = \sum_{m=0}^{N-1} \sum_{n=0,n\neq m}^{N-1} e^{-j\pi(\Omega_m + \Omega_n)\tau} e^{-j\pi(m+n)T} \underbrace{\chi_p(\tau + (m-n)T, \nu + (\Omega_n - \Omega_m))}_{-}$$

n.b. $\beta_s(\tau, \nu) = \chi_s(\tau, -\nu)$.

The sidelobes are given by

34.3

$$\chi_s^{(2)}(\tau,\nu) = \sum_{m=0}^{N-1} \sum_{n=0, n \neq m}^{N-1} e^{-j\pi(\Omega_m + \Omega_n)\tau} e^{-j\pi(m+n)T} \cdot \chi_p(\tau + (m-n)T, \nu + (\Omega_n - \Omega_m))$$

$$\chi_p(\tau + (m-n)T) (\nu + (d_n - d_m)/T)$$

Large contribution when these equal zero!

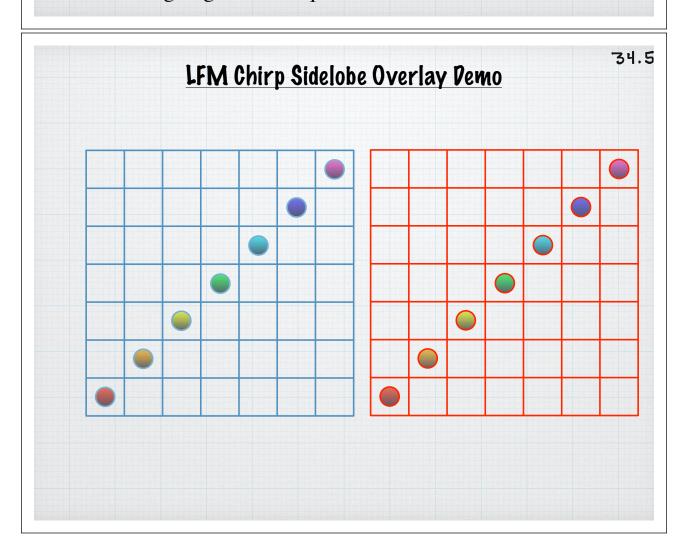
$$\tau = (n-m)T$$
 and $\nu = (d_n - d_m)/T$

or taking T=1 for simplicity...

$$\tau = n - m$$
 and $\nu = d_n - d_m$

Coincident Sidelobe Approximation

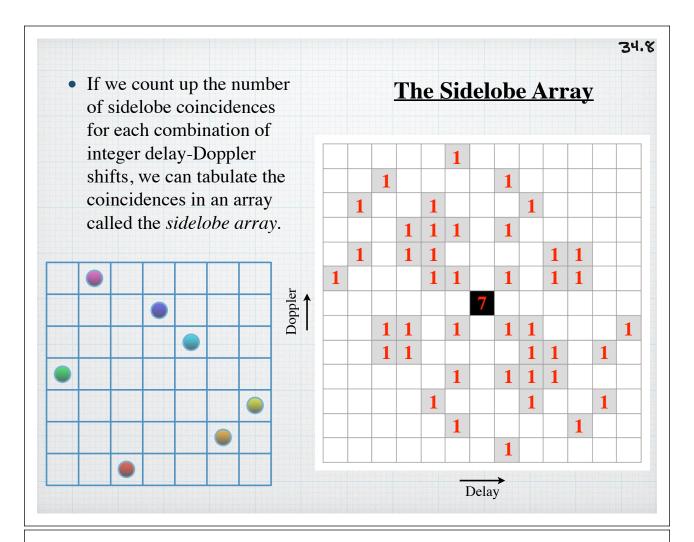
- If we consider only the sidelobe contributions due to the situations where both arguments of the ambiguity function is zero, we want to minimize the number of situations where this occurs.
- We especially want to minimize multiple "hits" for any given delay and Doppler shift.
- While this approach only minimizes an approximation of the ambiguity function sidelobes, it is surprisingly effective.
- It is, in fact, the approach John Costas used in designing Costas sequences.



Characteristics of Stepped-Frequency Waveforms

34.7

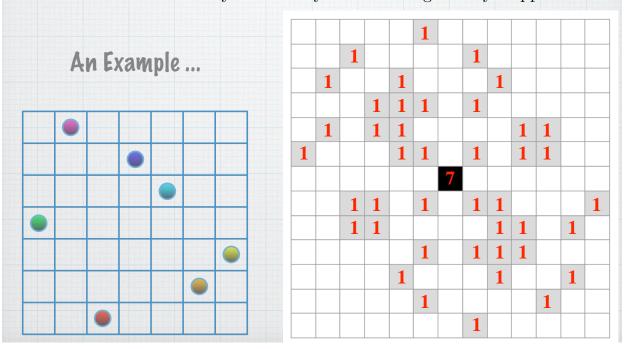
- A wide variety of waveforms with different ambiguity functions can be generated.
- These waveforms can be easily generated and amplified for transmission.
- The ambiguity characteristics of these waveforms can be easily visualized because of their localization in time and frequency.
- Provides a straightforward approach to characterizing "ambiguity state" of a target environment.
- These characteristics make them ideal for adaptive waveform radar.

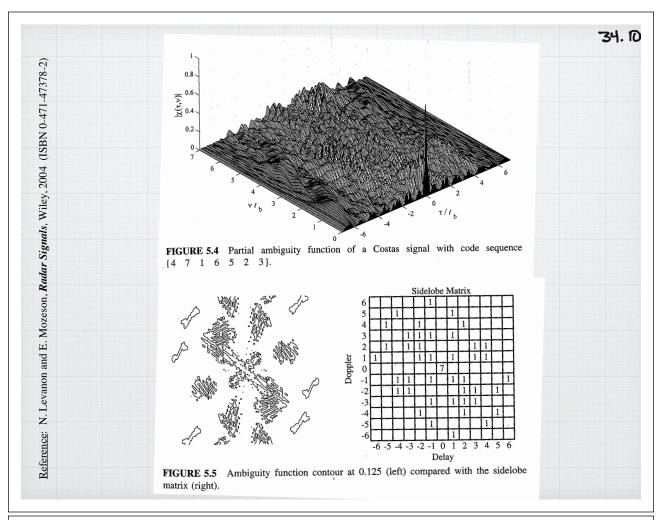


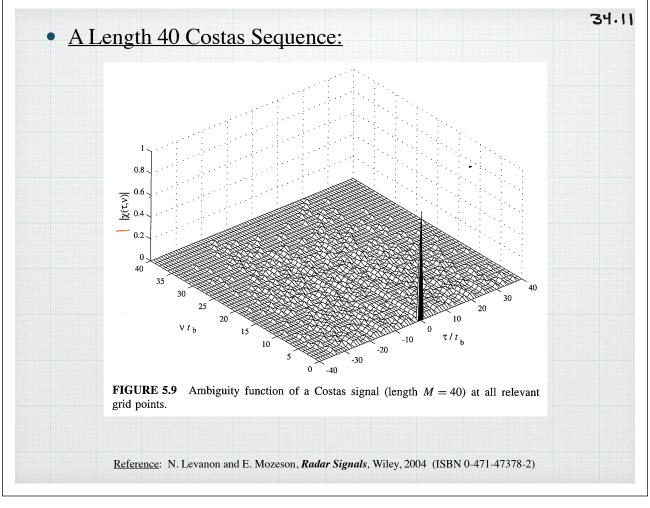
Costas Sequences

34.9

Definition: A Costas sequence of length N is a integer frequency firing sequence $\{d_1, \ldots, d_N\}$ (or $\{d_0, \ldots, d_{N-1}\}$ that is a permutation of the integers $1, \ldots, N$ (or $0, \ldots, N-1$) such that the maximum sidelobe height orcoincidence number in the sidelobe array is 1 for any nonzero integer delay-Doppler shift.







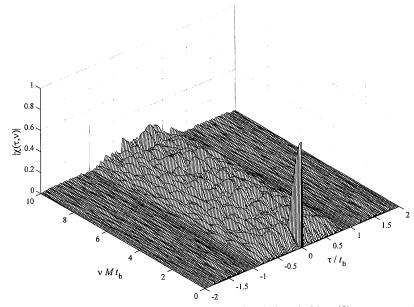


FIGURE 5.10 Ambiguity function of a Costas signal (length M=40) zoom near the origin.

Reference: N. Levanon and E. Mozeson, *Radar Signals*, Wiley, 2004 (ISBN 0-471-47378-2)

• A Length 40 Costas Sequence:

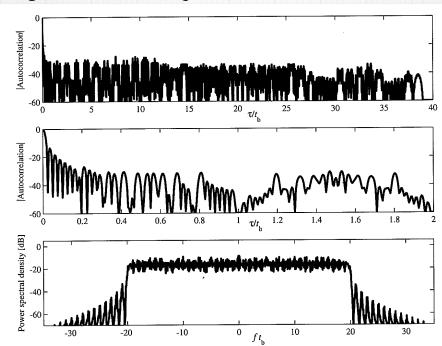


FIGURE 5.11 ACF (top and middle) and the spectrum (bottom) of a Costas signal (length 40).

Reference: N. Levanon and E. Mozeson, Radar Signals, Wiley, 2004 (ISBN 0-471-47378-2)

Pushing Sequences:

A new class of Frequency-Coded Waveforms for Use in Adaptive Waveform Radar

Chieh-Fu Chang and Mark R. Bell, "Frequency-coded Waveforms for Enhanced Delay-Doppler Resolution," *IEEE Transactions on Information Theory*, vol. 49, no. 11, Nov. 2003, pp. 2960–2971.

34.15

The Ambiguity Function of Frequency-Coded Waveforms

The ambiguity function of $s(t) = \sum_{l=0}^{N-1} p(t-lT)e^{-j2\pi\Omega_l t}$ is

$$\chi_s(\tau, \nu) = \chi_s^{(1)}(\tau, \nu) + \chi_s^{(2)}(\tau, \nu),$$

where

$$\chi_s^{(1)}(\tau,\nu) = \sum_{m=0}^{N-1} e^{-j2\pi m\nu T} e^{-j2\pi\Omega_m \tau} \chi_p(\tau,\nu),$$

and

$$\chi_s^{(2)}(\tau,\nu) = \sum_{m=0}^{N-1} \sum_{n=0, n \neq m}^{N-1} e^{-j\pi(\Omega_m + \Omega_n)\tau} e^{-j\pi(m+n)T} \cdot \chi_p(\tau + (m-n)T, \nu + (\Omega_n - \Omega_m))$$

Characteristics of Stepped-Frequency Waveforms

- A wide variety of waveforms with different ambiguity functions can be generated.
- These waveforms can be easily generated and amplified for transmission.
- The ambiguity characteristics of these waveforms can be easily visualized because of their localization in time and frequency.
- Provides a straightforward approach to characterizing "ambiguity state" of a target environment.
- These characteristics make them ideal for adaptive waveform radar.

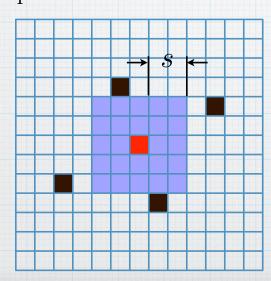
Pushing Sequences

34.17

- Pushing Sequences are frequency coded sequences that have a *clear region* clear of sidelobes surrounding the main lobe.
- Costas sequences approximate an ideal thumbtack ambiguity function globally. <u>Pushing sequences</u> do so locally.
- Pushing sequences are constructed using much the same intuition that is used for constructing Costas sequences (difference matrix determination of sidelobes.)
- Unlike Costas sequences, the frequency sequence need not be a permutation of 1, ..., N. Some of the frequencies may left out.
- Arbitrarily large clear areas can be achieved if arbitrarily long sequences are allowed.

Pushing Sequences

Definition: For the ambiguity function of a signal s(t), a clear area of size s is a square area centered at the origin of the (τ, ν) -plane, where $|\tau| \leq sT_r$ and $|\nu| \leq s/T$, such that no sidelobe peaks are present in this area.



Mainlobe

Sidelobe

Clear Area

In this example, 5 = 2.

34.19

Pushing Sequences

Definition: A sequence having the ambiguity function with a clear area of size s is called a pushing sequence with power s, where $s \ge 1$.

Any sequence $\{\underline{d}_N\}$ satisfying either |i-j| > s or $|d_i - d_j| > s$ for all i, j, where $0 \le i, j \le N - 1$ and $i \ne j$, will have a clear area of size s and is thus a pushing sequence with power s. This property for a frequency coding sequence is called the pushing property.

We are interested in pushing sequences that efficiently fill the geometric array.

Constructing Pushing Sequences

Lemma: A Costas sequence derived from the Lempel T_4 construction is a pushing sequence of power 1.

Lee codes can be used to construct pushing sequences.

An *r*-error- correcting Lee code is a length 2 code having close-packed codewords in the geometric representation plane.

The *Lee metric* between codewords must be at least 2r+1.

Such codes exist for all positive r.

Constructing Pushing Sequences

34.2

Theorem: For every positive integer r, the codewords $\{(k, (2r \oplus 1)k)\}$ form a close-packed r-error correcting dictionary in the Lee metric, where $k = 0, 1, 2...N - 1, N = 2r^2 + 2r + 1$ and \oplus represents addition modulo N. In that case, the Lee metric between each pair of codewords is at least 2r + 1.

Theorem: If the hits exist at $(i, (2r \oplus 1)i)$ in the geometric array of $\{\underline{d}_N\}$, where i = 0, 1, 2...N - 1, $N = 2r^2 + 2r + 1$, r is a positive integer and \oplus represents addition modulo N, then $\{\underline{d}_N\}$ is a pushing sequence with power r.

So the geometric array of a pushing sequence of power *r* is given by the corresponding Lee Code and can be easily constructed.

Sidelobe Locations and Heights

Theorem: For a Lee pushing sequence with power r, the level of the sidelobe peak at

$$(\tau, \nu) = k_1 V_1 + k_2 V_2,$$

where k_1 and k_2 are integers, $V_1 = (r + 1, r)$ and $V_2 = (r, -(r + 1))$, is given by

$$l(k_1, k_2) = \left[\frac{(2r+1-|k_1+k_2|)(2r+1-|k_1-k_2|)}{2} \right]$$

when $|k_1|, |k_2| \le (2r-1)$ and $|k_1| + |k_2| \le 2r$, and 0 otherwise. Furthermore, these are the only sidelobes.