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In order to find the optimal Bayesian sequential test (�,S), we will need to
specify both priors and costs.

The Optimal Bayes Sequential Test

Assume the priors are p = (p0, p1) and the costs Lij of deciding hypothesis Hj

is in effect when Hi is in fact in effect is

Lij =

{

1, when i != j,
0, when i = j.

We will also assign a cost C > 0 to each measurement we make, so that if N

is the stop time of our sequential test, the cost of making the measurements is
NC.

The assignment of a cost C > 0 to each measurement is necessary if we want
the test to terminate.
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From the figure, we see that:

1. If p1 � pL, then the Bayes sequential test is S0 = 1 and �0 = 0.

2. If p1 ⇥ pU , then the Bayes sequential test is S0 = 1 and �0 = 1.

3. If pl < p1 < pu, the sequential Bayes test is the sequential decision rule
with minimum risk among all (�,S) with S0 = 0.
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After taking one sample, the problem of optimizing the test is conditionally the
same as before taking any samples in the sense that

1. We still have infinitely many i.i.d. samples available at a cost of C each.

2. All future costs that can be incurred are the same as before we took a
sample.

The only di�erence is that, because we have take one sample, we have more
information about which hypothesis is true, and this is reflected in updating
our prior p1 as given by

p1(x1) = P ({H1 True}|{X1 = x1}).
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The picture doesn’t 
change—just the prior 

changes!
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Thus after taking one sample, the test has the form

1. If p1(x1) � pL, then the Bayes sequential test is S1 = 1 and �1 = 0.

2. If p1(x1) ⇥ pU , then the Bayes sequential test is S1 = 1 and �1 = 1.

3. If pl < p1(x1) < pu, the sequential Bayes test is the sequential decision
rule with minimum risk among all (�,S) with S1 = 0.

Once again, we either terminate with a decision in case 1 or 2, or we take another
sample X2, update the prior with

p1(x1, x2) = p1(x2) = P ({H1 True}|{X1 = x1} � {X2 = x2}),

and repeat the process again.
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Continuing with this argument, we have that the Bayes sequential test keeps
taking samples until

p1(xn) = P ({H1 True}|{X1 = x1} ∩ · · · ∩ {Xn = xn}) /∈ (pL, pU ).

It then chooses H0 if p1(xN ) ≤ pL or H1 if p1(xN ) ≥ pU . So the optimal test
(φ,S) has the stopping rule

Sn(x1, . . . , xn) =

{

0, pL < p1(x1, . . . , xn) < pU ,
1, otherwise,

and the decision rule

φn(x1, . . . , xn) =

{

1, p1(x1, . . . , xn) ≥ pU ,
0, p1(x1, . . . , xn) ≤ pL.
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It can be shown that under fairly mild assumptions that with probability one,

p1(x1, . . . , xn)� 0, as n�⇥,

under H0, and
p1(x1, . . . , xn)� 1, as n�⇥,

under H1.

So for any (pL, pU ) such that 0 < pL < pU < 1, the test eventually converges to
a decision with probability one.

All that is needed to specify the optimal Bayes test is pU and pL.

Unfortunately, pU and pL are not easily calculated except in special cases.

However, the posterior probabilities p1(xn) are easily calculated.
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Assuming the i.i.d. Xk have conditional densities f�0
(x) and f�1

(x), we have

p1(x1, . . . , xn) =
p1

n⇤
k=1

f�1
(xk)

(1� p1)
n⇤

k=1
f�0

(xk) + p1

n⇤
k=1

f�1
(xk)

=
p1�n(x1, . . . , xn)

p0 + p1�n(x1, . . . , xn)
,

where

�n(x1, . . . , xn) =
n⌅

k=1

�
f�1

(xk)
f�0(xk)

⇥
= �n(x1, . . . , xn) =

�
f�1

(xn)
f�0(xn)

⇥
�n�1(x1, . . . , xn�1),

where we take �0 = 1 and evaluate recursively with each received sample:

�n(xn) = L(xn)�n�1(xn�1),

where

xk = (x1, . . . , xk)T and L(xn) =
f�1

(xn)
f�0

(xn)
.

Such a test is called a Sequential Probability Ratio Test (SPRT) for obvious
reasons.
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Wald-Wolfowitz

Theorem

It is in general di�cult to analytically determine pL and pU for the SPRT,
and both ad hoc and rigorous techniques. Often ad hoc techniques are used to
determine values of pL and pU that, although they may not be optimal, work
well.

We have discussed sequential detection in the Bayesian context, but it can also
be used in the classical or frequentist detection framework as well. Here, we will
once again find that the SPRT is the optimal test in a certain sense.

For a sequential decision rule (�,S), let PFA(�,S) denote the probability of
false alarm (Type I error), and let PM (�,S) denote the probability of a miss
(Type II error), and let N((�,S)) be the stopping time associated with the test.
Then if (�

0
,S0) is the optimal SPRT and (�,S) is any other sequential test (or

fixed sample test) and
PFA(�,S) � PFA(�

0
,S0)

and
PM (�,S) � PM (�

0
,S0),

then
E[N((�,S))|Hj ] ⇥ E[N((�

0
,S0))|Hj ], for j = 0 and 1.
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The Matched Filter

Processor Decision

Signal Model
Reduces Signal to a


Vector of Observations

Reduces Vector of

Observations to

Binary Decision

Recall the radar target detection problem:
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Detection of a Known Signal in Additive White Gaussian Noise
Suppose we have a signal s(t) of known duration T in the interval [0, T ] such
that

s(t) = 0, t /∈ [0, T ].

We wish to determine whether or not this signal is present in the presence of
Additive White Gaussian Noise (AWGN).

Hypothetical Lowpass Filter:

2 1 . 1 0

Assume the noise w(t) is zero-mean Gaussian white noise having (two-sided)
PSD

Sww(f) =
N0

2
.

(

=
kTe

2

)

We want to determine which of two possible hypotheses are in effect:

H0 : r(t) = w(t) (target absent),

H1 : r(t) = s(t) + w(t) (target present).

Assume B sufficiently large such that all but a
negligible fraction of the energy in s(t) passes
through H(f).

Assume we observe the process z(t) through a hypothetical lowpass filter

H(f) = 1[−B,B](f) =

{

1, for |f | ≤ B;
0, for |f | > B.

.
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If we input only the white noise w(t) into filter H(f), the output n(t) becomes
bandlimited whote noise n(t):

E[n(t)] = 0

Snn(f) =
N0

2
· 1[−B,B](f)

Rnn(⇥) = N0B

�
sin 2�B⇥

2�B⇥

⇥

= N0B sinc(2B�).

It follows that
Rnn(�) = 0, for � =

±1
2B

,
±2
2B

,
±3
2B

, . . .

�
E

[

n

(

t0 +
k

2B

)

· n
(

t0 +
m

2B

)

]

= N0Bδk,m =

{

N0B, for k = m,

0, for k != m.

∀t0 ∈ R

2 1 . 1 2

Thus samples of the random process n(t) taken at increments of �t = 1/(2B)
form a sequence of uncorrelated Gaussian random variables.

Because this sequence is both Gaussian and uncorrelated, it follows that it is a
sequence of independent Gaussian random variables.

Thus n(t0 + 1/(2B)), n(t0 + 2/(2B)), . . . , n(t0 + M/(2B)) are i.i.d. Gaussian
random variables with mean zero and variance �2

n = Rnn(0) = N0B.

If we take t0 = 0 and sample at time instants tm = m/(2B), where m =
1, 2 . . . 2BT over duration T , the p.d.f. under H0 is

f0(y(t1), . . . , y(t2BT )) =
2BT⌃

m=1

1⇥
2�⇥n

exp
�
�y2(tm)

2⇥2
n

⇥

=
1

(2�)BT ⇥2BT
n

exp

⇤
� 1

2⇥2
n

2BT⇧

m=1

y2(tm)

⌅
.
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The p.d.f. under H1 is

f1(y(t1), . . . , y(t2BT )) =
2BT⌃

m=1

1⇥
2�⇥n

exp
�
� (y(tm)� s(tm))2

2⇥2
n

⇥

=
1

(2�)BT ⇥2BT
n

exp

⇤
� 1

2⇥2
n

2BT⇧

m=1

(y(tm)� s(tm))2
⌅

.

The log-likelihood ratio as

⌅(Y ) = log
�

f1(y(t1) . . . y(t2BT ))
f0(y(t1) . . . y(t2BT ))

⇥

= log

⇧

⌥
exp{� 1

2�2
n

 2BT
m=1(y(tm)� s(tm))2}

exp{� 1
2�2

n

 2BT
m=1 y2(tm)}

⌃

�

= � 1
2�2

n

⇤
2BT⌦

m=1

(y(tm)� s(tm))2 �
2BT⌦

m=1

y2(tm)

⌅
.
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Thus the most powerful test of size � = PFA is of the form

1
2⇤2

w

2BT⇤

m=1

�
2y(tm)s(tm)� s2(tm)

⇥ H1
>
<
H0

⇥0,

where ⇥0 is a threshold determined by the required false alarm rate PFA.

Equivalently, we can write the test as

1
N0B

2BT�

m=1

y(tm)s(tm)
H1
>
<
H0

log �0 +
1

2N0B

2BT�

m=1

s2(tm).

x


