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The Generalized Likelihood Ratio Test
Sometimes we can’t find a UMP test


Doesn’t exist


Difficult to construct


We then need an alternative:


Locally Most Powerful (LMP) tests


Generalized Likelihood ratio test 
(GLRT)
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The Generalized Likelihood Ratio Test

The generalized likelihood ratio test (GLRT) gets around the
composite hypothesis testing problem by e�ectively turning it
into a test between two simple hypotheses.

These simple hypotheses are selected to be the
most likely value of

�0 � �0 under H0

�1 � �1 under H1

and

given the observed data.
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Using these two simple hypotheses, a 
likelihood ratio test is implemented to test 
between them.


The composite hypothesis corresponding to 
the simple hypothesis declared by the simple 
likelihood test is the composite hypothesis 
declared by the GLRT.


 While the GLRT is not optimal in any 
particular sense, it seems like a reasonable 
approach to dealing with the composite 
hypothesis testing problem.


In many cases where a UMP test does exist, 
the GLRT exhibits nearly optimal behavior.

The Generalized Likelihood Ratio Test (Cont.)
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Generalized Likelihood Ratio Test (GLRT)
Consider two composite hypotheses H0 : � � �0 and
H1 : � � �1. The Generalized Likelihood Ratio Test (GLRT)
consists of the following procedure:

1. Assume H0 is true and estimate the value of � from the observed data
using a maximum likelihood estimate (MLE):

�̂0 = arg max
���0

f�(X).

2. Assume H1 is true and estimate the value of � from the observed data
using a (MLE):

�̂1 = arg max
���1

f�(X).

3. Replace the original problem of testing the composite hypotheses H0 ver-
sus H1 with the problem of testing the simple hypotheses Ĥ0 : �̂0 = {�̂0}
versus Ĥ1 : �̂1 = {�̂1}. If Ĥ0 is decided in the simple hypothesis prob-
lem, then H0 is decided as the composite hypothesis. If Ĥ1 is decided
in the simple hypothesis problem, then H1 is decided as the composite
hypothesis.
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GLRT-continued

Lg(X) =
max
���1

f�(X)

max
���0

f�(X)

H1
>
<
H0

L0,

When we carry out this procedure, we get a GLRT of the form

which yields a statistical test of the form

φ(X) =







1, for Lg(X) > L0,
γ, for Lg(X) = L0,
0, for Lg(X) < L0,

where, in principle, L0 and ⇥ are selected to yield a size � test.
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φ(X) =







1, for Lg(X) > L0,
γ, for Lg(X) = L0,
0, for Lg(X) < L0.

L0 and �

Selecting L0 and ⇥ to yield a size � test is di�cult.

The reason is that the size of the test is still defined as

� = sup
���0

E� [⇥(X)] .

We do not use E�̂0
[�(X)] as the size of the test.
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Example: Suppose we wish to test the hypotheses H0 versus H1 that the
random sample X = (X1, . . . , XN ) comes from a density

fθ(xn) =
1√
2π

exp

{

−(xn − θ)2

2

}

,

where under H0 : Θ0 = [−1, 1], and under H1 : Θ0 = {θ ∈ R : |θ| > 1}.

We note that in general,

fθ(X) =
1

(2π)N/2
exp

{

−

1

2

N
∑

n=1

(xn − θ)2
}

, (1)

from which it follows that the (unconstrained) maximum likelihood estimate
θ̂ML of θ can be found by solving

∂

∂θ
fθ(X) = 0

for θ, yielding

θ̂ML =
1

N

N
∑

n=1

Xn.
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For this case, we can easily see that

θ̂0 = arg max
θ∈Θ0

fθ(X) =







θ̂ML, for θ̂ML ∈ [−1, 1],
−1, for θ̂ML < −1,
1, for θ̂ML > 1,

and

θ̂1 = arg max
θ∈Θ1

fθ(X) =







θ̂ML, for θ̂ML /∈ [−1, 1],
−1, for θ̂ML ∈ [−1, 0],
1, for θ̂ML ∈ (0, 1].

Using this θ̂0 and θ̂1 we can now construct the GLRT

Lg(X) =
fθ̂1

(X)

fθ̂0
(X)

H1

>
<
H0

L0

with an appropriately chosen threshold L0.

Recall: � = sup
���0

E� [⇥(X)]; � �= E�̂0
[⇥(X)].
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Bayesian Detection Theory
In classical detection, we decide between H0 : � � �0 versus H1 : � � �1 based
on an observation X governed by the parameterized cdf F�)(x)

Here � was assumed to be an unknown but fixed parameter. The parameter �
was not assumed to be random, just unknown.

In the Bayesian detection framework, we again assume that our observation X
is governed by a distribution F�(X),

but we now assume that � is a random vector taking on one of two possible
values: �0 or �1. These values are taken on with probabilities

p0 = P ({� = �0}),
p1 = P ({� = �1}) = 1� p0,

where p0 ⇥ [0, 1].

18.9

I



We have a random experiment with probability space (S,F , P ) having two
random variables � and X defined on it.

When the random experiment is performed, � takes on a value from the set
{�0, �1} with probabilities p0 and p1, respectively.

The observed value of X takes on a value consistent with the distribution F�(x)
for the value � takes on.

Thus we have a conditional distribution function for X:

F (x|�j) = P ({X � x}|{� = �j}) = F�j
(x), j = 0, 1.

The joint distribution of θ and X is given by

F (θ, x) = F (x|θ)P (θ) =

{

p0F (x|θ0), for θ = θ0,
p1F (x|θ1), for θ = θ1.
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Binary Source
{�0, �1} � (p0, p1)

Measurement
Mechanism

F (X|�)

� X

It follows that

P (θ) =

∫

Rn

dF (θ, x) =

∫

Rn

f(θ, x) dx =

{

p0, for θ = θ0,
p1, for θ = θ1,

and

F (x) = F (x|θ0)P (θ0) + F (x|θ1)P (θ1)

= p0F (x|θ0) + p1F (x|θ1),

where Rn is the observation space of the n-dimensional observation vector.
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