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The Generalized Likelihood Ratio Test

@ Sometimes we cant find a UMP test
@ Doesnt exist
@ Difficult to construct
@ We then need an alternative:
@ Locally Most Powerful (LMP) tests

@ Generalized Likelihood ratio test
(GLRT)




The Generalized Likelihood Ratio Test

The generalized likelihood ratio test (GLRT) gets around the
composite hypothesis testing problem by effectively turning it
into a test between two simple hypotheses.

These simple hypotheses are selected to be the
most likely value of

0y € ©¢ under Hy,

and
01 € ©1 under H;

given the observed data.

The Generalized Likelihood Ratio Test (Cont.)

@ Using these two simple hypotheses, a
likelihood ratio test is implemented to test
between them.

@ The composite hypothesis corresponding to
the simple hypothesis declared by the simple
likelihood test is the composite hypothesis
declared by the GLRT.

@ While the GLRT is not optimal in any
particular sense, it seems like a reasonable
approach to dealing with the composite
hypothesis testing problem.

@ In many cases where a UMP test does exist,
the GLRT exhibits nearly optimal behavior.




Generalized Likelihood Ratio Test (GLRT)

Con81der two composite hypotheses Hy : 6 € ©y and
: 8 € ©1. The Generalized Likelihood Ratio Test (GLRT)
Consists of the following procedure:

1. Assume Hj is true and estimate the value of 6 from the observed data
using a maximum likelihood estimate (MLE):

0, = arg pax f5(X).

. Assume H; is true and estimate the value of 6 from the observed data
using a (MLE):

0, = arg poax fo(X).

. Replace the original problem of testing the composite hypotheses Hy ver-
sus H; with the problem of testing the simple hypotheses HO @0 = {(9()}
versus Hy : ©; = {91} If Hy is decided in the simple hypothesis prob-
lem, then Hy is decided as the composite hypothesis. If H; is decided

in the simple hypothesis problem, then H; is decided as the composite
hypothesis.

GLRT-continued

When we carry out this procedure, we get a GLRT of the form

which yields a statistical test of the form

1, ~for LX) > 4y,
Moo aer Lo () )
0, o B (X) < Lo,

where, in principle, Ly and 7 are selected to yield a size o test.




Ly and ~y

Selecting Ly and 7 to yield a size « test is difficult.

The reason is that the size of the test is still defined as

o = sup By [(X)].
[ASST

We do not use By [0(X)] as the size of the test.

Example: Suppose we wish to test the hypotheses Hy versus H; that the
random sample X = (X1,...,Xy) comes from a density

o= o A

where under Hy : ©9 = [—1,1], and under H, : O ={0 € R : |0] > 1}.

We note that in general,

1 1 & %
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from which it follows that the (unconstrained) maximum likelihood estimate
Orr1, of 8 can be found by solving

0
géfe(i) =t

for 0, yielding




For this case, we can easily see that

2 for éML
0o = arg Jes fo(X) = for 0L
R for HML

for QML

01 = arg max fo(X) = for Oasg,

for éML

Using this 0o and 6, we can now construct the GLRT

H;
=
< Lo
Hyg

with an appropriately chosen threshold Ly.

Recall: oo = sup Eg [@o(X)l; Jesse T o(X)].
0€6¢ i

Bayesian Detection Theory

In classical detection, we decide between Hy : 6 € ©q versus Hy : 6 € ©1 based
on an observation X governed by the parameterized cdf Fy (z)

Here 0 was assumed to be an unknown but fixed parameter. The parameter 6
was not assumed to be random, just unknown.

In the Bayesian detection framework, we again assume that our observation X
is governed by a distribution Fp(X)

but we now assume that @ is a random vector taking on one of two possible
values: 6, or 6,. These values are taken on with probabilities

po = P{8=100}),
D1t P({0= 071

where po € [0, 1].




We have a random experiment with probability space (S,F, P) having two
random variables 6§ and X defined on it.

When the random experiment is performed, f takes on a value from the set
{6,,0,} with probabilities py and p;, respectively.

The observed value of X takes on a value consistent with the distribution Fjy(z)
for the value @ takes on.

Thus we have a conditional distribution function for X:

F(zl8;) = PUX < z}[{8=6,}) = Fy,(2), §=0,1.

The joint distribution of § and X is given by

z|0 for 0 = 0,
F(8,z) = F(z|0)P(8) = { z|0,), for § = QT.

Binary Source Measurement
Mechanism

{00,0,} ~ (po,p1) F(X|0)

It follows that

P(0)

F(z) = F(z|0)P(0y) + F(z]0;)P (0
= poF(z|8y) + p1 F (2|0,

where R" is the observation space of the n-dimensional observation vector.




